
Institute of Information Security and Dependability (kastel)
Application-oriented Formal Verification

Prof. Dr. Bernhard Beckert

Praxis der Forschung

Type rule synthesis with generative AI

Background.

@Interval(min=1, max=3) int f;
public void foo() {

f = 3; // OK
@Interval(min=2, max=4)
int l = f + 1; // Error!

}

Pluggable type systems are a lightweight
alternernative to more complex spec-
ification approaches. At our chair,
we have developed property types for
Java [1]. A property type consists of
a Java type and an annotation asso-
ciated with a boolean property. In
the example on the right, the anno-
tation Interval has the property
min <= subject <= max.

But defining types and type rules for all use cases is time-intensive. In our example,
there is a type error on the second line even though the program is correct: Since the
programmer has not manually defined a type rule that says that adding 1 to a value
of type [1, 3] yields a value of type [2, 4], the type checker rejects this assignment
as being incorrect.

While there are several approaches that use AI to infer the placement of type
annotations [2] or other kinds of specifications [3,4] in the program, we want the
AI to infer these kinds of type rules, along with a proof of their correctness.

Bibliography.

1. Lanzinger, Bachmeier, Ulbrich, Dietl (2023). Scalable and Precise Refinement Types for Imperative Languages.
iFM 2023.

2. Jha Dietl (2024). OppropBERL: A GNN and BERT-Style Reinforcement Learning-Based Type Inference. SANER
2024.

3. Si. (2020). Code2Inv: A Deep Learning Framework for Program Verification. Computer Aided Verification 2020.

4. Wu, Barrett, Narodytska (2023). Lemur: Integrating Large LanguageModels in Automated Program Verification.
ArXiv, abs/2310.04870.

Contact
Florian Lanzinger lanzinger@kit.edu Office 50.34R227

ausschreibung–February 27, 2025


