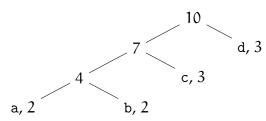
Klausur zur Vorlesung Grundbegriffe der Informatik 6. August 2021

Nachname:							
Vorname:							
MatrNr.:							
Diese Klausur ist mein 1. Versuch 2. Versuch in GBI							
Falls 2. Versuch, bitte sehr gut lesbar ausfüllen:							
	Email-Adr.:						
	Postanschrift:						
Aufgabe	1	2	3	4	5	6	7
max. Punkte	7	6	6	6	6	7	7
tats. Punkte							
Gesamtpunktzahl:			/ 45		Note:		

Aufgabe 1 (2 + 1 + 1 + 1 + 2 = 7 Punkte)

/ 2

a) Ein Student, der sich noch nicht mit Huffman-Bäumen gut auskennt, hat als "Huffman-Baum" für $w=a^2b^2c^3d^3$ folgenden Baum H angegeben:



- (i) Beim Erstellen von H hat der Student nicht nur die Kantenbeschriftungen vergessen, sondern noch einen weiteren Fehler gemacht. Erklären Sie, welcher das ist und wie es richtig gewesen wäre.
- (ii) Auch bei dem falschen Baum kann man die Kanten mit 0 und 1 beschriften, sodass eine binäre Codierung C entsteht.
 Ergänzen Sie den obigen Baum entsprechend und geben Sie die Codierung C(x) für jedes Zeichen x an, das in w vorkommt.
 Geben Sie zum Schluss die Codierung des ganzen Wortes w an.

/ 1

b) Eine Funktion $f \colon \mathbb{N}_+ \to \mathbb{N}_+$ heißt *streng monoton wachsend*, wenn für jedes $n \in \mathbb{N}_+$ gilt: f(n) < f(n+1). Man beachte, dass hier "<" gefordert wird, nicht nur "≤". Geben Sie eine streng monoton wachsende Funktion $f \colon \mathbb{N}_+ \to \mathbb{N}_+$ an, für die gilt: $f \in \Theta(1)$.

/ 1

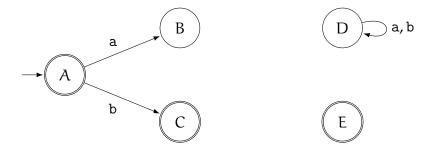
- c) Es sei L die formale Sprache der syntaktisch korrekten Java-Programme.
 - (i) Geben Sie eine Teilmenge L₁ von L an, die entscheidbar ist.
 - (ii) Geben Sie eine Teilmenge L₂ von L an, die *nicht* entscheidbar ist.

/ 1

d) Es sei F eine aussagenlogische Formel, die unerfüllbar ist. Geben Sie eine aussagenlogische Tautologie an, die F als Teilwort enthält.

/ 2

 e) Es sei L ⊆ {a, b}* die formale Sprache aller Wörter, in denen unmittelbar vor oder unmittelbar nach jedem Vorkommen von a ein b steht.
 Vervollständigen Sie das folgende Diagramm zu einem Akzeptor für L:



Weiterer Platz für Antworten zu Aufgabe 1:

Aufgabe 2 (1 + 1 + 1 + 3 = 6 Punkte)

Es sei $T = \{a,b\}$ und L die formale Sprache $L = \{a^kb^m \mid k, m \in \mathbb{N}_0 \land k \neq m\}$.

/ 1

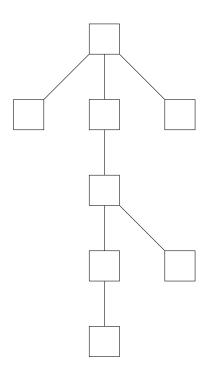
a) Geben Sie eine kontextfreie Grammatik G=(N,T,S,P) mit höchstens 4 Nichtterminalsymbolen an, die L(G)=L erzeugt.

Wählen Sie die Produktionen möglichst so, dass

- Sie die Darstellung in Teilaufgabe b) zu einem Ableitungsbaum des Wortes abbb ergänzen können (sonst ist Teilaufgabe b) nicht lösbar) und
- dass jedes Wort aus L möglichst nur genau einen Ableitungsbaum besitzt (dann ist Teilaufgabe c) vermutlich einfacher).

/ 1

b) Ergänzen Sie die folgende Darstellung zu einem Ableitungsbaum des Wortes abbb gemäß Ihrer Grammatik.



/ 1

c) Was ist die kleinste Zahl innerer Knoten, die ein Ableitungsbaum eines Wortes $a^kb^m\in L$ gemäß Ihrer Grammatik aus Teilaufgabe a) in Abhängigkeit von k und m hat?

/ 3

d) Für $w \in T^*$ sei

$$M_w = \{ w' \in T^* \mid ww' \in L \}$$

Geben Sie für jedes $w \in T^*$ die Menge M_w konkret an.

Tipp: Machen Sie eine Fallunterscheidung in Abhängigkeit von der Struktur von w.

Weiterer Platz für Antworten zu Aufgabe 2:

Aufgabe 3 (1 + 2 + 1 + 1 + 1 = 6 Punkte)

Es sei $A = \{a, b\}$. Für eine Abbildung $f: A^* \to A^*$ sei festgelegt:

$$\forall w \in A^0 \cup A^1 : f(w) = w$$

$$\forall w \in A^* : f(aaw) = a f(aw)$$

$$\forall w \in A^* : f(abw) = f(w)$$

$$\forall w \in A^* : f(baw) = f(w)$$

$$\forall w \in A^* : f(bbw) = b f(bw)$$

- / 1
- a) Berechnen Sie schrittweise f(abab) und f(bbaa).
- / 2
- b) Ein $w \in A^*$ heißt ein *Fixpunkt* von f, wenn f(w) = w ist.
 - (i) Geben Sie die Menge M aller Fixpunkte von f an.
 - (ii) Begründen Sie, warum jedes Wort in M Fixpunkt ist.
 - (iii) Begründen Sie, warum jedes Wort in $A^* \setminus M$ kein Fixpunkt ist.

Die Abbildung F: $A^* \to A^*$ sei definiert durch

$$F(w) = \begin{cases} w & \text{falls } f(w) = w \\ F(f(w)) & \text{falls } f(w) \neq w \end{cases}$$

- / 1
- c) Berechnen Sie schrittweise F(bbaaabab). Ergebnisse aus den Teilaufgaben a) und b) dürfen sie direkt einsetzen.
- / 1
- d) Es sei $w \in A^*$ beliebig.

Begründen Sie, warum F(w) definiert ist.

Hinweis. Betrachten Sie die Folge der Wörter mit $w_0 = w$ und für $i \in \mathbb{N}_0$: $w_{i+1} = f(w_i)$. Sie dürfen Teilaufgabe b) verwenden.

- / 1
- e) Geben Sie für jedes $w \in A^*$ an, welchen Wert F(w) hat.

Hinweis. Notieren Sie die Anzahl Vorkommen eines Symbols $x \in A$ im Wort w mit " $N_x(w)$ ".

Weiterer Platz für Antworten zu Aufgabe 3:

Aufgabe 4 (1 + 1 + 2 + 2 = 6 Punkte)

In dieser Aufgabe geht es um gerichtete Graphen G=(V,E). Mit $\mathfrak{n}_G\in\mathbb{N}_+$ wird die Anzahl der Knoten von G bezeichnet. Die Knotenmenge sei stets $V=\mathbb{Z}_{\mathfrak{n}_G}$. Ferner sei A die Adjazenz- und W die Wegematrix von G.

/ 1

a) Es sei $n_G = 4$, also $V = \mathbb{Z}_4$ und $E = \{(x,y) \in V \times V \mid x \cdot y \text{ ist ungerade}\}$. Geben Sie A und W explizit an. Kennzeichen Sie deutlich, welche Matrix A und welche W ist.

Es sei nun G beliebig. Für $i,j\in\mathbb{Z}_{n_G}$ sei W_{ij} der Eintrag in Zeile i und Spalte j der Wegematrix W von G. Zudem sei

$$f_W(G) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} W_{ij}.$$

/ 1

- b) Geben Sie Funktionen q: $\mathbb{N}_+ \to \mathbb{N}_0$ und Q: $\mathbb{N}_+ \to \mathbb{N}_0$ an, sodass
 - 1. für jeden Graphen G gilt: $q(n_G) \le f_W(G) \le Q(n_G)$ und
 - 2. jede der Ungleichungen möglichst scharf ist. Das bedeutet, dass es für jedes $\mathfrak n$ einen Graphen $\mathfrak G$ mit $\mathfrak n$ Knoten geben muss, sodass $\mathfrak q(\mathfrak n)=\mathfrak f_W(\mathfrak G)$ ist, und dass es für jedes $\mathfrak n$ einen Graphen $\mathfrak G$ mit $\mathfrak n$ Knoten geben muss, sodass $\mathfrak Q(\mathfrak n)=\mathfrak f_W(\mathfrak G)$ ist.

Nehmen Sie dabei keinen Bezug auf die Kantenmenge E.

Im Folgenden schränken wir die Graphen ein: G sei nun immer ein Baum.

/ 2

- c) Geben Sie Funktionen b: $\mathbb{N}_+ \to \mathbb{N}_0$ und B: $\mathbb{N}_+ \to \mathbb{N}_0$ an, sodass
 - 1. für jeden Baum G gilt: $b(n_G) \le f_W(G) \le B(n_G)$ und
 - 2. jede der Ungleichungen möglichst scharf ist.

Nehmen Sie dabei keinen Bezug auf die Kantenmenge E.

/ 2

- d) Zeigen Sie, dass die von Ihnen angegebenen Schranken für n=5 scharf sind. Geben Sie also Kantenmengen $E_1, E_2 \subseteq \mathbb{Z}_5 \times \mathbb{Z}_5$ an, sodass Folgendes gilt:
 - $G_1 = (\mathbb{Z}_5, E_1)$ ist ein Baum und $f_W(G_1) = b(5)$.
 - $G_2 = (\mathbb{Z}_5, E_2)$ ist ein Baum und $f_W(G_2) = B(5)$.

Weiterer Platz für Antworten zu Aufgabe 4:

Aufgabe 5 (2 + 3 + 1 = 6 Punkte)

Es sei G=(N,T,S,P) eine kontextfreie Grammatik. Außerdem benutzen wir die Abkürzung $V=N\cup T.$

/ 2

- a) Es sei $N = \{S, X\}$, $T = \{a, b\}$ und $P = \{S \rightarrow aX \mid \epsilon$, $X \rightarrow aaX \mid bS\}$.
 - (i) Mit dieser Produktionsmenge P hat G eine wichtige Eigenschaft, die (wie Sie in der Vorlesung kennengelernt haben) garantiert, dass es einen regulären Ausdruck R mit $\langle R \rangle = L(G)$ gibt. Wie heißt diese Eigenschaft? Wie ist sie genau definiert?
 - (ii) Geben Sie einen regulären Ausdruck R, sodass $\langle R \rangle = L(G)$ ist.

Die Mengen N, T und P seien jetzt wieder beliebig.

/ 3

- b) Für G gelte die folgende Eigenschaft:
 - \circledast Für jede Produktion der Form $S \to w$ mit $w \in V^*$ gibt es ein $i \in \mathbb{Z}_{|w|}$, sodass w(i) = S ist.

Zeigen Sie, dass für jedes Wort $w \in V^*$ mit $S \Rightarrow^* w$ gilt: Es gibt $i \in \mathbb{Z}_{|w|}$, sodass w(i) = S ist.

Beweisen Sie dazu mittels vollständiger Induktion über n:

 $\forall n \in \mathbb{N}_0 : \forall w \in V^* : \text{ wenn } S \Rightarrow^n w, \text{ dann kommt in } w \text{ Symbol } S \text{ vor }$

Markieren Sie in Ihrem Beweis deutlich die Stelle, an der Sie die Bedingung \circledast benutzen.

/ 1

c) Warum folgt aus Teilaufgabe b), dass für jedes G, das ⊛ erfüllt, die Sprache L(G) leer ist?

Weiterer Platz für Antworten zu Aufgabe 5:

Aufgabe 6 (1 + 1 + 1 + 2 + 2 = 7 Punkte)

Es sei $A = \{a, b\}$. Eine binäre Relation \sqsubseteq auf A^* sei definiert durch die Festlegung:

 $\forall w_1, w_2 \in A^* : w_1 \sqsubseteq w_2$ genau dann, wenn $\exists v_1 \in A^* : w_1v_1 = w_2$

Wenn $w_1 \sqsubseteq w_2$ ist, heißt w_1 ein Präfix von w_2 .

/ 1

a) Zeigen Sie, dass die Relation ⊑ reflexiv und transitiv ist.

Für $L \subseteq A^*$ sei $\mathfrak{p}(L) = \{w' \in A^* \mid \exists w \in L : w' \sqsubseteq w\}$ die Sprache aller Präfixe der Wörter aus L.

/ 1

b) Geben Sie ein $L \subseteq A^*$ an, für das $A^* \setminus L$ unendlich und $p(L) = A^*$ ist. *Tipp*. Man kann sich darauf beschränken, eine Sprache zu suchen, die für jede Wortlänge entweder alle Wörter enthält oder gar keines.

/ 1

c) Geben Sie ein $L\subseteq A^*$ an, für das sowohl $\mathfrak{p}(L)$ als auch $A^*\smallsetminus\mathfrak{p}(L)$ unendlich ist.

/ 2

d) Die Sprache L sei regulär. Das heißt, es existiert ein endlicher Automat B mit Zustandsmenge Z_B , Anfangszustand $z_{B0} \in Z_B$, Zustandsüberführungsfunktion $f_B \colon Z_B \times A \to Z_B$ und Menge akzeptierender Zustände $F_B \subseteq Z_B$, sodass L(B) = L ist.

Geben Sie explizit einen endlichen Automaten C an, sodass $L(C) = \mathfrak{p}(L)$ ist.

/ 2

e) Die formalen Sprachen $L_1, L_2 \subseteq A^*$ seien beide nicht leer. Zeigen Sie:

(i)
$$p(L_1) \subseteq p(L_1 \cdot L_2)$$

(ii)
$$L_1 \cdot p(L_2) \subseteq p(L_1 \cdot L_2)$$

Kennzeichnen Sie die Stelle(n) in Ihren Beweisen, an denen Sie die Voraussetzung $L_2 \neq \varnothing$ benötigen.

Weiterer Platz für Antworten zu Aufgabe 6:

Aufgabe 7 (2 + 1 + 2 + 2 = 7 Punkte)

Es sei $A = \{a,b\}$ und $w \in A^+$ ein Wort. Eine Turingmaschine T heißt ein *Drucker* für w, falls T bei Eingabewort ε in einer Konfiguration c *hält*, in der das Wort w auf dem Band umgeben nur von Leersymbolen steht. Genauer: Es soll $i \in \mathbb{Z}$ existieren, sodass für die Bandbeschriftung b von c gilt:

$$\forall j \in \mathbb{Z}: \ b(i+j) = egin{cases} w(j), & j \in \mathbb{Z}_{|w|} \\ \Box, & \text{sonst} \end{cases}$$

Zum Beispiel ist folgende Turingmaschine T_{aba} ein Drucker für das Wort aba:

/ 2

a) Simulieren Sie T_{aba} bei Eingabe ε . Geben Sie die Anfangskonfiguration sowie die Konfiguration nach jedem Schritt von T_{aba} bildlich an. Aus jeder Konfiguration sollen dabei die Bandbeschriftung, der aktuelle Zustand von T_{aba} und die Position des Schreib-Lese-Kopfes hervorgehen. Begründen Sie anschließend kurz, warum T_{aba} in der letzten dargestellten Konfiguration anhält.

Es sei jetzt $w \in A^+$ beliebig und T_w ein Drucker für w, dessen Zustandsmenge gleich \mathbb{Z}_n für ein $n \in \mathbb{N}_+$ ist, also genau n Zustände besitzt. Der Startzustand von T_w sei stets 0.

/ 1

b) Zeigen Sie: Für jedes $w \in A^+$ gibt es einen Drucker T_w mit $n \le |w| + 1$. *Hinweis.* Seien Sie in dieser und den folgenden Teilaufgaben hinreichend präzise. Lösungen "mit Pünktchen" werden nicht akzeptiert.

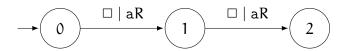
/ 2

c) Zeigen Sie: Für jedes solche w gibt es einen Drucker T_w mit $n \le |w|$. Tipp. Wie könnte man bei T_{aba} den Zustand 3 einsparen?

/ 2

d) Zeigen Sie, dass es für ein Wort w der Länge |w| = 4 einen Drucker T_w mit n = 3 gibt.

Tipp 1. Ergänzen Sie die folgende Turingmaschine so, dass die Zustände 0 und 1 mindestens zweimal besucht werden.



Tipp 2. Der Schreib-Lese-Kopf darf sich nicht nur nach rechts, sondern auch nach links bewegen.

Weiterer Platz für Antworten zu Aufgabe 7: