
INSTITUT FÜR THEORETISCHE INFORMATIK – INSTITUT FÜR PROGRAMMSTRUKTUREN UND DATENORGANISATION

An Introduction into JUnit
Praxis der Software-Entwicklung 2010/11
Daniel Bruns Erik Burger | January 18, 2011

KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

www.kit.edu

http://www.kit.edu

Foreword

Program testing can be used to show the presence of bugs, but
never to show their absence!

Dijkstra, 1972

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 2/44

Classification of Tests

Functional Tests
Correctness according to specification

Concurrency/Thread safeness

Non-Functional
Performance

Security

Usability

Interoperability

Reliability

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 3/44

Classification of Tests

Functional Tests
Correctness according to specification

Concurrency/Thread safeness

Non-Functional
Performance

Security

Usability

Interoperability

Reliability

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 3/44

Classification of Tests

Functional Tests
Correctness according to specification

Concurrency/Thread safeness

Non-Functional
Performance

Security

Usability

Interoperability

Reliability

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 3/44

Classification of Tests

Functional Tests
Correctness according to specification

Concurrency/Thread safeness

Non-Functional
Performance

Security

Usability

Interoperability

Reliability

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 3/44

Classification of Tests

Functional Tests
Correctness according to specification

Concurrency/Thread safeness

Non-Functional
Performance

Security

Usability

Interoperability

Reliability

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 3/44

Classification of Tests

Functional Tests
Correctness according to specification

Concurrency/Thread safeness

Non-Functional
Performance

Security

Usability

Interoperability

Reliability

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 3/44

Classification of Tests

Functional Tests
Correctness according to specification

Concurrency/Thread safeness

Non-Functional
Performance

Security

Usability

Interoperability

Reliability

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 3/44

Classification of Tests

Knowledge
black-box tests

white-box tests

Structure
Unit

Integration

System

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 4/44

Classification of Tests

Knowledge
black-box tests

white-box tests

Structure
Unit

Integration

System

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 4/44

Classification of Tests

Knowledge
black-box tests

white-box tests

Structure
Unit

Integration

System

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 4/44

Classification of Tests

Knowledge
black-box tests

white-box tests

Structure
Unit

Integration

System

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 4/44

Classification of Tests

Knowledge
black-box tests

white-box tests

Structure
Unit

Integration

System

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 4/44

Isolated Testing

Object oriented classes often have dependencies on other classes

A lot of classes cannot be tested independently

→ micro integration tests

Starting from a certain degree of dependencies, test effort rises
disproportionately high

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 5/44

Isolated Testing

Object oriented classes often have dependencies on other classes

A lot of classes cannot be tested independently

→ micro integration tests

Starting from a certain degree of dependencies, test effort rises
disproportionately high

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 5/44

Isolated Testing

Object oriented classes often have dependencies on other classes

A lot of classes cannot be tested independently

→ micro integration tests

Starting from a certain degree of dependencies, test effort rises
disproportionately high

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 5/44

Isolated Testing

Object oriented classes often have dependencies on other classes

A lot of classes cannot be tested independently

→ micro integration tests

Starting from a certain degree of dependencies, test effort rises
disproportionately high

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 5/44

Isolated Testing

Test represent typical usage scenarios

Less dependencies→ easier to use
High degree of dependencies

Lack of modularisation?
Bad design?
Bad code dependency management

→ Refactoring

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 6/44

Isolated Testing

Test represent typical usage scenarios

Less dependencies→ easier to use
High degree of dependencies

Lack of modularisation?
Bad design?
Bad code dependency management

→ Refactoring

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 6/44

Isolated Testing

Test represent typical usage scenarios

Less dependencies→ easier to use
High degree of dependencies

Lack of modularisation?
Bad design?
Bad code dependency management

→ Refactoring

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 6/44

Isolated Testing

Test represent typical usage scenarios

Less dependencies→ easier to use
High degree of dependencies

Lack of modularisation?
Bad design?
Bad code dependency management

→ Refactoring

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 6/44

Isolated Testing

Test represent typical usage scenarios

Less dependencies→ easier to use
High degree of dependencies

Lack of modularisation?
Bad design?
Bad code dependency management

→ Refactoring

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 6/44

Isolated Testing

Test represent typical usage scenarios

Less dependencies→ easier to use
High degree of dependencies

Lack of modularisation?
Bad design?
Bad code dependency management

→ Refactoring

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 6/44

Isolated Testing

Test represent typical usage scenarios

Less dependencies→ easier to use
High degree of dependencies

Lack of modularisation?
Bad design?
Bad code dependency management

→ Refactoring

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 6/44

Test Coverage

Types of coverage
Statement coverage (Anweisungsüberdeckung)

Branch coverage (Zweigüberdeckung)

Path coverage (Pfadüberdeckung)

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 7/44

Test Coverage

Types of coverage
Statement coverage (Anweisungsüberdeckung)

Branch coverage (Zweigüberdeckung)

Path coverage (Pfadüberdeckung)

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 7/44

Test Coverage

Types of coverage
Statement coverage (Anweisungsüberdeckung)

Branch coverage (Zweigüberdeckung)

Path coverage (Pfadüberdeckung)

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 7/44

Test Coverage

Types of coverage
Statement coverage (Anweisungsüberdeckung)

Branch coverage (Zweigüberdeckung)

Path coverage (Pfadüberdeckung)

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 7/44

Example Method

public int foo (int x, int y) {
int z = 0;
if (y != 0) {

while (x != 0) {
if (x > 0) {

z += y;
x--;

} else {
z -= y;
x++;

}
}

}
return z;

}

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 8/44

Control Flow Graph

z = 0

y != 0

x != 0

return z x > 0

z += y; x-- z -= y; x++

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 9/44

Control Flow Graph

z = 0

y != 0

x != 0

return z x > 0

z += y; x-- z -= y; x++

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 9/44

Control Flow Graph

z = 0

y != 0

x != 0

return z x > 0

z += y; x-- z -= y; x++

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 9/44

Control Flow Graph

z = 0

y != 0

x != 0

return z x > 0

z += y; x-- z -= y; x++

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 9/44

Control Flow Graph

z = 0

y != 0

x != 0

return z x > 0

z += y; x-- z -= y; x++

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 9/44

Control Flow Graph

z = 0

y != 0

x != 0

return z x > 0

z += y; x-- z -= y; x++

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 9/44

Control Flow Graph

z = 0

y != 0

x != 0

return z x > 0

z += y; x-- z -= y; x++

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 9/44

Control Flow Graph

z = 0

y != 0

x != 0

return z x > 0

z += y; x-- z -= y; x++

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 9/44

Test Design

Equivalence classes
Assumption: similar control flow for similar values

Last example: 3 test needed for full branch coverage

Equivalence classes:

Extreme values
Variant of equivalence classes approach

“Off-by-one” most prominent error

Extreme values for integers: MIN_VALUE, -1, 0, 1, MAX_VALUE,
someArray.length

Extreme values for objects: null, empty strings, empty collections

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 10/44

Test Design

Equivalence classes
Assumption: similar control flow for similar values

Last example: 3 test needed for full branch coverage

Equivalence classes:
{{(x , y) | y = 0}, {(x , y) | y 6= 0 ∧ x > 0}, {(x , y) | y 6= 0 ∧ x ≤ 0}}

Extreme values
Variant of equivalence classes approach

“Off-by-one” most prominent error

Extreme values for integers: MIN_VALUE, -1, 0, 1, MAX_VALUE,
someArray.length

Extreme values for objects: null, empty strings, empty collections

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 10/44

Test Design

Equivalence classes
Assumption: similar control flow for similar values

Last example: 3 test needed for full branch coverage

Equivalence classes:
{(0, 0), (23, 42), (−23, 666)}

Extreme values
Variant of equivalence classes approach

“Off-by-one” most prominent error

Extreme values for integers: MIN_VALUE, -1, 0, 1, MAX_VALUE,
someArray.length

Extreme values for objects: null, empty strings, empty collections

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 10/44

Test Design

Equivalence classes
Assumption: similar control flow for similar values

Last example: 3 test needed for full branch coverage

Equivalence classes:
{(0, 0), (23, 42), (−23, 666)}

Extreme values
Variant of equivalence classes approach

“Off-by-one” most prominent error

Extreme values for integers: MIN_VALUE, -1, 0, 1, MAX_VALUE,
someArray.length

Extreme values for objects: null, empty strings, empty collections

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 10/44

Test Design

Equivalence classes
Assumption: similar control flow for similar values

Last example: 3 test needed for full branch coverage

Equivalence classes:
{(0, 0), (23, 42), (−23, 666)}

Extreme values
Variant of equivalence classes approach

“Off-by-one” most prominent error

Extreme values for integers: MIN_VALUE, -1, 0, 1, MAX_VALUE,
someArray.length

Extreme values for objects: null, empty strings, empty collections

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 10/44

Test Design

Equivalence classes
Assumption: similar control flow for similar values

Last example: 3 test needed for full branch coverage

Equivalence classes:
{(0, 0), (23, 42), (−23, 666)}

Extreme values
Variant of equivalence classes approach

“Off-by-one” most prominent error

Extreme values for integers: MIN_VALUE, -1, 0, 1, MAX_VALUE,
someArray.length

Extreme values for objects: null, empty strings, empty collections

Testing

Daniel Bruns, Erik Burger – JUnit January 18, 2011 10/44

JUnit

2 Overview

3 Assertions

4 Fixtures
Definition
Example
Parameterised Tests
Test Suites

5 Eclipse Integration
Test Runners

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 11/44

JUnit – Overview

JUnit is a framework for writing tests
JUnit uses Java‘s reflection capabilities (Java programs can examine
their own code)
JUnit helps the programmer:

define and execute tests and test suites
formalize requirements and clarify architecture
write and debug code
integrate code and always be ready to release a working version

JUnit is not included in Sun‘s SDK, but almost all IDEs include it (e.g.
Eclipse)

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 12/44

JUnit – Overview

JUnit is a framework for writing tests
JUnit uses Java‘s reflection capabilities (Java programs can examine
their own code)
JUnit helps the programmer:

define and execute tests and test suites
formalize requirements and clarify architecture
write and debug code
integrate code and always be ready to release a working version

JUnit is not included in Sun‘s SDK, but almost all IDEs include it (e.g.
Eclipse)

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 12/44

JUnit – Overview

JUnit is a framework for writing tests
JUnit uses Java‘s reflection capabilities (Java programs can examine
their own code)
JUnit helps the programmer:

define and execute tests and test suites
formalize requirements and clarify architecture
write and debug code
integrate code and always be ready to release a working version

JUnit is not included in Sun‘s SDK, but almost all IDEs include it (e.g.
Eclipse)

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 12/44

JUnit – Overview

JUnit is a framework for writing tests
JUnit uses Java‘s reflection capabilities (Java programs can examine
their own code)
JUnit helps the programmer:

define and execute tests and test suites
formalize requirements and clarify architecture
write and debug code
integrate code and always be ready to release a working version

JUnit is not included in Sun‘s SDK, but almost all IDEs include it (e.g.
Eclipse)

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 12/44

JUnit – Overview

JUnit is a framework for writing tests
JUnit uses Java‘s reflection capabilities (Java programs can examine
their own code)
JUnit helps the programmer:

define and execute tests and test suites
formalize requirements and clarify architecture
write and debug code
integrate code and always be ready to release a working version

JUnit is not included in Sun‘s SDK, but almost all IDEs include it (e.g.
Eclipse)

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 12/44

JUnit – Overview

JUnit is a framework for writing tests
JUnit uses Java‘s reflection capabilities (Java programs can examine
their own code)
JUnit helps the programmer:

define and execute tests and test suites
formalize requirements and clarify architecture
write and debug code
integrate code and always be ready to release a working version

JUnit is not included in Sun‘s SDK, but almost all IDEs include it (e.g.
Eclipse)

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 12/44

JUnit – Overview

JUnit is a framework for writing tests
JUnit uses Java‘s reflection capabilities (Java programs can examine
their own code)
JUnit helps the programmer:

define and execute tests and test suites
formalize requirements and clarify architecture
write and debug code
integrate code and always be ready to release a working version

JUnit is not included in Sun‘s SDK, but almost all IDEs include it (e.g.
Eclipse)

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 12/44

JUnit

History
JUnit was written by Erich Gamma (of Design Patterns) and Kent
Beck (creator of XP methodology)

JUnit inspired various other unit testing frameworks for other
programming languages, like NUnit (.NET), CppUnit(C++)

JUnit is the de facto standard for test driven Java development

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 13/44

JUnit

History
JUnit was written by Erich Gamma (of Design Patterns) and Kent
Beck (creator of XP methodology)

JUnit inspired various other unit testing frameworks for other
programming languages, like NUnit (.NET), CppUnit(C++)

JUnit is the de facto standard for test driven Java development

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 13/44

JUnit

History
JUnit was written by Erich Gamma (of Design Patterns) and Kent
Beck (creator of XP methodology)

JUnit inspired various other unit testing frameworks for other
programming languages, like NUnit (.NET), CppUnit(C++)

JUnit is the de facto standard for test driven Java development

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 13/44

JUnit 3 vs JUnit 4

JUnit4
JUnit4 was a complete redevelopment

includes ideas from other frameworks and uses features of Java 1.5

uses Java annotations (like @Test)

This lecture is based on JUnit 4

Be careful
Many (web) tutorials are still based on JUnit 3

JUnit 4 is backwards compatible to version 3

but JUnit 4 is much cleaner

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 14/44

JUnit 3 vs JUnit 4

JUnit4
JUnit4 was a complete redevelopment

includes ideas from other frameworks and uses features of Java 1.5

uses Java annotations (like @Test)

This lecture is based on JUnit 4

Be careful
Many (web) tutorials are still based on JUnit 3

JUnit 4 is backwards compatible to version 3

but JUnit 4 is much cleaner

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 14/44

JUnit 3 vs JUnit 4

JUnit4
JUnit4 was a complete redevelopment

includes ideas from other frameworks and uses features of Java 1.5

uses Java annotations (like @Test)

This lecture is based on JUnit 4

Be careful
Many (web) tutorials are still based on JUnit 3

JUnit 4 is backwards compatible to version 3

but JUnit 4 is much cleaner

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 14/44

JUnit 3 vs JUnit 4

JUnit4
JUnit4 was a complete redevelopment

includes ideas from other frameworks and uses features of Java 1.5

uses Java annotations (like @Test)

This lecture is based on JUnit 4

Be careful
Many (web) tutorials are still based on JUnit 3

JUnit 4 is backwards compatible to version 3

but JUnit 4 is much cleaner

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 14/44

JUnit 3 vs JUnit 4

JUnit4
JUnit4 was a complete redevelopment

includes ideas from other frameworks and uses features of Java 1.5

uses Java annotations (like @Test)

This lecture is based on JUnit 4

Be careful
Many (web) tutorials are still based on JUnit 3

JUnit 4 is backwards compatible to version 3

but JUnit 4 is much cleaner

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 14/44

JUnit 3 vs JUnit 4

JUnit4
JUnit4 was a complete redevelopment

includes ideas from other frameworks and uses features of Java 1.5

uses Java annotations (like @Test)

This lecture is based on JUnit 4

Be careful
Many (web) tutorials are still based on JUnit 3

JUnit 4 is backwards compatible to version 3

but JUnit 4 is much cleaner

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 14/44

JUnit 3 vs JUnit 4

JUnit4
JUnit4 was a complete redevelopment

includes ideas from other frameworks and uses features of Java 1.5

uses Java annotations (like @Test)

This lecture is based on JUnit 4

Be careful
Many (web) tutorials are still based on JUnit 3

JUnit 4 is backwards compatible to version 3

but JUnit 4 is much cleaner

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 14/44

Structure

test fixture

test runner

test suite

another test case

test case (for one method)

unit test (for one class)

another test case

another test case

another test case

another unit test

another test case

test case (for one method)

unit test (for one class)

A unit test tests the methods in a single
class

A test case tests (insofar as possible) a
single method

You can have multiple test cases for a
single method

A test suite combines unit tests

The test fixture provides software
support for all this

The test runner runs unit tests or an
entire test suite

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 15/44

Structure

test fixture

test runner

test suite

another test case

test case (for one method)

unit test (for one class)

another test case

another test case

another test case

another unit test

another test case

test case (for one method)

unit test (for one class)

A unit test tests the methods in a single
class

A test case tests (insofar as possible) a
single method

You can have multiple test cases for a
single method

A test suite combines unit tests

The test fixture provides software
support for all this

The test runner runs unit tests or an
entire test suite

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 15/44

Structure

test fixture

test runner

test suite

another test case

test case (for one method)

unit test (for one class)

another test case

another test case

another test case

another unit test

another test case

test case (for one method)

unit test (for one class)

A unit test tests the methods in a single
class

A test case tests (insofar as possible) a
single method

You can have multiple test cases for a
single method

A test suite combines unit tests

The test fixture provides software
support for all this

The test runner runs unit tests or an
entire test suite

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 15/44

Structure

test fixture

test runner

test suite

another test case

test case (for one method)

unit test (for one class)

another test case

another test case

another test case

another unit test

another test case

test case (for one method)

unit test (for one class)

A unit test tests the methods in a single
class

A test case tests (insofar as possible) a
single method

You can have multiple test cases for a
single method

A test suite combines unit tests

The test fixture provides software
support for all this

The test runner runs unit tests or an
entire test suite

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 15/44

Structure

test fixture

test runner

test suite

another test case

test case (for one method)

unit test (for one class)

another test case

another test case

another test case

another unit test

another test case

test case (for one method)

unit test (for one class)

A unit test tests the methods in a single
class

A test case tests (insofar as possible) a
single method

You can have multiple test cases for a
single method

A test suite combines unit tests

The test fixture provides software
support for all this

The test runner runs unit tests or an
entire test suite

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 15/44

Structure

test fixture

test runner

test suite

another test case

test case (for one method)

unit test (for one class)

another test case

another test case

another test case

another unit test

another test case

test case (for one method)

unit test (for one class)

A unit test tests the methods in a single
class

A test case tests (insofar as possible) a
single method

You can have multiple test cases for a
single method

A test suite combines unit tests

The test fixture provides software
support for all this

The test runner runs unit tests or an
entire test suite

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 15/44

Structure

test fixture

test runner

test suite

another test case

test case (for one method)

unit test (for one class)

another test case

another test case

another test case

another unit test

another test case

test case (for one method)

unit test (for one class)

A unit test tests the methods in a single
class

A test case tests (insofar as possible) a
single method

You can have multiple test cases for a
single method

A test suite combines unit tests

The test fixture provides software
support for all this

The test runner runs unit tests or an
entire test suite

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 15/44

Test Case Verdicts

A verdict is the declared result of executing a single test.

Pass: the test case achieved its intended purpose, and the software
under test performed as expected.

Fail: the test case achieved its intended purpose, but the software
under test did not perform as expected.

Error: the test case did not achieve its intended purpose.
Potential reasons:

An unexpected event occurred during the test case.
The test case could not be set up properly

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 16/44

Test Case Verdicts

A verdict is the declared result of executing a single test.

Pass: the test case achieved its intended purpose, and the software
under test performed as expected.

Fail: the test case achieved its intended purpose, but the software
under test did not perform as expected.

Error: the test case did not achieve its intended purpose.
Potential reasons:

An unexpected event occurred during the test case.
The test case could not be set up properly

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 16/44

Test Case Verdicts

A verdict is the declared result of executing a single test.

Pass: the test case achieved its intended purpose, and the software
under test performed as expected.

Fail: the test case achieved its intended purpose, but the software
under test did not perform as expected.

Error: the test case did not achieve its intended purpose.
Potential reasons:

An unexpected event occurred during the test case.
The test case could not be set up properly

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 16/44

Test Case Verdicts

A verdict is the declared result of executing a single test.

Pass: the test case achieved its intended purpose, and the software
under test performed as expected.

Fail: the test case achieved its intended purpose, but the software
under test did not perform as expected.

Error: the test case did not achieve its intended purpose.
Potential reasons:

An unexpected event occurred during the test case.
The test case could not be set up properly

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 16/44

Test Case Verdicts

A verdict is the declared result of executing a single test.

Pass: the test case achieved its intended purpose, and the software
under test performed as expected.

Fail: the test case achieved its intended purpose, but the software
under test did not perform as expected.

Error: the test case did not achieve its intended purpose.
Potential reasons:

An unexpected event occurred during the test case.
The test case could not be set up properly

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 16/44

Test Case Verdicts

A verdict is the declared result of executing a single test.

Pass: the test case achieved its intended purpose, and the software
under test performed as expected.

Fail: the test case achieved its intended purpose, but the software
under test did not perform as expected.

Error: the test case did not achieve its intended purpose.
Potential reasons:

An unexpected event occurred during the test case.
The test case could not be set up properly

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 16/44

What is a JUnit Test?

A test “script” is just a collection of Java methods.
General idea is to create a few Java objects, do something interesting with
them, and then determine if the objects have the correct properties.

What is added? Assertions.
A package of methods that checks for various properties:

“equality” of objects
identical object references
null / non-null object references

The assertions are used to determine the test case verdict.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 17/44

What is a JUnit Test?

A test “script” is just a collection of Java methods.
General idea is to create a few Java objects, do something interesting with
them, and then determine if the objects have the correct properties.

What is added? Assertions.
A package of methods that checks for various properties:

“equality” of objects
identical object references
null / non-null object references

The assertions are used to determine the test case verdict.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 17/44

Organisation of JUnit Tests

Each method represents a single test case that can independently
have a verdict (pass, error, fail).

Normally, all the tests for one Java class are grouped together into a
separate class.
Naming convention:

Class to be tested: Value
Class containing tests: ValueTest

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 18/44

Writing a JUnit test class

Start by importing these JUnit 4 classes

import org.junit.*
import static org.junit.Assert .*; // note static import

Declare your test class in the usual way

public class MyProgramTest {
}

Declare an instance of the class being tested

public class MyProgramTest {
MyProgram program;
int someVariable;

}

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 19/44

A simple example

1 import org.junit .*;
2 import static org.junit.Assert .*;
3 public class ArithmeticTest {
4 @Test
5 public void testMultiply () {
6 assertEquals (4, Arithmetic.multiply(2, 2));
7 assertEquals (-15, Arithmetic.multiply(3, -5));
8 }
9

10 @Test
11 public void testIsPositive () {
12 assertTrue(Arithmetic.isPositive (5));
13 assertFalse(Arithmetic.isPositive (-5));
14 assertFalse(Arithmetic.isPositive (0));
15 }
16 }

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 20/44

Assertions

Assertions are defined in the JUnit class Assert
If an assertion is true, the method continues executing.

If any assertion is false, the method stops executing at that point, and
the result for the test case will be fail.

If any other exception is thrown during the method, the result for the
test case will be error.

If no assertions were violated for the entire method, the test case will
pass.

All assertion methods are static methods.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 21/44

Assertions

Assertions are defined in the JUnit class Assert
If an assertion is true, the method continues executing.

If any assertion is false, the method stops executing at that point, and
the result for the test case will be fail.

If any other exception is thrown during the method, the result for the
test case will be error.

If no assertions were violated for the entire method, the test case will
pass.

All assertion methods are static methods.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 21/44

Assertions

Assertions are defined in the JUnit class Assert
If an assertion is true, the method continues executing.

If any assertion is false, the method stops executing at that point, and
the result for the test case will be fail.

If any other exception is thrown during the method, the result for the
test case will be error.

If no assertions were violated for the entire method, the test case will
pass.

All assertion methods are static methods.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 21/44

Assertions

Assertions are defined in the JUnit class Assert
If an assertion is true, the method continues executing.

If any assertion is false, the method stops executing at that point, and
the result for the test case will be fail.

If any other exception is thrown during the method, the result for the
test case will be error.

If no assertions were violated for the entire method, the test case will
pass.

All assertion methods are static methods.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 21/44

Assertion Methods

Boolean conditions are true or false
assertTrue(condition)
assertFalse(condition)

Objects are null or non-null
assertNull(object)
assertNotNull(object)

Objects are identical (i.e. two references to the same object), or not
identical.
assertSame(expected, actual)
assertNotSame(expected, actual)

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 22/44

Assertion Methods

“Equality” of objects
assertEquals(expected, actual)
valid if: expected.equals(actual)

“Equality” of arrays
assertArrayEquals(expected, actual)

arrays must have same length

for each valid value for i, check as appropriate:

assertEquals(expected[i],actual[i])

assertArrayEquals(expected[i],actual[i])

There is also an unconditional failure assertion fail() that always results
in a fail verdict.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 23/44

Assertion Methods

“Equality” of objects
assertEquals(expected, actual)
valid if: expected.equals(actual)

“Equality” of arrays
assertArrayEquals(expected, actual)

arrays must have same length

for each valid value for i, check as appropriate:

assertEquals(expected[i],actual[i])

assertArrayEquals(expected[i],actual[i])

There is also an unconditional failure assertion fail() that always results
in a fail verdict.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 23/44

Test Fixture

Test Fixture
A test fixture is the context in which a test case runs.
Typically, test fixtures include:

Objects or resources that are available for use by any test case.
Activities required to make these objects available and/or resource
allocation and de-allocation: “setup” and “teardown”.

Allows multiple tests of the same or similar objects

Share fixture code for multiple tests

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 24/44

Test Fixture

Test Fixture
A test fixture is the context in which a test case runs.
Typically, test fixtures include:

Objects or resources that are available for use by any test case.
Activities required to make these objects available and/or resource
allocation and de-allocation: “setup” and “teardown”.

Allows multiple tests of the same or similar objects

Share fixture code for multiple tests

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 24/44

Test Fixture

Test Fixture
A test fixture is the context in which a test case runs.
Typically, test fixtures include:

Objects or resources that are available for use by any test case.
Activities required to make these objects available and/or resource
allocation and de-allocation: “setup” and “teardown”.

Allows multiple tests of the same or similar objects

Share fixture code for multiple tests

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 24/44

Test Fixture

Test Fixture
A test fixture is the context in which a test case runs.
Typically, test fixtures include:

Objects or resources that are available for use by any test case.
Activities required to make these objects available and/or resource
allocation and de-allocation: “setup” and “teardown”.

Allows multiple tests of the same or similar objects

Share fixture code for multiple tests

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 24/44

Test Fixture

Test Fixture
A test fixture is the context in which a test case runs.
Typically, test fixtures include:

Objects or resources that are available for use by any test case.
Activities required to make these objects available and/or resource
allocation and de-allocation: “setup” and “teardown”.

Allows multiple tests of the same or similar objects

Share fixture code for multiple tests

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 24/44

Test Fixture

Test Fixture
A test fixture is the context in which a test case runs.
Typically, test fixtures include:

Objects or resources that are available for use by any test case.
Activities required to make these objects available and/or resource
allocation and de-allocation: “setup” and “teardown”.

Allows multiple tests of the same or similar objects

Share fixture code for multiple tests

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 24/44

Before/After

@Before: Methods annotated with @Before are executed before
every test.

@After: Methods annotated with @After are executed after every
test.

If there are e.g. 10 test, every @Before method is executed 10 times

More than one @Before or @After is allowed

Names of these methods are irrelevant, but must be public void

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 25/44

Before/After

@Before: Methods annotated with @Before are executed before
every test.

@After: Methods annotated with @After are executed after every
test.

If there are e.g. 10 test, every @Before method is executed 10 times

More than one @Before or @After is allowed

Names of these methods are irrelevant, but must be public void

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 25/44

Before/After

@Before: Methods annotated with @Before are executed before
every test.

@After: Methods annotated with @After are executed after every
test.

If there are e.g. 10 test, every @Before method is executed 10 times

More than one @Before or @After is allowed

Names of these methods are irrelevant, but must be public void

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 25/44

Before/After

@Before: Methods annotated with @Before are executed before
every test.

@After: Methods annotated with @After are executed after every
test.

If there are e.g. 10 test, every @Before method is executed 10 times

More than one @Before or @After is allowed

Names of these methods are irrelevant, but must be public void

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 25/44

Before/After

@Before: Methods annotated with @Before are executed before
every test.

@After: Methods annotated with @After are executed after every
test.

If there are e.g. 10 test, every @Before method is executed 10 times

More than one @Before or @After is allowed

Names of these methods are irrelevant, but must be public void

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 25/44

Fixture – Example

1 public class MoneyTest {
2 private Money f12CHF;
3 private Money f14CHF;
4 private Money f28USD;
5
6 @Before
7 public void setUp() {
8 f12CHF= new Money (12, "CHF");
9 f14CHF= new Money (14, "CHF");

10 f28USD= new Money (28, "USD");
11 }
12 }

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 26/44

Setup and Teardown

Setup
Use the @Before annotation on a method containing code to run before
each test case.

Teardown (regardless of the verdict)
Use the @After annotation on a method containing code to run after each
test case. These methods will run even if exceptions are thrown in the test
case or an assertion fails.

It is allowed to have any number of these annotations
All methods annotated with @Before will be run before each test case, but
they may be run in any order.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 27/44

Setup and Teardown

Setup
Use the @Before annotation on a method containing code to run before
each test case.

Teardown (regardless of the verdict)
Use the @After annotation on a method containing code to run after each
test case. These methods will run even if exceptions are thrown in the test
case or an assertion fails.

It is allowed to have any number of these annotations
All methods annotated with @Before will be run before each test case, but
they may be run in any order.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 27/44

Setup and Teardown

Setup
Use the @Before annotation on a method containing code to run before
each test case.

Teardown (regardless of the verdict)
Use the @After annotation on a method containing code to run after each
test case. These methods will run even if exceptions are thrown in the test
case or an assertion fails.

It is allowed to have any number of these annotations
All methods annotated with @Before will be run before each test case, but
they may be run in any order.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 27/44

BeforeClass/AfterClass

@BeforeClass: executed once before a test suite

@AfterClass: executed once after a test suite

Only one @BeforeClass and @AfterClass allowed

Methods must be static

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 28/44

Fixture – Example

1 public class MoneyTest {
2 private static string currency;
3
4 @BeforeClass
5 public static void setGlobalCurrency () {
6 this.currency = "CHF";
7 }
8
9 @Before

10 public void setUp() {
11 m12= new Money (12, this.currency);
12 m14= new Money (14, this.currency);
13 }
14 }

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 29/44

Expected Exception

Exceptions that are expected on test executing

Annotation using @Test

@Test(expected=MyException.class)

If no exception is thrown, or an unexpected exception occurs, the test
will fail.

That is, reaching the end of the method with no exception will cause
a test case failure.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 30/44

Expected Exception

Exceptions that are expected on test executing

Annotation using @Test

@Test(expected=MyException.class)

If no exception is thrown, or an unexpected exception occurs, the test
will fail.

That is, reaching the end of the method with no exception will cause
a test case failure.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 30/44

Expected Exception

Exceptions that are expected on test executing

Annotation using @Test

@Test(expected=MyException.class)

If no exception is thrown, or an unexpected exception occurs, the test
will fail.

That is, reaching the end of the method with no exception will cause
a test case failure.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 30/44

Expected Exception

Exceptions that are expected on test executing

Annotation using @Test

@Test(expected=MyException.class)

If no exception is thrown, or an unexpected exception occurs, the test
will fail.

That is, reaching the end of the method with no exception will cause
a test case failure.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 30/44

Expected Exception

Exceptions that are expected on test executing

Annotation using @Test

@Test(expected=MyException.class)

If no exception is thrown, or an unexpected exception occurs, the test
will fail.

That is, reaching the end of the method with no exception will cause
a test case failure.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 30/44

Expected Exceptions – example

new ArrayList <Object >(). get (0);

Should throw an IndexOutOfBoundsException

@Test(expected = IndexOutOfBoundsException.class)
public void empty() {

new ArrayList <Object >(). get (0);
}

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 31/44

Ignore/Timeout

Ignore
Tests annotated using @Ignore are not executed

Test runner reports that test was not run

@Ignore("Reason") allows to specify a reason why a test was not
run

Timeout
Test allows to specify a timeout parameter

@Test(timeout=10) fails if the test takes more than 10 milliseconds

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 32/44

Ignore/Timeout

Ignore
Tests annotated using @Ignore are not executed

Test runner reports that test was not run

@Ignore("Reason") allows to specify a reason why a test was not
run

Timeout
Test allows to specify a timeout parameter

@Test(timeout=10) fails if the test takes more than 10 milliseconds

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 32/44

Parameterised Tests

Motivation
If you want a test to run with several parameter values, you’d have to

loop over a collection of values

which means if there was a failure, the loop wouldn’t terminate

write unique test cases for each test data combination

which could prove to be a lot of coding

Support in JUnit
With JUnit, you can create highly flexible testing scenarios easily

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 33/44

Parameterised Tests

Motivation
If you want a test to run with several parameter values, you’d have to

loop over a collection of values

which means if there was a failure, the loop wouldn’t terminate

write unique test cases for each test data combination

which could prove to be a lot of coding

Support in JUnit
With JUnit, you can create highly flexible testing scenarios easily

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 33/44

Parameterised Tests

Motivation
If you want a test to run with several parameter values, you’d have to

loop over a collection of values

which means if there was a failure, the loop wouldn’t terminate

write unique test cases for each test data combination

which could prove to be a lot of coding

Support in JUnit
With JUnit, you can create highly flexible testing scenarios easily

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 33/44

Parameterised Tests

Motivation
If you want a test to run with several parameter values, you’d have to

loop over a collection of values

which means if there was a failure, the loop wouldn’t terminate

write unique test cases for each test data combination

which could prove to be a lot of coding

Support in JUnit
With JUnit, you can create highly flexible testing scenarios easily

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 33/44

Parameterised Tests

Motivation
If you want a test to run with several parameter values, you’d have to

loop over a collection of values

which means if there was a failure, the loop wouldn’t terminate

write unique test cases for each test data combination

which could prove to be a lot of coding

Support in JUnit
With JUnit, you can create highly flexible testing scenarios easily

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 33/44

Parameterised Tests

Motivation
If you want a test to run with several parameter values, you’d have to

loop over a collection of values

which means if there was a failure, the loop wouldn’t terminate

write unique test cases for each test data combination

which could prove to be a lot of coding

Support in JUnit
With JUnit, you can create highly flexible testing scenarios easily

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 33/44

Parameterised Tests

Creating a parameterised test
1 Create a generic test and decorate it with the @Test annotation
2 Create a static feeder method that returns a Collection type and

decorate it with the @Parameters annotation
3 Create class members for the parameter types required in the

generic method defined in Step 1
4 Create a constructor that takes these parameter types and

correspondingly links them to the class members defined in Step 3
5 Specify the test case be run with the Parameterized class via the

@RunWith annotation

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 34/44

Parameterised Tests

Creating a parameterised test
1 Create a generic test and decorate it with the @Test annotation
2 Create a static feeder method that returns a Collection type and

decorate it with the @Parameters annotation
3 Create class members for the parameter types required in the

generic method defined in Step 1
4 Create a constructor that takes these parameter types and

correspondingly links them to the class members defined in Step 3
5 Specify the test case be run with the Parameterized class via the

@RunWith annotation

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 34/44

Parameterised Tests

Creating a parameterised test
1 Create a generic test and decorate it with the @Test annotation
2 Create a static feeder method that returns a Collection type and

decorate it with the @Parameters annotation
3 Create class members for the parameter types required in the

generic method defined in Step 1
4 Create a constructor that takes these parameter types and

correspondingly links them to the class members defined in Step 3
5 Specify the test case be run with the Parameterized class via the

@RunWith annotation

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 34/44

Parameterised Tests

Creating a parameterised test
1 Create a generic test and decorate it with the @Test annotation
2 Create a static feeder method that returns a Collection type and

decorate it with the @Parameters annotation
3 Create class members for the parameter types required in the

generic method defined in Step 1
4 Create a constructor that takes these parameter types and

correspondingly links them to the class members defined in Step 3
5 Specify the test case be run with the Parameterized class via the

@RunWith annotation

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 34/44

Parameterised Tests

Creating a parameterised test
1 Create a generic test and decorate it with the @Test annotation
2 Create a static feeder method that returns a Collection type and

decorate it with the @Parameters annotation
3 Create class members for the parameter types required in the

generic method defined in Step 1
4 Create a constructor that takes these parameter types and

correspondingly links them to the class members defined in Step 3
5 Specify the test case be run with the Parameterized class via the

@RunWith annotation

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 34/44

Parameterised Test – Example
1 @RunWith(Parameterized.class)
2 public class ParameterizedTest {
3 private int numberToTest;
4 private int rest;
5 public ParameterizedTest(Integer pValue , Integer rValue) {
6 numberToTest = pValue.intValue ();
7 rest = rValue.intValue ();
8 }
9 @Parameters

10 public static List <Integer[]> testValues () {
11 return Arrays.asList(new Integer [][] {
12 {1,1}, {3,1}, {6,0}, {7,1}, {9,1}
13 });
14 }
15 @Test
16 public void isOdd() {
17 assertTrue(numberToTest % 2 == rest);
18 }
19 }

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 35/44

Test Suites

Creating a test suite
Tests can be combined to test suites

suites can contain other suites

useful for partitioning your test scenarios

well supported by Test Runners (see example)

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 36/44

Test Suites

Creating a test suite
Tests can be combined to test suites

suites can contain other suites

useful for partitioning your test scenarios

well supported by Test Runners (see example)

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 36/44

Test Suites

Creating a test suite
Tests can be combined to test suites

suites can contain other suites

useful for partitioning your test scenarios

well supported by Test Runners (see example)

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 36/44

Test Suites

Creating a test suite
Tests can be combined to test suites

suites can contain other suites

useful for partitioning your test scenarios

well supported by Test Runners (see example)

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 36/44

Test Suite – Example

1 import org.junit.runner.RunWith;
2 import org.junit.runners.Suite;
3
4 @RunWith(Suite.class)
5
6 @Suite.SuiteClasses ({
7 MyTest1.class ,
8 MyTest2.class ,
9 MyTest3.class

10 }
11)
12 public class AllTests {
13 }

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 37/44

Running JUnit Tests

The JUnit framework does not provide a graphical test runner.
Instead, it provides an API that can be used by IDEs to run test cases
and a textual runner than can be used from a command line.

Eclipse and Netbeans each provide a graphical test runner that is
integrated into their respective environments.

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 38/44

Test Runners

With the runner provided by JUnit:
When a class is selected for execution, all the test case methods in
the class will be run.

The order in which the methods in the class are called (i.e. the order
of test case execution) is not predictable.

Other Runners
Test runners provided by IDEs may allow the user to select particular
methods, or to set the order of execution.

It is good practice to write tests with are independent of execution
order, and that are without dependencies on the state any previous
test(s).

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 39/44

Test Runners

With the runner provided by JUnit:
When a class is selected for execution, all the test case methods in
the class will be run.

The order in which the methods in the class are called (i.e. the order
of test case execution) is not predictable.

Other Runners
Test runners provided by IDEs may allow the user to select particular
methods, or to set the order of execution.

It is good practice to write tests with are independent of execution
order, and that are without dependencies on the state any previous
test(s).

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 39/44

Test Runners

With the runner provided by JUnit:
When a class is selected for execution, all the test case methods in
the class will be run.

The order in which the methods in the class are called (i.e. the order
of test case execution) is not predictable.

Other Runners
Test runners provided by IDEs may allow the user to select particular
methods, or to set the order of execution.

It is good practice to write tests with are independent of execution
order, and that are without dependencies on the state any previous
test(s).

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 39/44

Test Runners

With the runner provided by JUnit:
When a class is selected for execution, all the test case methods in
the class will be run.

The order in which the methods in the class are called (i.e. the order
of test case execution) is not predictable.

Other Runners
Test runners provided by IDEs may allow the user to select particular
methods, or to set the order of execution.

It is good practice to write tests with are independent of execution
order, and that are without dependencies on the state any previous
test(s).

Overview Assertions Fixtures Eclipse Integration

Daniel Bruns, Erik Burger – JUnit January 18, 2011 39/44

Test Case Generation

Hand-writing test cases is a tedious job. . .

. . . and may be another source of error.

Test case generation (TCG) does all the dirty work.
Input: parameters to test and oracle of some sort

Sometimes not even those required (e.g., in Verification-based
Testing (VBT))

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 40/44

Test Case Generation

Hand-writing test cases is a tedious job. . .

. . . and may be another source of error.

Test case generation (TCG) does all the dirty work.
Input: parameters to test and oracle of some sort

Sometimes not even those required (e.g., in Verification-based
Testing (VBT))

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 40/44

Test Case Generation

Hand-writing test cases is a tedious job. . .

. . . and may be another source of error.

Test case generation (TCG) does all the dirty work.
Input: parameters to test and oracle of some sort

Sometimes not even those required (e.g., in Verification-based
Testing (VBT))

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 40/44

Testing with JMLUnitNG

JMLUnitNG
By Dan Zimmerman (U Washington—Tacoma), 2010

Complete rewrite of JMLUnit (now support for Java 1.5)

Based on TestNG (instead of JUnit)

Current version 1.0a2, released 25 December 2010

Builds (input and) oracle from JML specifications

Classification of Tests
Pass: Result matches post-condition

Fail: Result does not match post-condition (or unexpected exception)

Meaningless: Test input does not match pre-condition

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 41/44

Testing with JMLUnitNG

JMLUnitNG
By Dan Zimmerman (U Washington—Tacoma), 2010

Complete rewrite of JMLUnit (now support for Java 1.5)

Based on TestNG (instead of JUnit)

Current version 1.0a2, released 25 December 2010

Builds (input and) oracle from JML specifications

Classification of Tests
Pass: Result matches post-condition

Fail: Result does not match post-condition (or unexpected exception)

Meaningless: Test input does not match pre-condition

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 41/44

Example

//@ requires x >= 0;
//@ ensures \result == x + y;
int add (int x, int y) {

while (0 < --x) y++;
return y;

}

x y res verdict
-1 -1 ///////////-1 meaningless
0 0 0 pass
0 1 1 pass
1 0 0 fail
1 1 1 fail
...

...
... ?

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 42/44

Example

//@ requires x >= 0;
//@ ensures \result == x + y;
int add (int x, int y) {

while (0 < --x) y++;
return y;

}

x y res verdict
-1 -1 ///////////-1 meaningless
0 0 0 pass
0 1 1 pass
1 0 0 fail
1 1 1 fail
...

...
... ?

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 42/44

Example

//@ requires x >= 0;
//@ ensures \result == x + y;
int add (int x, int y) {

while (0 < --x) y++;
return y;

}

x y res verdict
-1 -1 ///////////-1 meaningless
0 0 0 pass
0 1 1 pass
1 0 0 fail
1 1 1 fail
...

...
... ?

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 42/44

Example

//@ requires x >= 0;
//@ ensures \result == x + y;
int add (int x, int y) {

while (0 < --x) y++;
return y;

}

x y res verdict
-1 -1 ///////////-1 meaningless
0 0 0 pass
0 1 1 pass
1 0 0 fail
1 1 1 fail
...

...
... ?

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 42/44

Example

//@ requires x >= 0;
//@ ensures \result == x + y;
int add (int x, int y) {

while (0 < --x) y++;
return y;

}

x y res verdict
-1 -1 ///////////-1 meaningless
0 0 0 pass
0 1 1 pass
1 0 0 fail
1 1 1 fail
...

...
... ?

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 42/44

Example

//@ requires x >= 0;
//@ ensures \result == x + y;
int add (int x, int y) {

while (0 < --x) y++;
return y;

}

x y res verdict
-1 -1 ///////////-1 meaningless
0 0 0 pass
0 1 1 pass
1 0 0 fail
1 1 1 fail
...

...
... ?

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 42/44

Example

//@ requires x >= 0;
//@ ensures \result == x + y;
int add (int x, int y) {

while (0 < --x) y++;
return y;

}

x y res verdict
-1 -1 ///////////-1 meaningless
0 0 0 pass
0 1 1 pass
1 0 0 fail
1 1 1 fail
...

...
... ?

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 42/44

How to Use JMLUnitNG

Starting point: Java classes with JML specifications

Phases
1 Preparation: create necessary test classes
2 Provide data: enter specific test data and fixtures

Global data: used in every test
Local data: used in this test

3 Test generation
4 Test running

Live Demo

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 43/44

How to Use JMLUnitNG

Starting point: Java classes with JML specifications

Phases
1 Preparation: create necessary test classes
2 Provide data: enter specific test data and fixtures

Global data: used in every test
Local data: used in this test

3 Test generation
4 Test running

Live Demo

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 43/44

How to Use JMLUnitNG

Starting point: Java classes with JML specifications

Phases
1 Preparation: create necessary test classes
2 Provide data: enter specific test data and fixtures

Global data: used in every test
Local data: used in this test

3 Test generation
4 Test running

Live Demo

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 43/44

How to Use JMLUnitNG

Starting point: Java classes with JML specifications

Phases
1 Preparation: create necessary test classes
2 Provide data: enter specific test data and fixtures

Global data: used in every test
Local data: used in this test

3 Test generation
4 Test running

Live Demo

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 43/44

How to Use JMLUnitNG

Starting point: Java classes with JML specifications

Phases
1 Preparation: create necessary test classes
2 Provide data: enter specific test data and fixtures

Global data: used in every test
Local data: used in this test

3 Test generation
4 Test running

Live Demo

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 43/44

How to Use JMLUnitNG

Starting point: Java classes with JML specifications

Phases
1 Preparation: create necessary test classes automatic
2 Provide data: enter specific test data and fixtures manual

Global data: used in every test
Local data: used in this test

3 Test generation automatic
4 Test running automatic

Live Demo

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 43/44

How to Use JMLUnitNG

Starting point: Java classes with JML specifications

Phases
1 Preparation: create necessary test classes
2 Provide data: enter specific test data and fixtures

Global data: used in every test
Local data: used in this test

3 Test generation
4 Test running

Live Demo

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 43/44

Conclusion

Disclaimer
JMLUnitNG is still in alpha stage!

Does not provide much automation / Eclipse integration yet

May have bugs itself

Contact Dan Zimmerman <dmz@acm.org> in doubt

JMLUnitNG

Daniel Bruns, Erik Burger – JUnit January 18, 2011 44/44

mailto:dmz@acm.org.deletethis

	Testing
	Testing
	Classification of Tests
	Test Coverage

	JUnit
	Overview
	Assertions
	Fixtures
	Definition
	Example
	Parameterised Tests
	Test Suites

	Eclipse Integration
	Test Runners

	Test Case Generation with JMLUnitNG
	JMLUnitNG
	

