
Theoretical Computer Science and Theorem Proving (TCSTP)
Institute for Informatics (IFI)

Proof Composition and Refinement of Voting Systems
Using Isabelle/HOL

Michael Kirsten

Guest Lecture in Theorem Prover Lab at KIT, Karlsruhe

December 17, 2025

Structure of Voting Systems

Voting System

1
2 3

voting process

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 2/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Structure of Voting Systems

Voting System

1. management 2. casting 3. tallying

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 2/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

How to tally the votes?

Vote Distribution

35% 30% 20% 15%

1.

2.

3.

4.

5.

Who wins the election?

▶ Simple plurality:

The will of the voters might be more than a “single choice”:

▶ 65% are dissatisfied with .

▶ 30% would have an advantage if they switched to .

▶ Then, 55% could “cheat” with , however.
▶ Two examples of strategic (election) manipulation.

Free and equal elections should ensure that . . .

▶ voters express their true will without distortion, and
▶ every vote counts the same.

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 3/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

How to tally the votes?

Vote Distribution

35% 30% 20% 15%

1.

2.

3.

4.

5.

Who wins the election?

▶ Simple plurality:

The will of the voters might be more than a “single choice”:

▶ 65% are dissatisfied with .

▶ 30% would have an advantage if they switched to .

▶ Then, 55% could “cheat” with , however.
▶ Two examples of strategic (election) manipulation.

Free and equal elections should ensure that . . .

▶ voters express their true will without distortion, and
▶ every vote counts the same.

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 3/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

How to tally the votes?

Vote Distribution

35% 30% 20% 15%

1.

2.

3.

4.

5.

Who wins the election?

▶ Simple plurality:

The will of the voters might be more than a “single choice”:

▶ 65% are dissatisfied with .

▶ 30% would have an advantage if they switched to .

▶ Then, 55% could “cheat” with , however.
▶ Two examples of strategic (election) manipulation.

Free and equal elections should ensure that . . .

▶ voters express their true will without distortion, and
▶ every vote counts the same.

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 3/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

How to tally the votes?

Vote Distribution

35% 30% 20% 15%

1.

2.

3.

4.

5.

Who wins the election?

▶ Simple plurality:

The will of the voters might be more than a “single choice”:

▶ 65% are dissatisfied with .

▶ 30% would have an advantage if they switched to .

▶ Then, 55% could “cheat” with , however.
▶ Two examples of strategic (election) manipulation.

Free and equal elections should ensure that . . .

▶ voters express their true will without distortion, and
▶ every vote counts the same.

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 3/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

How to tally the votes?

Vote Distribution

35% 30% 20% 15%

1.

2.

3.

4.

5.

Who wins the election?

▶ Simple plurality:

The will of the voters might be more than a “single choice”:

▶ 65% are dissatisfied with .

▶ 30% would have an advantage if they switched to .

▶ Then, 55% could “cheat” with , however.
▶ Two examples of strategic (election) manipulation.

Free and equal elections should ensure that . . .

▶ voters express their true will without distortion, and
▶ every vote counts the same.

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 3/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

How to tally the votes?

Vote Distribution

35% 30% 20% 15%

1.

2.

3.

4.

5.

Who wins the election?

▶ Simple plurality:

The will of the voters might be more than a “single choice”:

▶ 65% are dissatisfied with .

▶ 30% would have an advantage if they switched to .

▶ Then, 55% could “cheat” with , however.

▶ Two examples of strategic (election) manipulation.

Free and equal elections should ensure that . . .

▶ voters express their true will without distortion, and
▶ every vote counts the same.

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 3/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

How to tally the votes?

Vote Distribution

35% 30% 20% 15%

1.

2.

3.

4.

5.

Who wins the election?

▶ Simple plurality:

The will of the voters might be more than a “single choice”:

▶ 65% are dissatisfied with .

▶ 30% would have an advantage if they switched to .

▶ Then, 55% could “cheat” with , however.
▶ Two examples of strategic (election) manipulation.

Free and equal elections should ensure that . . .

▶ voters express their true will without distortion, and
▶ every vote counts the same.

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 3/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

How to tally the votes?

Vote Distribution

35% 30% 20% 15%

1.

2.

3.

4.

5.

Who wins the election?

▶ Simple plurality:

The will of the voters might be more than a “single choice”:

▶ 65% are dissatisfied with .

▶ 30% would have an advantage if they switched to .

▶ Then, 55% could “cheat” with , however.
▶ Two examples of strategic (election) manipulation.

Free and equal elections should ensure that . . .
▶ voters express their true will without distortion, and
▶ every vote counts the same.

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 3/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Example Criterion Against Strategies: Condorcet

Definition (Condorcet Criterion)

We ought to take the Condorcet winner as sole winner if it exists.
▶ a beats b if and only if more than half the voters prefer a to b.
▶ a is a Condorcet winner if and only if a beats every other alternative.

35% 30% 20% 15%

1.

2.

3.

4.

5.

▶ Who is the Condorcet winner?

.

Problem

Sometimes there is no Condorcet winner.

⇒ Condorcet paradox

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 4/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Example Criterion Against Strategies: Condorcet

Definition (Condorcet Criterion)

We ought to take the Condorcet winner as sole winner if it exists.
▶ a beats b if and only if more than half the voters prefer a to b.
▶ a is a Condorcet winner if and only if a beats every other alternative.

35% 30% 20% 15%

1.

2.

3.

4.

5.

▶ Who is the Condorcet winner?

.

Problem

Sometimes there is no Condorcet winner.

⇒ Condorcet paradox

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 4/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Example Criterion Against Strategies: Condorcet

Definition (Condorcet Criterion)

We ought to take the Condorcet winner as sole winner if it exists.
▶ a beats b if and only if more than half the voters prefer a to b.
▶ a is a Condorcet winner if and only if a beats every other alternative.

35% 30% 20% 15%

1.

2.

3.

4.

5.

▶ Who is the Condorcet winner? .

Problem

Sometimes there is no Condorcet winner.

⇒ Condorcet paradox

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 4/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Example Criterion Against Strategies: Condorcet

Definition (Condorcet Criterion)

We ought to take the Condorcet winner as sole winner if it exists.
▶ a beats b if and only if more than half the voters prefer a to b.
▶ a is a Condorcet winner if and only if a beats every other alternative.

35% 30% 20% 15%

1.

2.

3.

4.

5.

▶ Who is the Condorcet winner? .

Problem

Sometimes there is no Condorcet winner.

⇒ Condorcet paradox

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 4/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

How can we ensure such properties?

Research Approach

▶ Proven construction of tallying algorithms based on basic modules
▶ Algorithm becomes comprehensible by such a construction
▶ Proof by application of proven construction rules ⇒ Composition of rules is explanation
▶ Construction of tallying algorithms with desired properties (and explanation) can be automated

Example for Condorcet Criterion
Base function s : For any alternative, compute sum of all less-preferred alternatives for each vote

Example Construction: (ms ⟲t)

▶ ms eliminates alternative with lowest value for s

⇒ Never eliminates Condorcet winner

▶ ⟲t repeats module until only one alternative remains

⇒ Condorcet winner wins if it exists

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 5/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

How can we ensure such properties?

Research Approach

▶ Proven construction of tallying algorithms based on basic modules
▶ Algorithm becomes comprehensible by such a construction
▶ Proof by application of proven construction rules ⇒ Composition of rules is explanation
▶ Construction of tallying algorithms with desired properties (and explanation) can be automated

Example for Condorcet Criterion
Base function s : For any alternative, compute sum of all less-preferred alternatives for each vote

Example Construction: (ms ⟲t)

▶ ms eliminates alternative with lowest value for s

⇒ Never eliminates Condorcet winner

▶ ⟲t repeats module until only one alternative remains

⇒ Condorcet winner wins if it exists

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 5/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

How can we ensure such properties?

Research Approach

▶ Proven construction of tallying algorithms based on basic modules
▶ Algorithm becomes comprehensible by such a construction
▶ Proof by application of proven construction rules ⇒ Composition of rules is explanation
▶ Construction of tallying algorithms with desired properties (and explanation) can be automated

Example for Condorcet Criterion
Base function s : For any alternative, compute sum of all less-preferred alternatives for each vote

Example Construction: (ms ⟲t)

▶ ms eliminates alternative with lowest value for s

⇒ Never eliminates Condorcet winner
▶ ⟲t repeats module until only one alternative remains

⇒ Condorcet winner wins if it exists

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 5/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

How can we ensure such properties?

Research Approach

▶ Proven construction of tallying algorithms based on basic modules
▶ Algorithm becomes comprehensible by such a construction
▶ Proof by application of proven construction rules ⇒ Composition of rules is explanation
▶ Construction of tallying algorithms with desired properties (and explanation) can be automated

Example for Condorcet Criterion
Base function s : For any alternative, compute sum of all less-preferred alternatives for each vote

Example Construction: (ms ⟲t)

▶ ms eliminates alternative with lowest value for s ⇒ Never eliminates Condorcet winner

▶ ⟲t repeats module until only one alternative remains

⇒ Condorcet winner wins if it exists

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 5/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

How can we ensure such properties?

Research Approach

▶ Proven construction of tallying algorithms based on basic modules
▶ Algorithm becomes comprehensible by such a construction
▶ Proof by application of proven construction rules ⇒ Composition of rules is explanation
▶ Construction of tallying algorithms with desired properties (and explanation) can be automated

Example for Condorcet Criterion
Base function s : For any alternative, compute sum of all less-preferred alternatives for each vote

Example Construction: (ms ⟲t)

▶ ms eliminates alternative with lowest value for s ⇒ Never eliminates Condorcet winner
▶ ⟲t repeats module until only one alternative remains

⇒ Condorcet winner wins if it exists

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 5/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

How can we ensure such properties?

Research Approach

▶ Proven construction of tallying algorithms based on basic modules
▶ Algorithm becomes comprehensible by such a construction
▶ Proof by application of proven construction rules ⇒ Composition of rules is explanation
▶ Construction of tallying algorithms with desired properties (and explanation) can be automated

Example for Condorcet Criterion
Base function s : For any alternative, compute sum of all less-preferred alternatives for each vote

Example Construction: (ms ⟲t)

▶ ms eliminates alternative with lowest value for s ⇒ Never eliminates Condorcet winner
▶ ⟲t repeats module until only one alternative remains ⇒ Condorcet winner wins if it exists

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 5/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Formal Robust-by-Construction Framework

Formal Methods

▶ Theorem prover for human-readable and machine-checked proofs
▶ Translation of mathematical functions into verified Scala/Haskell programs

▶ Simple logic programming based on linear resolution
▶ Automatic search on facts for “closed world assumption”

▶ Formalization and proofs of modules and robustness (composition) rules
▶ Library of components with verified robustness properties
▶ Automatic (source-)code generation of composed procedure
▶ Translation of proven rules to Prolog for automatic search to construct proofs:

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 6/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Formal Robust-by-Construction Framework

Formal Methods

▶ Theorem prover for human-readable and machine-checked proofs
▶ Translation of mathematical functions into verified Scala/Haskell programs

▶ Simple logic programming based on linear resolution
▶ Automatic search on facts for “closed world assumption”

▶ Formalization and proofs of modules and robustness (composition) rules
▶ Library of components with verified robustness properties
▶ Automatic (source-)code generation of composed procedure
▶ Translation of proven rules to Prolog for automatic search to construct proofs:

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 6/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Formal Robust-by-Construction Framework

Formal Methods

▶ Theorem prover for human-readable and machine-checked proofs
▶ Translation of mathematical functions into verified Scala/Haskell programs

▶ Simple logic programming based on linear resolution
▶ Automatic search on facts for “closed world assumption”

▶ Formalization and proofs of modules and robustness (composition) rules
▶ Library of components with verified robustness properties
▶ Automatic (source-)code generation of composed procedure
▶ Translation of proven rules to Prolog for automatic search to construct proofs:

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 6/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Formal Robust-by-Construction Framework

Formal Methods

▶ Theorem prover for human-readable and machine-checked proofs
▶ Translation of mathematical functions into verified Scala/Haskell programs

▶ Simple logic programming based on linear resolution
▶ Automatic search on facts for “closed world assumption”

▶ Formalization and proofs of modules and robustness (composition) rules
▶ Library of components with verified robustness properties
▶ Automatic (source-)code generation of composed procedure
▶ Translation of proven rules to Prolog for automatic search to construct proofs:

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 6/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Formal Robust-by-Construction Framework

Formal Methods

▶ Theorem prover for human-readable and machine-checked proofs
▶ Translation of mathematical functions into verified Scala/Haskell programs

▶ Simple logic programming based on linear resolution
▶ Automatic search on facts for “closed world assumption”

▶ Formalization and proofs of modules and robustness (composition) rules
▶ Library of components with verified robustness properties
▶ Automatic (source-)code generation of composed procedure
▶ Translation of proven rules to Prolog for automatic search to construct proofs:

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 6/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Example: Sequential Majority Comparison

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 7/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Example: Sequential Majority Comparison

Example: Sequential Majority Comparison

((mPass(2) .

mPlurality↓ .mPass(1)

) ||aggmax mDrop(2))

	|d |=1 .mElect

I Pick two candidates.

I Choose winner.
I Find new opponent.
I Repeat.

.

	

||

.

mPass

2 %

.

↓

mPlurality

mPass

1 %

aggmax mDrop

2 %

tdefer

1

mElect

Fabian Richter Introduction February 4, 2021 6 / 21

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 7/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Example: Sequential Majority Comparison

Example: Sequential Majority Comparison

((mPass(2) .mPlurality↓ .mPass(1)) ||aggmax mDrop(2))

	|d |=1 .mElect

I Pick two candidates.
I Choose winner.

I Find new opponent.
I Repeat.

.

	

||

.

mPass

2 %

.

↓

mPlurality

mPass

1 %

aggmax mDrop

2 %

tdefer

1

mElect

Fabian Richter Introduction February 4, 2021 6 / 21

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 7/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Example: Sequential Majority Comparison

Example: Sequential Majority Comparison

((mPass(2) .mPlurality↓ .mPass(1)) ||aggmax mDrop(2))

	|d |=1 .mElect

I Pick two candidates.
I Choose winner.
I Find new opponent.

I Repeat.

.

	

||

.

mPass

2 %

.

↓

mPlurality

mPass

1 %

aggmax mDrop

2 %

tdefer

1

mElect

Fabian Richter Introduction February 4, 2021 6 / 21

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 7/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Example: Sequential Majority Comparison

Example: Sequential Majority Comparison

((mPass(2) .mPlurality↓ .mPass(1)) ||aggmax mDrop(2))	|d |=1

.mElect

I Pick two candidates.
I Choose winner.
I Find new opponent.
I Repeat.

.

	

||

.

mPass

2 %

.

↓

mPlurality

mPass

1 %

aggmax mDrop

2 %

tdefer

1

mElect

Fabian Richter Introduction February 4, 2021 6 / 21

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 7/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Example: Sequential Majority Comparison

Example: Sequential Majority Comparison

((mPass(2) .mPlurality↓ .mPass(1)) ||aggmax mDrop(2))	|d |=1 .mElect

I Pick two candidates.
I Choose winner.
I Find new opponent.
I Repeat.

.

	

||

.

mPass

2 %

.

↓

mPlurality

mPass

1 %

aggmax mDrop

2 %

tdefer

1

mElect

Fabian Richter Introduction February 4, 2021 6 / 21

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 7/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Proof Composition for Reliable Voting Rules
Proof of Monotonicity for Sequential Majority Comparison

...
mel im is non-electing

mel im eliminates 1 alternative
mel im⟲|d |=1 defers 1 alternative

...
melect is electing

mel im⟲|d |=1 is non-electing
mel im⟲|d |=1 is defer-lift-invariant

mel im⟲|d |=1 ▷ melect is monotone

All proven within Isabelle/HOL:
▶ 4 basic electoral modules
▶ 4 compositional structures
▶ 19 composition rules

(10 reusable lemmas)
▶ 13 module properties

Framework for Correctness-by-Construction of Voting Rules

▶ 3 basic types
▶ 5 component types
▶ 9 basic modules
▶ 4 composition operations
▶ 215 proofs
▶ 9 composed procedures

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 8/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Proof Composition for Reliable Voting Rules
Proof of Monotonicity for Sequential Majority Comparison

...
mel im is non-electing

mel im eliminates 1 alternative
mel im⟲|d |=1 defers 1 alternative

...
melect is electing

mel im⟲|d |=1 is non-electing
mel im⟲|d |=1 is defer-lift-invariant

mel im⟲|d |=1 ▷ melect is monotone

All proven within Isabelle/HOL:
▶ 4 basic electoral modules
▶ 4 compositional structures
▶ 19 composition rules

(10 reusable lemmas)
▶ 13 module properties

Framework for Correctness-by-Construction of Voting Rules

▶ 3 basic types
▶ 5 component types
▶ 9 basic modules
▶ 4 composition operations
▶ 215 proofs
▶ 9 composed procedures

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 8/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Proof Composition for Reliable Voting Rules
Proof of Monotonicity for Sequential Majority Comparison

...
mel im is non-electing

mel im eliminates 1 alternative

mel im⟲|d |=1 defers 1 alternative

...
melect is electing

mel im⟲|d |=1 is non-electing
mel im⟲|d |=1 is defer-lift-invariant

mel im⟲|d |=1 ▷ melect is monotone

All proven within Isabelle/HOL:
▶ 4 basic electoral modules
▶ 4 compositional structures
▶ 19 composition rules

(10 reusable lemmas)
▶ 13 module properties

Framework for Correctness-by-Construction of Voting Rules

▶ 3 basic types
▶ 5 component types
▶ 9 basic modules
▶ 4 composition operations
▶ 215 proofs
▶ 9 composed procedures

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 8/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Proof Composition for Reliable Voting Rules
Proof of Monotonicity for Sequential Majority Comparison

...

mel im is non-electing
mel im eliminates 1 alternative

mel im⟲|d |=1 defers 1 alternative

...

melect is electing
mel im⟲|d |=1 is non-electing

mel im⟲|d |=1 is defer-lift-invariant

mel im⟲|d |=1 ▷ melect is monotone

All proven within Isabelle/HOL:
▶ 4 basic electoral modules
▶ 4 compositional structures
▶ 19 composition rules

(10 reusable lemmas)
▶ 13 module properties

Framework for Correctness-by-Construction of Voting Rules

▶ 3 basic types
▶ 5 component types
▶ 9 basic modules
▶ 4 composition operations
▶ 215 proofs
▶ 9 composed procedures

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 8/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Proof Composition for Reliable Voting Rules
Proof of Monotonicity for Sequential Majority Comparison

...

mel im is non-electing
mel im eliminates 1 alternative

mel im⟲|d |=1 defers 1 alternative

...

melect is electing
mel im⟲|d |=1 is non-electing

mel im⟲|d |=1 is defer-lift-invariant

mel im⟲|d |=1 ▷ melect is monotone

All proven within Isabelle/HOL:
▶ 4 basic electoral modules
▶ 4 compositional structures
▶ 19 composition rules

(10 reusable lemmas)
▶ 13 module properties

Framework for Correctness-by-Construction of Voting Rules

▶ 3 basic types
▶ 5 component types
▶ 9 basic modules
▶ 4 composition operations
▶ 215 proofs
▶ 9 composed procedures

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 8/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Proof Composition for Reliable Voting Rules
Proof of Monotonicity for Sequential Majority Comparison

...

mel im is non-electing
mel im eliminates 1 alternative

mel im⟲|d |=1 defers 1 alternative

...

melect is electing
mel im⟲|d |=1 is non-electing

mel im⟲|d |=1 is defer-lift-invariant

mel im⟲|d |=1 ▷ melect is monotone

All proven within Isabelle/HOL:
▶ 4 basic electoral modules
▶ 4 compositional structures
▶ 19 composition rules

(10 reusable lemmas)
▶ 13 module properties

Framework for Correctness-by-Construction of Voting Rules

▶ 3 basic types
▶ 5 component types
▶ 9 basic modules
▶ 4 composition operations
▶ 215 proofs
▶ 9 composed procedures

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 8/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Now Some Abstraction: The Elimination Set

Evaluation Function
▶ Idea: Assign an alternative’s value by setting them into relation to the others
▶ Example: Minimax Score m(a, A, p), the worst that alternative a does against any other alternative

Elimination Set
Eliminate each alternative whose value is in relation r with threshold value t.

E = {a ∈ A : (e(a, A, p), t) ∈ r} with

▶ Eligible alternatives A, profile p
▶ Evaluation function e
▶ Threshold value t ∈ N
▶ Binary relation r on N

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 9/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Now Some Abstraction: The Elimination Set

Evaluation Function
▶ Idea: Assign an alternative’s value by setting them into relation to the others
▶ Example: Minimax Score m(a, A, p), the worst that alternative a does against any other alternative

Elimination Set
Eliminate each alternative whose value is in relation r with threshold value t.

E = {a ∈ A : (e(a, A, p), t) ∈ r} with

▶ Eligible alternatives A, profile p
▶ Evaluation function e
▶ Threshold value t ∈ N
▶ Binary relation r on N

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 9/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Making it a Module: The Elimination Module
Basic Module Type Inspired by Grilli di Cortona et al. (1999)

votes
alternatives

re
jec

ted

de
fer

re
d

ele
cte

d
m

▶ Segmentation of outcome into set triple for further processing
▶ Common module type for general composition operations

Elimination Module
Reject elimination set if and only if we would not reject all alternatives.

m(A, p) :=

{
(∅, E, A \ E) if E ⊊ A
(∅,∅, A) else

Special Cases
▶ LESS Eliminator: a ∈ E ⇐⇒ a’s value < threshold value
▶ MAX Eliminator: a ∈ E ⇐⇒ a’s value < maximum value of all alternatives

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 10/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Making it a Module: The Elimination Module
Basic Module Type Inspired by Grilli di Cortona et al. (1999)

votes
alternatives

re
jec

ted

de
fer

re
d

ele
cte

d
m

▶ Segmentation of outcome into set triple for further processing
▶ Common module type for general composition operations

Elimination Module
Reject elimination set if and only if we would not reject all alternatives.

m(A, p) :=

{
(∅, E, A \ E) if E ⊊ A
(∅,∅, A) else

Special Cases
▶ LESS Eliminator: a ∈ E ⇐⇒ a’s value < threshold value
▶ MAX Eliminator: a ∈ E ⇐⇒ a’s value < maximum value of all alternatives

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 10/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Turning the Elimination Module Into a Program

A

Φ
t
∼(f)

Parameters of Φ

f (a, p) ∈ N: Evaluation function
t ∈ N: Threshold value

p[A]

A

e = A \ r r = {a ∈ A | f (a, p) ∼ t}

foreach a ∈ A do
if f (a, p) ∼ t then r ← r ∪ {a} ;
else e ← e ∪ {a} ;

return (e, r);

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 11/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Turning the Elimination Module Into a Program

A

Φ
t
∼(f)

Parameters of Φ

f (a, p) ∈ N: Evaluation function
t ∈ N: Threshold value

p[A]

A

e = A \ r r = {a ∈ A | f (a, p) ∼ t}

foreach a ∈ A do
if f (a, p) ∼ t then r ← r ∪ {a} ;
else e ← e ∪ {a} ;

return (e, r);

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 11/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Refined Elimination Module for the Plurality Rule

A

Φ
max f plur

<
(f plur)

Parameters of Φ

f plur(a, p) = |{i | top(pi) = a}|
t ∈ N = maxa∈A f plur(a, p)

p[A]

A

e = A \ r r = {a ∈ A | f (a, p) < maxa∈A f plur(a, p)}

map : τalt → N ;
for a ∈ A do map[a]← f plur(a, p) ;

assert ∀a ∈ A map[a] = f plur(a, p)

t ← maxa∈A f plur(a, p) ;
foreach a ∈ A do

if f plur(a, p) < t then r ← r ∪ {a} ;
else e ← e ∪ {a} ;

return (e, r) ;

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 12/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Refined Elimination Module for the Plurality Rule

A

Φ
max f plur

<
(f plur)

Parameters of Φ

f plur(a, p) = |{i | top(pi) = a}|
t ∈ N = maxa∈A f plur(a, p)

p[A]

A

e = A \ r r = {a ∈ A | f (a, p) < maxa∈A f plur(a, p)}

map : τalt → N ;
for a ∈ A do map[a]← f plur(a, p) ;

assert ∀a ∈ A map[a] = f plur(a, p)
t ← max(map[:]) ;
foreach a ∈ A do

if map[a] < t then r ← r ∪ {a} ;
else e ← e ∪ {a} ;

return (e, r) ;

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 12/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Refined Elimination Module for the Plurality Rule

A

Φ
max f plur

<
(f plur)

Parameters of Φ

f plur(a, p) = |{i | top(pi) = a}|
t ∈ N = maxa∈A f plur(a, p) Θ

max
<
(Λ)

Λ

p[A]

A

e = A \ r r = {a ∈ A | f (a, p) < maxa∈A f plur(a, p)}

map : τalt → N ;
for a ∈ A do map[a]← f plur(a, p) ;

assert ∀a ∈ A map[a] = f plur(a, p)
t ← max(map[:]) ;
foreach a ∈ A do

if map[a] < t then r ← r ∪ {a} ;
else e ← e ∪ {a} ;

return (e, r) ;

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 12/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Efficient Stepwise-Refined Programs Using Isabelle Refinement Framework

Voting Rule #Alternatives #Voters Original Refined

Plurality
9 50 000 32.0 s 0.22 s

20 50 000 396.0 s 0.22 s

50 50 000 ✗ 0.20 s

Borda
20 50 000 395.0 s 1.30 s

20 500 4.5 s 0.12 s

Pairwise Majority
20 500 145.0 s 0.25 s

50 500 87.0 s 5.70 s

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 13/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

A Construction Pattern: Distance Rationalization (DR)

▶ Construction of voting rules out of consensus K and election distance d (Lerer and Nitzan, 1985)

▶ DR rule R(K, d)(E) := argmin
r ∈σ(E)

d(E,Kr) = argmin
r ∈σ(E)

(
inf

E′ ∈Kr
d(E,E ′)

)

1 Owl
2 Bee

v1
1 Owl
2 Bee

v2
1 Owl
2 Bee

v3
1 Owl
2 Bee

v4
1 Owl
2 Bee

v5

Consensus Rule K

E ⊇ D(K)→
⋃
A⊆A
2σ(A)

Kr

2 Owl
1 Bee

v1
2 Owl
1 Bee

v2
2 Owl
1 Bee

v3

2 Owl
1 Bee

v4
2 Owl
1 Bee

v5

2 Owl
1 Bee

v1
2 Owl
1 Bee

v2
1 Owl
2 Bee

v3

1
2

R(K, d)

Ks

d

1
2

r

1
2

s

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 14/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

A Construction Pattern: Distance Rationalization (DR)

▶ Construction of voting rules out of consensus K and election distance d (Lerer and Nitzan, 1985)

▶ DR rule R(K, d)(E) := argmin
r ∈σ(E)

d(E,Kr) = argmin
r ∈σ(E)

(
inf

E′ ∈Kr
d(E,E ′)

)

1 Owl
2 Bee

v1
1 Owl
2 Bee

v2
1 Owl
2 Bee

v3
1 Owl
2 Bee

v4
1 Owl
2 Bee

v5

Consensus Rule K

E ⊇ D(K)→
⋃
A⊆A
2σ(A)

Kr

2 Owl
1 Bee

v1
2 Owl
1 Bee

v2
2 Owl
1 Bee

v3

2 Owl
1 Bee

v4
2 Owl
1 Bee

v5

2 Owl
1 Bee

v1
2 Owl
1 Bee

v2
1 Owl
2 Bee

v3

1
2

R(K, d)

Ks

d

1
2

r

1
2

s

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 14/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

A Construction Pattern: Distance Rationalization (DR)

▶ Construction of voting rules out of consensus K and election distance d (Lerer and Nitzan, 1985)

▶ DR rule R(K, d)(E) := argmin
r ∈σ(E)

d(E,Kr) = argmin
r ∈σ(E)

(
inf

E′ ∈Kr
d(E,E ′)

)

1 Owl
2 Bee

v1
1 Owl
2 Bee

v2
1 Owl
2 Bee

v3
1 Owl
2 Bee

v4
1 Owl
2 Bee

v5

Consensus Rule K

E ⊇ D(K)→
⋃
A⊆A
2σ(A)

Kr

2 Owl
1 Bee

v1
2 Owl
1 Bee

v2
2 Owl
1 Bee

v3

2 Owl
1 Bee

v4
2 Owl
1 Bee

v5

2 Owl
1 Bee

v1
2 Owl
1 Bee

v2
1 Owl
2 Bee

v3

1
2

R(K, d)

Ks

d

1
2

r

1
2

s

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 14/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

A Construction Pattern: Distance Rationalization (DR)

▶ Construction of voting rules out of consensus K and election distance d (Lerer and Nitzan, 1985)

▶ DR rule R(K, d)(E) := argmin
r ∈σ(E)

d(E,Kr) = argmin
r ∈σ(E)

(
inf

E′ ∈Kr
d(E,E ′)

)

1 Owl
2 Bee

v1
1 Owl
2 Bee

v2
1 Owl
2 Bee

v3
1 Owl
2 Bee

v4
1 Owl
2 Bee

v5

Consensus Rule K

E ⊇ D(K)→
⋃
A⊆A
2σ(A)

Kr

2 Owl
1 Bee

v1
2 Owl
1 Bee

v2
2 Owl
1 Bee

v3

2 Owl
1 Bee

v4
2 Owl
1 Bee

v5

2 Owl
1 Bee

v1
2 Owl
1 Bee

v2
1 Owl
2 Bee

v3

1
2

R(K, d)

Ks

d

1
2

r

1
2

s

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 14/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

General DR-Rules for Symmetry Properties

Definition: Invariance and Equivariance

Let f : X → Y , (G, ∗) a group and φ,ψ be group actions of G on X respectively Y .
Then f is φ-invariant if f (φ(g, x)) = f (x) for all x ∈ X, g ∈ G.
f is (φ,ψ)-equivariant if f (φ(g, x)) = ψ(g, f (x)) for all x ∈ X, g ∈ G.

Invariance is the same as (φ, id)-equivariance.

K,σ φ-invariant
d φ-invariant

R(K, d) φ-invariant

K,σ (φ,ψ)-equivariant
d φ-invariant

R(K, d) (φ,ψ)-equivariant

Figure: General Inference Rules (Hadjibeyli and Wilson, 2016)

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 15/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

General DR-Rules for Symmetry Properties

Definition: Invariance and Equivariance

Let f : X → Y , (G, ∗) a group and φ,ψ be group actions of G on X respectively Y .
Then f is φ-invariant if f (φ(g, x)) = f (x) for all x ∈ X, g ∈ G.
f is (φ,ψ)-equivariant if f (φ(g, x)) = ψ(g, f (x)) for all x ∈ X, g ∈ G.

Invariance is the same as (φ, id)-equivariance.

K,σ φ-invariant
d φ-invariant

R(K, d) φ-invariant

K,σ (φ,ψ)-equivariant
d φ-invariant

R(K, d) (φ,ψ)-equivariant

Figure: General Inference Rules (Hadjibeyli and Wilson, 2016)

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 15/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Abstract Voting and Symmetries Based on Distances
fun distance-infimum :: ′a Distance ⇒ ′a set ⇒ ′a ⇒ ereal where

distance-infimum d A a = Inf (d a ‘ A)

fun closest-preimg-distance :: (′a ⇒ ′b) ⇒ ′a set ⇒ ′a Distance ⇒
′a ⇒ ′b ⇒ ereal where

closest-preimg-distance f domainf d a b = distance-infimum d (preimg f domainf b) a

fun minimizer :: (′a ⇒ ′b) ⇒ ′a set ⇒ ′a Distance ⇒ ′b set ⇒ ′a ⇒ ′b set where
minimizer f domainf d A a = arg-min-set (closest-preimg-distance f domainf d a) A

lemma (in result) RW-is-minimizer:
fixes

d :: (′a, ′v) Election Distance and
C :: (′a, ′v, ′r Result) Consensus-Class

shows funE (RW d C) =
(λ E.

⋃
(minimizer (elect-r ∘ funE (rule-K C)) (elections-K C) d

(singleton-set-system (limit (alternatives-E E) UNIV)) E))

K,σ anonymous
d anonymous

R(K, d) anonymous

K, σ φ-invariant
d φ-invariant

R(K, d) φ-invariant

K,σ (φ,ψ)-equivariant
d φ-invariant

R(K, d) (φ,ψ)-equivariant

K, σ neutral
d neutral

R(K, d) neutral

K,σ reversal-symmetric
d reversal-symmetric

R(K, d) reversal-symmetric

f , σ φ-invariant
d φ-invariant

minimizer(f , d) φ-invariant

f , σ (φ,ψ)-equivariant
d φ-invariant

minimizer(f , d) (φ,ψ)-equivariant

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 16/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Abstract Voting and Symmetries Based on Distances
fun distance-infimum :: ′a Distance ⇒ ′a set ⇒ ′a ⇒ ereal where

distance-infimum d A a = Inf (d a ‘ A)

fun closest-preimg-distance :: (′a ⇒ ′b) ⇒ ′a set ⇒ ′a Distance ⇒
′a ⇒ ′b ⇒ ereal where

closest-preimg-distance f domainf d a b = distance-infimum d (preimg f domainf b) a

fun minimizer :: (′a ⇒ ′b) ⇒ ′a set ⇒ ′a Distance ⇒ ′b set ⇒ ′a ⇒ ′b set where
minimizer f domainf d A a = arg-min-set (closest-preimg-distance f domainf d a) A

lemma (in result) RW-is-minimizer:
fixes

d :: (′a, ′v) Election Distance and
C :: (′a, ′v, ′r Result) Consensus-Class

shows funE (RW d C) =
(λ E.

⋃
(minimizer (elect-r ∘ funE (rule-K C)) (elections-K C) d

(singleton-set-system (limit (alternatives-E E) UNIV)) E))

K,σ anonymous
d anonymous

R(K, d) anonymous

K, σ φ-invariant
d φ-invariant

R(K, d) φ-invariant

K,σ (φ,ψ)-equivariant
d φ-invariant

R(K, d) (φ,ψ)-equivariant

K, σ neutral
d neutral

R(K, d) neutral

K,σ reversal-symmetric
d reversal-symmetric

R(K, d) reversal-symmetric

f , σ φ-invariant
d φ-invariant

minimizer(f , d) φ-invariant

f , σ (φ,ψ)-equivariant
d φ-invariant

minimizer(f , d) (φ,ψ)-equivariant

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 16/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Abstract Voting and Symmetries Based on Distances
fun distance-infimum :: ′a Distance ⇒ ′a set ⇒ ′a ⇒ ereal where

distance-infimum d A a = Inf (d a ‘ A)

fun closest-preimg-distance :: (′a ⇒ ′b) ⇒ ′a set ⇒ ′a Distance ⇒
′a ⇒ ′b ⇒ ereal where

closest-preimg-distance f domainf d a b = distance-infimum d (preimg f domainf b) a

fun minimizer :: (′a ⇒ ′b) ⇒ ′a set ⇒ ′a Distance ⇒ ′b set ⇒ ′a ⇒ ′b set where
minimizer f domainf d A a = arg-min-set (closest-preimg-distance f domainf d a) A

lemma (in result) RW-is-minimizer:
fixes

d :: (′a, ′v) Election Distance and
C :: (′a, ′v, ′r Result) Consensus-Class

shows funE (RW d C) =
(λ E.

⋃
(minimizer (elect-r ∘ funE (rule-K C)) (elections-K C) d

(singleton-set-system (limit (alternatives-E E) UNIV)) E))

K,σ anonymous
d anonymous

R(K, d) anonymous

K, σ φ-invariant
d φ-invariant

R(K, d) φ-invariant

K,σ (φ,ψ)-equivariant
d φ-invariant

R(K, d) (φ,ψ)-equivariant

K, σ neutral
d neutral

R(K, d) neutral

K,σ reversal-symmetric
d reversal-symmetric

R(K, d) reversal-symmetric

f , σ φ-invariant
d φ-invariant

minimizer(f , d) φ-invariant

f , σ (φ,ψ)-equivariant
d φ-invariant

minimizer(f , d) (φ,ψ)-equivariant

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 16/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Verification of Symmetry Properties

Blueprint for Proof of Symmetry P
(1) Define P as (φ,ψ)-equivariance (under a group G)

(a) Prove that G is a group
(b) Prove that φ is a group action of G on E
(c) Prove that ψ is a group action of G on UNIV

(2) Prove that σ is (φ,ψ)-equivariant
(3) Add rule for P from general inference rules.
(4) Prove that K and d have property P (i.e., d is

φ-invariant)
(a) Prove that the domain of K is closed under φ.
(b) Prove that K is (φ,ψ)-equivariant on its domain.

Formalization of Symmetry Properties
locale result-properties = result +
fixes ψ :: (′a ⇒ ′a, ′b) binary-fun and

ν :: ′v itself
assumes

action-neutral: group-action bijectionAG UNIV ψ and
neutrality:

is-symmetry (λ E :: (′a, ′v) Election. limit (alternatives-E E) UNIV)
(action-induced-equivariance (carrier bijectionAG)

well-formed-elections
(ϕ-neutral well-formed-elections) (set-action ψ))

Property-Specific ("Non-Reusable") Proof Effort

Step (1): homomorphism axiom (φ(g, ·) ∘ φ(h, ·) = φ(g ∗ h, ·)). Steps (2), (3), (4): Depends on σ and the group action.

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 17/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Verification of Symmetry Properties

Blueprint for Proof of Symmetry P
(1) Define P as (φ,ψ)-equivariance (under a group G)

(a) Prove that G is a group
(b) Prove that φ is a group action of G on E
(c) Prove that ψ is a group action of G on UNIV

(2) Prove that σ is (φ,ψ)-equivariant
(3) Add rule for P from general inference rules.
(4) Prove that K and d have property P (i.e., d is

φ-invariant)
(a) Prove that the domain of K is closed under φ.
(b) Prove that K is (φ,ψ)-equivariant on its domain.

Formalization of Symmetry Properties
locale result-properties = result +
fixes ψ :: (′a ⇒ ′a, ′b) binary-fun and

ν :: ′v itself
assumes

action-neutral: group-action bijectionAG UNIV ψ and
neutrality:

is-symmetry (λ E :: (′a, ′v) Election. limit (alternatives-E E) UNIV)
(action-induced-equivariance (carrier bijectionAG)

well-formed-elections
(ϕ-neutral well-formed-elections) (set-action ψ))

Property-Specific ("Non-Reusable") Proof Effort

Step (1): homomorphism axiom (φ(g, ·) ∘ φ(h, ·) = φ(g ∗ h, ·)). Steps (2), (3), (4): Depends on σ and the group action.

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 17/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Verification of Symmetry Properties

Blueprint for Proof of Symmetry P
(1) Define P as (φ,ψ)-equivariance (under a group G)

(a) Prove that G is a group
(b) Prove that φ is a group action of G on E
(c) Prove that ψ is a group action of G on UNIV

(2) Prove that σ is (φ,ψ)-equivariant
(3) Add rule for P from general inference rules.
(4) Prove that K and d have property P (i.e., d is

φ-invariant)
(a) Prove that the domain of K is closed under φ.
(b) Prove that K is (φ,ψ)-equivariant on its domain.

Formalization of Symmetry Properties
locale result-properties = result +
fixes ψ :: (′a ⇒ ′a, ′b) binary-fun and

ν :: ′v itself
assumes

action-neutral: group-action bijectionAG UNIV ψ and
neutrality:

is-symmetry (λ E :: (′a, ′v) Election. limit (alternatives-E E) UNIV)
(action-induced-equivariance (carrier bijectionAG)

well-formed-elections
(ϕ-neutral well-formed-elections) (set-action ψ))

Property-Specific ("Non-Reusable") Proof Effort

Step (1): homomorphism axiom (φ(g, ·) ∘ φ(h, ·) = φ(g ∗ h, ·)). Steps (2), (3), (4): Depends on σ and the group action.

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 17/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Conclusion

Summary
▶ Devised formal methods for systematic cross-layer development of trustworthy voting systems
▶ Methods enable reasoning/comprehensibility across system layers by automatic synthesis

Evaluated methods on various vote tallying algorithms: Condorcet procedures and classical knock-out tournament

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 18/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Conclusion

Summary
▶ Devised formal methods for systematic cross-layer development of trustworthy voting systems
▶ Methods enable reasoning/comprehensibility across system layers by automatic synthesis

Evaluated methods on various vote tallying algorithms: Condorcet procedures and classical knock-out tournament

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 18/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Open Research Questions

▶ Extension of methods for vote transfers and committee elections

▶ Flexibilization of robust-by-construction framework for quantitative reasoning

▶ Integration of cryptographically secure computations into robust-by-construction framework

▶ Transfer of methods to further domains, e.g., consensus on distributed ledgers

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 19/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Open Research Questions

▶ Extension of methods for vote transfers and committee elections

▶ Flexibilization of robust-by-construction framework for quantitative reasoning

▶ Integration of cryptographically secure computations into robust-by-construction framework

▶ Transfer of methods to further domains, e.g., consensus on distributed ledgers

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 19/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Open Research Questions

▶ Extension of methods for vote transfers and committee elections

▶ Flexibilization of robust-by-construction framework for quantitative reasoning

▶ Integration of cryptographically secure computations into robust-by-construction framework

▶ Transfer of methods to further domains, e.g., consensus on distributed ledgers

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 19/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

Open Research Questions

▶ Extension of methods for vote transfers and committee elections

▶ Flexibilization of robust-by-construction framework for quantitative reasoning

▶ Integration of cryptographically secure computations into robust-by-construction framework

▶ Transfer of methods to further domains, e.g., consensus on distributed ledgers

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 19/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

References I

[1] Pietro Grilli di Cortona et al. Evaluation and optimization of electoral systems. Society for Industrial and Applied Mathematics,
1999. DOI: 10.1137/1.9780898719819.

[2] Benjamin Hadjibeyli and Mark C. Wilson. “Distance rationalization of social rules”. In: CoRR abs/1610.01902 (2016). arXiv:
1610.01902. URL: http://arxiv.org/abs/1610.01902.

[3] Ehud Lerer and Shmuel Nitzan. “Some General Results on the Metric Rationalization for Social Decision Rules”. In: Journal of
Economic Theory 37.1 (1985), pp. 191–201. DOI: 10.1016/0022-0531(85)90036-5.

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL 20/20 Ludwig-Maximilians-Universität (LMU) München, TCSTP

https://doi.org/10.1137/1.9780898719819
https://arxiv.org/abs/1610.01902
http://arxiv.org/abs/1610.01902
https://doi.org/10.1016/0022-0531(85)90036-5

	Foundations
	Appendix
	References

