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1. management 2. casting 3. tallying
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How to tally the votes?

Who wins the election?
Vote Distribution

35% 30% 20% 15%

b B A
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Vote Distribution
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How to tally the votes?

Who wins the election?

Vote Distribution
35% 30% 20% 15% » Simple plurality: “
1 v y A The will of the voters might be more than a “single choice™:

» 65 % are dissatisfied with ‘/‘
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How to tally the votes?

Who wins the election?

Vote Distribution
35% 30% 20% 15% » Simple plurality: i‘
1 v y A The will of the voters might be more than a “single choice™:
9 é » 65 % are dissatisfied with ‘/‘

A

» 30 % would have an advantage if they switched to *_*.
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How to tally the votes?

Who wins the election?

Vote Distribution V
35% 30% 20% 15% » Simple plurality:
1 v y A The will of the voters might be more than a “single choice™:
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3 ﬂ 5 ﬂ 8 » 30 % would have an advantage if they switched to *
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How to tally the votes?

Who wins the election?

Vote Distribution v
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How to tally the votes?

Who wins the election?

Vote Distribution
35% 30% 20% 15% » Simple plurality: i‘
1 v y A The will of the voters might be more than a “single choice™:

8 » 65% are dissatisfied with ‘/‘

&
B » 30 % would have an advantage if they switched to *

. A X
» Then, 55% could “cheat” with E however.
» Two examples of strategic (election) manipulation.
, » ¥V V¥

Free and equal elections should ensure that . . .
» voters express their true will without distortion, and

» every vote counts the same.
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Example Criterion Against Strategies: Condorcet

Definition (Condorcet Criterion)

We ought to take the Condorcet winner as sole winner if it exists.
» a beats b if and only if more than half the voters prefer a to b.

» a is a Condorcet winner if and only if a beats every other alternative.
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Definition (Condorcet Criterion)

We ought to take the Condorcet winner as sole winner if it exists.
» a beats b if and only if more than half the voters prefer a to b.
» a is a Condorcet winner if and only if a beats every other alternative.

35% 30% 20% 15%

» \Who is the Condorcet winner?
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Example Criterion Against Strategies: Condorcet

Definition (Condorcet Criterion)

We ought to take the Condorcet winner as sole winner if it exists.
» a beats b if and only if more than half the voters prefer a to b.
» a is a Condorcet winner if and only if a beats every other alternative.
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Example Criterion Against Strategies: Condorcet

We ought to take the Condorcet winner as sole winner if it exists.
» a beats b if and only if more than half the voters prefer a to b.
» a is a Condorcet winner if and only if a beats every other alternative.

35% 30% 20% 15% B
» Who is the Condorcet winner? .

Sometimes there is no Condorcet winner.

= Condorcet paradox
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How can we ensure such properties?

Research Approach

» Proven construction of tallying algorithms based on basic modules

» Algorithm becomes comprehensible by such a construction

» Proof by application of proven construction rules = Composition of rules is explanation
» Construction of tallying algorithms with desired properties (and explanation) can be automated
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Research Approach

» Proven construction of tallying algorithms based on basic modules

» Algorithm becomes comprehensible by such a construction

» Proof by application of proven construction rules = Composition of rules is explanation
» Construction of tallying algorithms with desired properties (and explanation) can be automated

Example for Condorcet Criterion
Base function s: For any alternative, compute sum of all less-preferred alternatives for each vote
Example Construction: (ms O;)
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» O repeats module until only one alternative remains
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How can we ensure such properties?

Research Approach

» Proven construction of tallying algorithms based on basic modules

» Algorithm becomes comprehensible by such a construction

» Proof by application of proven construction rules = Composition of rules is explanation
» Construction of tallying algorithms with desired properties (and explanation) can be automated

Example for Condorcet Criterion
Base function s: For any alternative, compute sum of all less-preferred alternatives for each vote
Example Construction: (ms O;)

» ms eliminates alternative with lowest value for s = Never eliminates Condorcet winner
» O; repeats module until only one alternative remains = Condorcet winner wins if it exists
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Formal Robust-by-Construction Framework

» Theorem prover for human-readable and machine-checked proofs
» Translation of mathematical functions into verified Scala/Haskell programs
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Formal Robust-by-Construction Framework

» Theorem prover for human-readable and machine-checked proofs
» Translation of mathematical functions into verified Scala/Haskell programs
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» Automatic search on facts for “closed world assumption”
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Formal Robust-by-Construction Framework

» Theorem prover for human-readable and machine-checked proofs
» Translation of mathematical functions into verified Scala/Haskell programs

» Simple logic programming based on linear resolution
SWI Pr0|og » Automatic search on facts for “closed world assumption”

» Formalization and proofs of modules and robustness (composition) rules

» Library of components with verified robustness properties

» Automatic (source-)code generation of composed procedure

» Translation of proven rules to Prolog for automatic search to construct proofs:

theorem condorcet consistent seql:
assumes condorcet m: "condorcet consistent m" and

condorcetconsistent(seqcomp(X,Y)):-

module n: "electoral _module n" .
shows "condorcet_consistent (m > n)" COﬂdOI"CEtCOﬂSlStent(X), module(Y) .
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Formal Robust-by-Construction Framework

» Theorem prover for human-readable and machine-checked proofs
» Translation of mathematical functions into verified Scala/Haskell programs

» Simple logic programming based on linear resolution

» Automatic search on facts for “closed world assumption”

» Formalization and proofs of modules and robustness (composition) rules

» Library of components with verified robustness properties

» Automatic (source-)code generation of composed procedure

» Translation of proven rules to Prolog for automatic search to construct proofs:

?- condorcetconsistent(X), electing(X), monotone(X).
X = seqcomp(m_cond, m_borda) ;
X = seqcomp(m_cond, m_plurality) ;
X = seqcomp(m_cond, seqcomp(m_cond, m_borda)) .
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Example: Sequential Majority Comparison
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Example: Sequential Majority Comparison

((Mpass(2) > ) ||aggmax MDrop(2))

» Pick two candidates. / ‘ \

/ > \&%g max Mprop
Mpass 2 .
2 z
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Example: Sequential Majority Comparison

((mPass(2) > mPluraIiter > mPass(]-)) Haggmax mDrop(Q))

/

. . |
» Pick two candidates. ‘ \

» Choose winner.

PAWAY
/N / N

Mp3ss
-

mpjyrality 1
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Example: Sequential Majority Comparison

((mPass(2) > mPluraIiter > mPass(]-)) Haggmax mDrop(z))

/

. . |
» Pick two candidates. ‘ \

» Choose winner.
C > d88max Mprop

» Find new opponent. / \ / \

Mpass

/N /\ )

Mp3ss
-

mpjyrality 1
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Example: Sequential Majority Comparison

((mPass(2) > mPluraIiter > mPass(]-)) Haggmax mDrop(z)) O‘d’:1

@/
VRN
» Pick two candidates. ‘ \ o

» Choose winner.

> d88max Mprop

» Find new opponent.
> Repeat. mPass/ \ / \

/N /\ )

Mp3ss
-

mpjyrality 1
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Example: Sequential Majority Comparison

((mPass(2) > mPluraIiter > mPass(]-)) Haggmax mDrop(z)) O\d!zl > MEject

/\

ME|ect

2N

. . Ldefer
» Pick two candidates. ‘ \

» Choose winner.

> d88max MpProp

» Find new opponent.
> Repeat. mPass/ \ / \

/N /\ )

Mp3ss
-

mpjyrality 1
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Proof Composition for Reliable Voting Rules

Proof of Monotonicity for Sequential Majority Comparison

Mejim Old|=1 > Mefect 1S Monotone
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Proof Composition for Reliable Voting Rules

Proof of Monotonicity for Sequential Majority Comparison

Meject 1S €lecting
Melim Ojg|=1 1S non-electing
Mejim Ojg=1 defers 1 alternative  mejim Ojg)=1 Is defer-lift-invariant
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Proof Composition for Reliable Voting Rules

Proof of Monotonicity for Sequential Majority Comparison

Melim 1S NoN-electing Meject 1S electing
Mejim €liminates 1 alternative me//m®|d|:1 Is non-electing

Mejim Ojgi=1 defers 1 alternative  mejim Ojg1=1 Is defer-lift-invariant
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Proof Composition for Reliable Voting Rules

Proof of Monotonicity for Sequential Majority Comparison

Mejim 1S Non-electing Meject 1S €lecting
Mesim €liminates 1 alternative Metim Ojgj=1 IS non-electing

Mejim Ojgi=1 defers 1 alternative  mejim Ojg=1 Is defer-lift-invariant
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Proof Composition for Reliable Voting Rules
Proof of Monotonicity for Sequential Majority Comparison

All proven within Isabelle/HOL:

. : — _ » 4 basic electoral modules
Mejim 1S Non-electing Meject 1S €lecting

Mejim Olg|=1 1S non-electing -
Metim Oy defers 1 alternative Mgy Cjgi—y is defer-lift-invariant > 19 composition rules
(10 reusable lemmas)

Mejim eliminates 1 alternative » 4 compositional structures

» 13 module properties
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Proof Composition for Reliable Voting Rules

Proof of Monotonicity for Sequential Majority Comparison

All proven within Isabelle/HOL:
» 4 basic electoral modules

Mejim 1S Non-electing Meject 1S electing - ool struct
- - . : compositional structures
Mesim €liminates 1 alternative Metim Ojgj=1 IS non-electing P

» 19 composition rules
(10 reusable lemmas)

Mejim Ojgi=1 defers 1 alternative  mejim Ojg=1 Is defer-lift-invariant

Metim Oldl=1 > M IS monotone .
elim~|d|=1 elect » 13 module properties

Framework for Correctness-by-Construction of Voting Rules

» 3 basic types
Runnable » 5 component types
functional code » 9 basic modules
= Scala » 4 composition operations
Compositions > > 215 proofs
___6___T-“—‘|—““ » 9 composed procedures
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Now Some Abstraction: The Elimination Set

Evaluation Function
» Idea: Assign an alternative’s value by setting them into relation to the others
» Example: Minimax Score m(a, A, p), the worst that alternative a does against any other alternative
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Now Some Abstraction: The Elimination Set

Evaluation Function
» Idea: Assign an alternative’s value by setting them into relation to the others
» Example: Minimax Score m(a, A, p), the worst that alternative a does against any other alternative

Elimination Set
Eliminate each alternative whose value is in relation r with threshold value t.

E={aec A : (ela A p) t) € r} with

» Eligible alternatives A, profile p

» Evaluation function e
» Threshold value t € N
» Binary relation r on N
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Making 1t a Module: The Elimination Module

Basic Module Type Inspired by arili di Cortona et al. (1999)

*votes &

3 N » Segmentation of outcome into set triple for further processing
—> — > » Common module type for general composition operations
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Making 1t a Module: The Elimination Module

Basic Module Type Inspired by arili di Cortona et al. (1999)

¢VO’[GS

/,/;

2 » Segmentation of outcome into set triple for further processing
- — » Common module type for general composition operations

Elimination Module
Reject elimination set if and only if we would not reject all alternatives.

(0, E,AVE) IfECA
(0,2, A) else

m(A, p) = {

Special Cases

» LESS Eliminator: a € E <= a’s value < threshold value
» MAX Eliminator: a € E <= a's value < maximum value of all alternatives
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Turning the Elimination Module Into a Program

PA

th (f) f(a, p) € N: Evaluation function
~ t € N: Threshold value

{ e=A\r Ir:{aeAH(a,p)Nt}
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Turning the Elimination Module Into a Program

PA

th (f) f(a, p) € N: Evaluation function
~ t € N: Threshold value

foreach a € A do

if f(a,p) ~tthen r+ ru{a};
else e« eu{a};

return (e, r);

{ e=A\r Ir:{aeAH(a,p)Nt} ]
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Refined Elimination Module for the Plurality Rule

/ t < maxazea FPV(a, p) :

} foreach a € A do
p[A]

if fP"(a,p) < t then r +ru {a};

" (a, p) = {i ] top(p) = a} else e eUtal:
t € N = maxsea FP""(a, p) return (e, r) ;

N

{ e=A\r Ir:{a“\\f(a,p)<maXa€Afp/ur(a'p)} ]

max fp/“r(fp/ur‘
<

\
—

Michael Kirsten: Proof Composition and Refinement of Voting Systems Using Isabelle/HOL

12/20 Ludwig-Maximilians-Universitat (LMU) Miinchen, TCSTP



Refined Elimination Module for the Plurality Rule

map : Ta: — N ;
for a € Ado mapla] < P'“"(a, p) ;

{ A assert Ya € A mapla] = fP"""(a, p)
/ t < max(map[:]) ;

) . foreach a € A do

plA] if mapla] < t then r + ru{a};

max FPIU pjury 7 (e p) = {i'| top(p) = a} else e« eUfal,
< (f t € N = maxaea PV (a, p) return (e, r) ;

N

\
—

{ e=A\r Ir:{a“\\f(a,p)<maXa€Afp/ur(a'p)} ]
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Refined Elimination Module for the Plurality Rule

map : Ta: — N ;
_for ac€ Ado map|a] «+ P (a, p) ;

{ A /\ lur
assert Va € A mapla] = fP'""(a, p)

/ \ "t < max(map[]) ;

) . ( \ foreach a € A do

plA] if mapla] < t then r + ru{a};

ur = |{i ) = Ise e« euU{a};
max fPlur Vo fPlur(a, p) = [{i | top(p;) = a}| maxa e
< (fp/ur t € N = maxsea FP""(a, p) @< ( ) return (e, r) ;

N

\
—

{ e=A\r Ir:{a“\\f(a,p)<maXa€Afp/ur(a'p)} ]
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Efficient Stepwise-Refined Programs Using Isabelle Refinement Framework

Voting Rule #Alternatives #Voters Original Refined
9 50000 32.0s 0.22s

Plurality 20 50000 396.0s 0.22s
50 50000 X 0.20s

Borda 20 50000 395.0s 1.30s
20 500 45s 0.12s

20 500 145.0s 0.25s

Pairwise Majority 50 500 87 0's £ 70<
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A Construction Pattern: Distance Rationalization (DR)

» Construction of voting rules out of consensus K and election distance d (Lerer and Nitzan, 1985)

> DR rule R(K, d)(E) := argmin d(E, K,) = argmin (_inf d(E, E"))
reo(E) reo(E) E'e K,
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A Construction Pattern: Distance Rationalization (DR)

» Construction of voting rules out of consensus K and election distance d (Lerer and Nitzan, 1985)
> DR rule R(K, d)(E) := argmin d(E, K,) = argmin (_inf d(E, E"))
reo(E) reo(E) E'e K,

. Consensus Rule K

EDD(K)— |J2°W
ACA

—e
e

~

— | R

NI f (R
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A Construction Pattern: Distance Rationalization (DR)

» Construction of voting rules out of consensus K and election distance d (Lerer and Nitzan, 1985)
> DR rule R(K, d)(E) := argmin d(E, K,) = argmin (_inf d(E, E"))
reo(E) reo(E) E'e K,

00
. Consensus Rule K . 4 ()
€2 D(K)— |J2°W g1
ACA 2
r
1/
-
oy —
L \ . 1
I [ 4 2
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A Construction Pattern: Distance Rationalization (DR)

» Construction of voting rules out of consensus K and election distance d (Lerer and Nitzan, 1985)
> DR rule R(K, d)(E) := argmin d(E, K,) = argmin (_inf d(E, E"))
reo(E) reo(E) E'e K,

Consensus Rule K

EDD(K)— |J2°W

‘
~ Gl

=
ACA P
VI
T =
(_) 1
2
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General DR-Rules for Symmetry Properties

Definition: Invariance and Equivariance

Let f: X =Y, (G, %) a group and ¢, ¥ be group actions of G on X respectively Y.
Then f is ¢-invariant if f(¢(g, x)) = f(x) forall x € X, g € G.
fis (¢, ¥)-equivariant if f(¢p(g,x)) =¥(g, f(x)) forall x € X, g € G.

Invariance is the same as (¢, /d)-equivariance.
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General DR-Rules for Symmetry Properties

Definition: Invariance and Equivariance

Let f: X =Y, (G, %) a group and ¢, ¥ be group actions of G on X respectively Y.
Then f is ¢-invariant if f(¢(g, x)) = f(x) forall x € X, g € G.
fis (¢, ¥)-equivariant if f(¢p(g,x)) =¥(g, f(x)) forall x € X, g € G.

Invariance is the same as (¢, /d)-equivariance.

K, o ¢-invariant K, o (¢, ¥)-equivariant
d ¢-invariant d ¢-invariant

R(K, d) ¢-invariant R(K, d) (¢, ¥)-equivariant

Figure: General Inference Rules (Hadjibeyli and Wilson, 2016)
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Abstract Voting and Symmetries Based on Distances

fun distance-infimum :: 'a Distance = 'a set = 'a = ereal where
distance-infimum d A a = Inf(d a " A)

fun closest-preimg-distance :: ('a = 'b) = 'a set = 'a Distance =
'a = 'b = ereal where
closest-preimg-distance f domains d a b = distance-infimum d (preimg f domains b) a

fun minimizer :: ('a = 'b) = 'a set = 'a Distance = 'b set = 'a = 'b set where
minimizer f domains d A a = arg-min-set (closest-preimg-distance f domains d a) A
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Abstract Voting and Symmetries Based on Distances

fun distance-infimum :: 'a Distance = 'a set = 'a = ereal where
distance-infimum d A a = Inf(d a " A)

fun closest-preimg-distance :: ('a = 'b) = 'a set = 'a Distance =
'a = 'b = ereal where
closest-preimg-distance f domains d a b = distance-infimum d (preimg f domains b) a

fun minimizer :: ('a = 'b) = 'a set = 'a Distance = 'b set = 'a = 'b set where
minimizer f domains d A a = arg-min-set (closest-preimg-distance f domains d a) A

lemma (in result) Ryy-is-minimizer:
fixes
d:: ('a, 'v) Election Distance and
C :: (‘a, 'v, 'r Result) Consensus-Class
shows fung (Ryy d C) =
(X E. U (minimizer (elect-r o fung (rule-KC C)) (elections-K C) d
(singleton-set-system (limit (alternatives-€ E) UNIV)) E))
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Abstract Voting and Symmetries Based on Distances

fun distance-infimum :: 'a Distance = 'a set = 'a = ereal where
distance-infimum d A a = Inf(d a " A)

fun closest-preimg-distance :: ('a = 'b) = 'a set = 'a Distance =
'a = 'b = ereal where
closest-preimg-distance f domains d a b = distance-infimum d (preimg f domains b) a

fun minimizer :: ('a = 'b) = 'a set = 'a Distance = 'b set = 'a = 'b set where
minimizer f domains d A a = arg-min-set (closest-preimg-distance f domains d a) A

lemma (in result) Ryy-is-minimizer:

fixes f, o ¢-invariant f,o (¢, ¥)-equivariant
d:: ('a, 'v) Election Distance and d ¢-invariant ) d ¢-invariant
C:: (‘a, 'v, 'r Result) Consensus-Class minimizer(f, d) ¢-invariant minimizer(f, d) (¢, ¥)-equivariant
shows funs (Ryy d C) =
(X E. U (minimizer (elect-r o fung (rule-KC C)) (elections-K C) d K, o ¢-invariant K, o (¢, )-equivariant
(singleton-set-system (limit (alternatives-E E) UNIV)) E)) 4 d-invariant d ¢-invariant
R(K, d) ¢-invariant R(K, d) (¢, ¥)-equivariant
K, 0 anonymous K, o neutral K, o reversal-symmetric
d anonymous d neutral d reversal-symmetric
R(K, d) anonymous R(K, d) neutral R(K, d) reversal-symmetric
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Verification of Symmetry Properties

Blueprint for Proof of Symmetry P

(1) Define P as (¢, ¥)-equivariance (under a group G)
(a) Prove that G is a group
(b) Prove that ¢ is a group action of G on £
(c) Prove that 9 is a group action of G on UNIV

(2) Prove that o is (¢, ¥)-equivariant

(3) Add rule for P from general inference rules.
(4) Prove that K and d have property P (i.e., d is
¢-invariant)
(a) Prove that the domain of K is closed under ¢.
(b) Prove that K is (¢, 1¥)-equivariant on its domain.
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Verification of Symmetry Properties

Blueprint for Proof of Symmetry P Formalization of Symmetry Properties

(1) Define P as (¢, ¥)-equivariance (under a group G) locale result-properties = result +
(a) Prove that G is a group fixes ¢ :: ('a = ‘a, 'b) binary-fun and
(b) Prove that ¢ is a group action of G on £ v v oitself
(c) Prove that 9 is a group action of G on UNIV assumes
(2) Prove that o is (¢ 'L/J)—equivariant act/on—/neutra/: group-action bijectionag UNIV 1) and
. neutrality:.
(3) Add rule for P from general inference rules. is-symmetry (X € :: (‘a, 'v) Election. limit (alternatives-£€ £) UNIV)
(4) Prove that K and d have property P (i.e., d is (action-induced-equivariance (carrier bijection g )
¢-invariant) well-formed-elections
(a) Prove that the domain of K is closed under ¢. (@w-neutral well-formed-elections) (set-action 1))

(b) Prove that K is (¢, 1¥)-equivariant on its domain.
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Verification of Symmetry Properties

Blueprint for Proof of Symmetry P

(1) Define P as (¢, ¥)-equivariance (under a group G)

(a) Prove that G is a group
(b) Prove that ¢ is a group action of G on £
(c) Prove that 9 is a group action of G on UNIV

(2) Prove that o is (¢, ¥)-equivariant

(3) Add rule for P from general inference rules.
(4) Prove that K and d have property P (i.e., d is
¢-invariant)
(a) Prove that the domain of K is closed under ¢.
(b) Prove that K is (¢, 1¥)-equivariant on its domain.

Formalization of Symmetry Properties

locale result-properties = result +
fixes ¢ :: (‘a = ‘a, 'b) binary-fun and
v v itself
assumes
action-neutral. group-action bijectiong UNIV 1 and
neutrality:
is-symmetry (A € i (‘a, 'v) Election. limit (alternatives-€ £) UNIV)
(action-induced-equivariance (carrier bijection sg)
well-formed-elections
(w-neutral well-formed-elections) (set-action ))

Property-Specific ("Non-Reusable") Proof Effort
Step (1): homomorphism axiom (¢(g, ) o ¢(h, ) = ¢(g * h, -)). Steps (2), (3), (4): Depends on o and the group action.
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Conclusion

Summary

» Devised formal methods for systematic cross-layer development of trustworthy voting systems
» Methods enable reasoning/comprehensibility across system layers by automatic synthesis
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Conclusion

Summary

» Devised formal methods for systematic cross-layer development of trustworthy voting systems
» Methods enable reasoning/comprehensibility across system layers by automatic synthesis

|
Evaluated methods on various vote tallying algorithms: Condorcet procedures and classical knock-out tournament
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Open Research Questions

» Extension of methods for vote transfers and committee elections

= 50% 4507
4 ¥dYe Y maam e s Ay
—— S~ S— - =

T T2 Ln
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Open Research Questions

» Extension of methods for vote transfers and committee elections

= 50% 4507
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» Flexibilization of robust-by-construction framework for quantitative reasoning 5@
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Open Research Questions

» Extension of methods for vote transfers and committee elections
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» Flexibilization of robust-by-construction framework for quantitative reasoning

» Integration of cryptographically secure computations into robust-by-construction framework
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Open Research Questions

» Extension of methods for vote transfers and committee elections

== 50% — -

7121 217] - [2]? m
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» Flexibilization of robust-by-construction framework for quantitative reasoning

» Integration of cryptographically secure computations into robust-by-construction framework

» Transfer of methods to further domains, e.g., consensus on distributed ledgers
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