Grundbegriffe der Informatik — Aufgabenblatt 4 Lösungsvorschläge

Tutorium Nr.:	Tutor*in:
Matr.nr. 1:	
Nach-,Vorname 1:	,
Matr.nr. 2:	
Nach-,Vorname 2:	,
Ausgabe:	7. November 2019
Abgabe:	19. November 2019, 12:30 Uhr im GBI-Briefkasten im Untergeschoss von Gebäude 50.34
Lösungen werden nur korrigiert, wenn sie • rechtzeitig • handschriftlich • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet abgegeben werden.	
Vom Tutor auszufüllen: erreichte Punkte	
Blatt 4: / 21	

Aufgabe 4.1 (1.5 + 1 + 1.5 = 4 Punkte)

Gegeben sei die formale Sprache

$$L = \{\mathtt{ab}\}^* \cup \{\mathtt{a}\} \cdot (\{\mathtt{a}\} \cdot \{\mathtt{a},\mathtt{ab}\})^* \cdot \{\mathtt{bb}\}$$

über dem Alphabet $A = \{a, b\}.$

- a) Geben Sie alle Wörter aus L an, deren Länge höchstens 4 ist.
- b) Gilt $\varepsilon \in L^+$? Begründen Sie Ihre Antwort.
- c) Geben Sie drei verschiedene Wörter $w_1, w_2, w_3 \in L^* \setminus L$ an.

Lösung 4.1

- a) $M_4 = \{\varepsilon, ab, abb, abab\}$
- b) Ja, weil $\varepsilon \in L = L^1$ und damit auch $\varepsilon \in L^+ = \bigcup_{i \in \mathbb{N}_+} L^i$.
- c) Z. B. alle $w \in \{ab\}^+\{a\}\{aa,aab\}^*\{bb\}$, also $w_1 = ababb$, $w_2 = abaaabb$, und $w_3 = abaaaaabb$

Aufgabe 4.2 (1 + 1 + 1.5 + 1.5 = 5 Punkte)

Es sei $A = \{a, b\}$. Für jede der folgenden Bedingungen B_i und $i \in \{1, 2, 3, 4\}$ sei $L_i = \{w \in A^* \mid w \text{ erfüllt } B_i\}$. Geben Sie für jede solche Sprache L_i einen formalen Ausdruck an, der genau L_i beschreibt. Verwenden Sie hierfür ausschließlich folgende Zeichen:

- a) B_1 : "|w| ist ungerade und es gilt $w(0) \neq w(|w|-1)$ "
- b) B_2 : "|w| = 0"
- c) B₃: "w enthält nicht ab"
- d) B_4 : " $w \in L_3 \to w \in L_2$ "

Lösung 4.2

Natürlich gibt es viele mögliche richtige Antworten. Beispiele:

- a) $L_1 = \{a\} \cdot \{a, b\} \cdot \{aa, ab, ba, bb\}^* \cdot \{b\} \cup \{b\} \cdot \{a, b\} \cdot \{aa, ab, ba, bb\}^* \cdot \{a\}$
- b) $L_2 = \{\}^*$
- c) $L_3 = \{b\}^* \cdot \{a\}^*$
- d) $L_4 = \{ w \in A^* \mid w \notin L_3 \lor w \in L_2 \} = \{ a, b \}^* \cdot \{ ab \} \cdot \{ a, b \}^* \cup \{ \}^*$

Aufgabe 4.3 (1 + 1 + 3 + 1 = 6 Punkte)

Es sei $A = \{a, b\}$. Für jede formale Sprache $L \subseteq A^*$ sei $\mathcal{A}(L)$ die Aussage:

$$(\{\mathtt{a}\}\cdot L)^*\cap A^+=L\;.$$

- a) Zeigen Sie: Für $L = \{\}$ gilt $\mathcal{A}(L)$.
- b) Zeigen Sie: Wenn A(L) gilt, dann ist $\varepsilon \notin L$.
- c) Zeigen Sie mittels vollständiger Induktion über $n \in \mathbb{N}_0$: Wenn $\mathcal{A}(L)$ gilt, dann gilt für jedes $n \in \mathbb{N}_0$: $\forall w \in L : |w| \ge n$.
- d) Begründen Sie, warum aus den Aussagen von Teilaufgaben a) bis c) folgende Aussage folgt: Es gilt $\mathcal{A}(L)$ genau dann, wenn $L = \{\}$ ist.

Lösung 4.3

- a) $(\{a\} \cdot \{\})^* \cap A^+ = \{\}^* \cap A^+ = \{\epsilon\} \cap A^+ = \{\}$
- b) Zeige: Wenn $\varepsilon \in L$ ist, dann gilt $\mathcal{A}(L)$ nicht. Sei daher $\varepsilon \in L$. Die Sprache $(\{\mathtt{a}\} \cdot L)^* \cap A^+$ enthält insbesondere nur Wörter aus A^+ , also nur Wörter, deren Länge mindestens 1 ist, und damit ganz bestimmt *nicht* das leere Wort. Also ist $(\{\mathtt{a}\} \cdot L)^* \cap A^+ \neq L$, d. h. $\mathcal{A}(L)$ gilt nicht.
- c) Es sei L eine formale Sprache, für die A(L) gilt.

Induktionsanfang: n = 0: Zu zeigen ist dann: $\forall w \in L : |w| \ge 0$.

Das ist offensichtlich wahr.

Induktionsschritt: $n \rightsquigarrow n+1$: Es sei $n \in \mathbb{N}_0$ beliebig.

Induktionsvoraussetzung: $\forall w \in L : |w| \ge n$

Induktionsbehauptung: zu zeigen: $\forall w \in L : |w| \ge n+1$

Nach IV ist $\forall w \in L : |w| \ge n$. Ist $w' \in L = (\{a\} \cdot L)^* \cap A^+$, so gibt es $k \in \mathbb{N}_0$ mit $w' \in (\{a\} \cdot L)^k$ und $w' \in A^+$. Wegen letzterem ist $w' \ne \varepsilon$ und damit auch $k \ge 1$, also $w' = w'_1 w'_2$ für gewisse $w'_1 \in \{a\} \cdot L = \{a \cdot w \mid w \in L\}$ und $w'_2 \in (\{a\} \cdot L)^*$. Nach IV gilt $|w'| = |w'_1| + |w'_2| \ge |w'_1| \ge n + 1$. Folglich hat auch jedes Wort in $L = (\{a\} \cdot L)^* \cap A^+$ mindestens Länge n + 1.

d) In a) wurde gezeigt: Wenn $L = \{\}$, dann gilt A(L).

Es bleibt noch zu zeigen: Wenn A(L) gilt, dann ist $L = \{\}$. Sei also L derart, dass A(L) wahr ist.

Sei $w \in A^*$ beliebig. Dann hat w eine feste Länge k = |w|. Da $\mathcal{A}(L)$ wahr ist, gilt laut Teilaufgabe c) insbesondere, dass alle Wörter in L mindestens Länge k+1 haben. Damit ist $w \notin L$. Da $w \in A^*$ beliebig war, so gilt also $L = \{\}$.

Aufgabe 4.4 (1.5 + 3 + 1.5 = 6 Punkte)

Betrachten Sie die Abbildung $h: \mathbb{N}_0 \to \mathbb{N}_0$, die wie folgt induktiv definiert ist:

$$h(0) = 0$$

$$\forall k \in \mathbb{N}_+: \quad h(2k) = h(k)$$

$$\forall k \in \mathbb{N}_0: h(2k+1) = 1 + h(k)$$

- a) Geben Sie h(n) für jedes $n \in \mathbb{N}_0$, $n \le 7$, tabellarisch an.
- b) Zeigen Sie mittels vollständiger Induktion, dass $0 \le h(n) \le n$ für jedes $n \in \mathbb{N}_0$ gilt. *Hinweis*. Verwenden Sie die starke Variante der vollständigen Induktion.
- c) Welcher Zusammenhang besteht zwischen $w \in \{0,1\}^*$ und $h(\text{Num}_2(w))$?

Lösung 4.4

b) IA (n = 0). Es gilt $0 \le 0 = h(0) = 0 \le 0$.

IS $(n \to n + 1)$. Sei $n \in \mathbb{N}_0$ beliebig.

Es gelte $0 \le h(n') \le n'$ für jedes $n' \in \mathbb{N}_0$ mit $n' \le n$ (IV). Man unterscheide zwischen den folgenden zwei Fällen:

- n+1 gerade. Dann ist n+1=2k für ein $k\in\mathbb{N}_0$ und damit h(n+1)=h(k). Nach IV ist $0\leq h(k)\leq k< n+1$.
- n+1 ungerade. Dann ist n+1=2k+1 für ein $k \in \mathbb{N}_0$ und damit h(n+1)=1+h(k). Nach IV gilt $0 \le h(k) \le n$ und damit auch $0 < 1 \le 1+h(k) \le n+1$.
- c) $h(\operatorname{Num}_2(w)) = N_1(w)$, wobei $N_1(w)$ die Anzahl Vorkommen von 1 in w ist. Diese Zahl wird auch *Hamming-Gewicht* von w genannt (nach dem amerikanischen Mathematiker Richard Hamming) und wird breit in der Kodierungstheorie angewendet.