
TheoremProver Lab

Episode 1: Introduction
Henriette Färber | 2025-10-29



Nothing.

2/1 2025-10-29 Henriette Färber: Theorem Prover Lab – 01 KASTEL

Previously



Nothing. But ideally, you are familiar with
Basics of functional programming
Logic, e.g., via the courses Formal Systems, Constructive Logic etc.

2/1 2025-10-29 Henriette Färber: Theorem Prover Lab – 01 KASTEL

Previously



Today



Lectures

Homework

18 time slots
8 lectures
9 slots for project work
1 slot for presentations

Wednesday, 14:00 - 15:30 at InformatiKOM SR2
After lectures, before winter break: project topics

Link to Website

Only during lectures
One exercise sheet per week
Optional, no bonus points
Exercises and submission via ILIAS (This is the only
thing that we will use ILIAS for!)

Link to ILIAS Course

Questions, discourse and announcements over on the Matrix Channel :)
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Course Organisation
and Homework, yay!

https://formal.kastel.kit.edu/teaching/theoremproverlab/ws-2526/
https://ilias.studium.kit.edu/ilias.php?baseClass=ilrepositorygui&ref_id=2777751
https://matrix.to/#/
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Books and Official Documentation Additional Resources

https://isabelle.in.tum.de/
Concrete Semantics book
Isabelle/HOL: A Proof Assistant for Higher-Order Logic

A Gentle Introduction to Isabelle
Crash Course in Formale Systeme II - Anwendung
Functional Data Structures and Algorithms
Book is evolving over time!
Archive of Formal Proofs (collection of proof libraries
and examples)

For your final project, we expect you to be able to use what we covered in our lectures.
These references go beyond that, but may deepen your understanding of the material.

5/1 2025-10-29 Henriette Färber: Theorem Prover Lab – 01 KASTEL

Recommended References

https://isabelle.in.tum.de/
https://www.concrete-semantics.org/
https://link.springer.com/book/10.1007/3-540-45949-9
https://github.com/gteege/gentle-isabelle/tree/main
https://ilias.studium.kit.edu/ilias.php?baseClass=ilrepositorygui&ref_id=2090850
https://fdsa-book.net/
https://www.isa-afp.org/


The official website states:

Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language
and provides tools for proving those formulas in a logical calculus.

What does that mean?
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What is Isabelle?



The official website states:

Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language
and provides tools for proving those formulas in a logical calculus.

Generic infrastructure for building deductive systems
Support for formal mathematical proofs
Interactive work with formulas and proofs
Automatic correctness checking

Why is this useful?
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What is Isabelle?



The official website states:

Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language
and provides tools for proving those formulas in a logical calculus.

Generic infrastructure for building deductive systems
Support for formal mathematical proofs
Interactive work with formulas and proofs
Automatic correctness checking

Human reasoning is error-prone; machine-checked
reasoning provides a “safety net”
Discovery of subtle mistakes (famous example: Four
Color Theorem, formalized in Coq)
Automation tools can help find proofs / proof steps!
Export to nicely typeset text, code generation
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What is Isabelle?



Do people actually use this in practice?

Yes, they do!

C compiler (CompCert)
Competitive with gcc -O1,

Won 2021 ACM Software System
Award

Xavier Leroy (& Co)
INRIA Paris
using Rocq

Operating system
microkernel (seL4),

Used in safety-critical applications
Won 2022 ACM Software System

Award

Gerwin Klein (& Co)
University of New South Wales

using Isabelle

SAT solver (IsaSAT)
Won EDA Fixed CNF Encoding Race

in 2021

Mathias Fleury (& Co)
University of Freiburg

using Isabelle
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What is Isabelle?



Isabelle:
Generic infrastructure for building deductive systems
Small fixed kernel, the “meta-logic”, containing
fundamental inference rules
Meta-logic is extended by so called object logics

Isabelle/HOL:
HOL: most versatile object logic for Isabelle
Isabelle/HOL: most widespread instance of Isabelle
What exactly is HOL? Wait for lecture 4! ;)

For now, think:

HOL = Functional Programming + Logic
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What is Isabelle/HOL?



1 chapter ‹ Commutativity \label{ch:com} ›
2

3 lemma or_comm: "A ∨ B→ B ∨ A"
4 proof
5 assume "A ∨ B"
6 then show "B ∨ A"
7 proof
8 assume A
9 then show "B ∨ A" by simp

10 next
11 assume B
12 then show "B ∨ A" by simp
13 qed
14 qed

This is a simple proof written in the Isar proof language
Structured proofs, not linear
Readable, (hopefully) intuitive
Need to state what is to proven at any given point

8/1 2025-10-29 Henriette Färber: Theorem Prover Lab – 01 KASTEL

Babies First Proof



1 chapter ‹ Commutativity \label{ch:com} ›
2

3 lemma or_comm: "A ∨ B→ B ∨ A"
4 proof
5 assume"A ∨ B"
6 then show "B ∨ A"
7 proof
8 assume A
9 then show "B ∨ A" by simp

10 next
11 assume B
12 then show "B ∨ A" by simp
13 qed
14 qed

Three different languages for writing theory content:
1. Inner syntax: mathematics

2. Textural content, extended from LATEX source code
3. Outer syntax: organization of fragments in inner

syntax and textual content

Content in different syntax must be clearly separated:
Inner syntax within double quotes “. . . ”
Textual content within cartouche delimiters ‹. . . ›

Quotation marks around a single identifier can be dropped!
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1 chapter ‹ Commutativity \label{ch:com} ›
2

3 lemma or_comm: "A ∨ B→ B ∨ A"
4 proof
5 assume "A ∨ B"
6 then show "B ∨ A"
7 proof
8 assume A
9 then show "B ∨ A" by simp

10 next
11 assume B
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What does simp mean?

It’s a proof method.

All proofs, whether generated interactively or automatically,
are ultimately reduced to a sequence of steps that the
kernel can check for validity.

A proof method an automated procedure that attempts to
prove a goal using proven lemmas / theorems / rules.

Prominent examples:
simp simplifies assumptions and conclusion using all
available simplification rules
auto solves as many subgoals as it can, mainly by
simplification
’=’ is used only from left to right!
- is the empty proof method, which does nothing
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Babies First Proof



1 (* Generally: *)
2

3 proof
4 assume form_0
5 have form_1 by method_1
6 ...
7 have form_n by method_n
8 show thesis by ...
9 qed

What does simp mean? It’s a proof method.

All proofs, whether generated interactively or automatically,
are ultimately reduced to a sequence of steps that the
kernel can check for validity.

A proof method an automated procedure that attempts to
prove a goal using proven lemmas / theorems / rules.
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’=’ is used only from left to right!
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Isabelle is strongly typed: every term must have a type

Base types: bool, nat (N), int (Z)
Type variables denoted by preceding prime (e.g. ′a)
Types (usually) specified via datatype command
Type constructors: list, set, ×, . . .

Function types denoted by ⇒

Type constructors. . .
Written as postfix
Take precedence over ⇒

1 value "True" (* :: "bool" *)
2

3 value "3::nat" (* :: "nat" *)
4

5 term "3" (* :: "’a" *)
6

7 datatype color = Red | Green | Blue | Yellow
8

9 datatype ’a list = Nil | Cons ’a "’a list"
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Types



Isabelle is strongly typed: every term must have a type

Base types: bool, nat (N), int (Z)
Type variables denoted by preceding prime (e.g. ′a)
Types (usually) specified via datatype command
Type constructors: list, set, ×, . . .
Function types denoted by ⇒

Type constructors. . .
Written as postfix
Take precedence over ⇒

1 (* datatype bool = True | False *)
2

3 datatype ’a list = Nil | Cons ’a "’a list"
4

5 fun conj :: "bool⇒ bool⇒ bool" where
6 "conj True True = True" |
7 "conj _ _ = False"
8

9 fun flip :: "bool list⇒ bool list" where
10 "flip Nil = Nil" |
11 "flip (Cons True x) = Cons False x" |
12 "flip (Cons False x) = Cons True x"
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Types



A term is either
A constant
Obtained via function application
Obtained via function abstraction

However, there is also lot of syntactic sugar that we will
see later on. There are also some infix symbols like
∧, + and ≤.

Formulas are terms of type bool:
Constants True, False

Logical connectives ¬,∧,∨,−→
Equality available via function = (Also works on
formulas!)

1 term "True" (* :: "bool" *)
2

3 term "conj True False" (* :: "bool" *)
4

5 λx. x (* :: "’a⇒’a" *)
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Terms and Formulas



A term is either
A constant
Obtained via function application
Obtained via function abstraction

However, there is also lot of syntactic sugar that we will
see later on. There are also some infix symbols like
∧, + and ≤.

Formulas are terms of type bool:
Constants True, False

Logical connectives ¬,∧,∨,−→
Equality available via function = (Also works on
formulas!)

1 term "True" (* :: "bool" *)
2

3 term "conj True False" (* :: "bool" *)
4

5 λx. x (* :: "’a⇒’a" *)
6

7 term "1 = 1" (* :: "bool" *)
8

9 term "(1 = (2::nat)) = (1 = (3::nat))" (* :: "bool" *)
10

11 term "(=)" (* :: "’a⇒ ’a⇒ bool" *)
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Terms and Formulas
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The Anatomy of the Editor



User Input

Theory: definitions, proofs, comments, . . .

Output
Result of theory text processing (up to cursor position) Often Helpful: proof state!

Sidekick:
Structured view
of theory text
(interactive)

State:
Proof state

Theories:
Current and
ancestor theories
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The Anatomy of the Editor



If you haven’t done so already, use the time to install Isabelle from https://isabelle.in.tum.de/installation.html
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Break Time!
10min

https://isabelle.in.tum.de/installation.html


Isabelle/HOL takes input in form of theory files:
Naming convention: MyThy.thy
Theory = content of a theory file
Theory MyThy must live in MyThy.thy!
Each theory must import at least one theory file!

1 theory T
2 imports T1 . . .Tn (* parent theories *)
3 begin
4

5 (* defintions, theories, proofs, . . . *)
6

7 end
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Basic Theory Structure



Isabelle/HOL takes input in form of theory files:
Naming convention: MyThy.thy
Theory = content of a theory file
Theory MyThy must live in MyThy.thy!
Each theory must import at least one theory file!

1 theory T
2 imports T1 . . .Tn (* parent theories *)
3 begin
4

5 (* defintions, theories, proofs, . . . *)
6

7 end

The Theory Main

Union of all basic predefined theories (arithmetic, lists, sets, . . . )
Generally: always include directly or indirectly!

13/1 2025-10-29 Henriette Färber: Theorem Prover Lab – 01 KASTEL

Basic Theory Structure



1 theory Peano
2 imports Main (* Remember! *)
3 begin
4

5 datatype nat = Zero | Suc nat
6

7 fun leq :: "nat⇒ nat⇒ bool" where
8 (* Your turn! *)
9

10 end

Let’s build our own (Peano) numbers!
1. How can we define the ≤ operator?
2. How can we show that Zero is less or equal to all nat

numbers?
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Peano Numerals



1 theory Peano
2 imports Main
3 begin
4

5 datatype nat = Zero | Suc nat
6

7 fun leq :: "nat⇒ nat⇒ bool" where
8 "leq Zero _ = True" |
9 "leq (Suc m) Zero = False" |

10 "leq (Suc m) (Suc n) = leq m n"
11

12 end

Let’s build our own (Peano) numbers!
1. How can we define the ≤ operator?
2. How can we show that Zero is less or equal to all nat

numbers?
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1 theory Peano
2 imports Main
3 begin
4 (* ... *)
5

6 lemma zero_leq_all: "leq Zero n"
7 proof (cases n)
8 case Zero
9 then show ?thesis by simp

10 next
11 case (Suc m)
12 then show ?thesis by simp
13 qed
14

15 end

Let’s build our own (Peano) numbers!
1. How can we define the ≤ operator?
2. How can we show that Zero is less or equal to all nat

numbers?
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1 theory Peano
2 imports Main
3 begin
4

5 datatype nat = Zero | Suc nat
6

7 fun leq :: "nat⇒ nat⇒ bool" where
8 "leq Zero _ = True" |
9 "leq (Suc m) Zero = False" |

10 "leq (Suc m) (Suc n) = leq m n"
11

12 (* Easier: *)
13 lemma zero_leq_all: "leq Zero n" by simp
14

15 end

Let’s build our own (Peano) numbers!
1. How can we define the ≤ operator?
2. How can we show that Zero is less or equal to all nat

numbers?
3. How do we define addition for our nats?
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1 theory Peano
2 imports Main
3 begin
4

5 datatype nat = Zero | Suc nat
6

7 fun add :: "nat⇒ nat⇒ nat" where
8 "add Zero n = n" |
9 "add (Suc m) n = Suc(add m n)"

10

11 end

Let’s build our own (Peano) numbers!
1. How can we define the ≤ operator?
2. How can we show that Zero is less or equal to all nat

numbers?
3. How do we define addition for our nats?
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1 datatype nat = Zero | Suc nat
2

3 fun add :: "nat⇒ nat⇒ nat" where
4 "add Zero n = n" |
5 "add (Suc m) n = Suc(add m n)"
6

7 lemma add_zero: "add m Zero = m"
8 proof
9 (* ... *)

10 qed

How would you prove this on paper?

Induction!

Intuitively:
IB: add Zero Zero = Zero by definition of add
IH: For some arbitrary but fixed n, assume

add n Zero = n

IS: Show add (Suc n)Zero = Suc n
By definition of add:
add (Suc n)Zero = Suc(add n Zero)
Together with the IH, we thus show
add (Suc n)Zero = Suc n.

The proof method induction performs structural induction
on some variable (if the type of the variable is a datatype).
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Simple Induction
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What you should be able to answer now:
What Isabelle/HOL is and why you might want to use it
How to define types in Isabelle/HOL
How to structure simple proofs with Isar
How to do simple induction in Isabelle/HOL

Until next week:
Join the Matrix Channel
Find a partner for your project
(or decide that you want to work alone)
Download and work on the first exercise sheet
Submit your solution to ILIAS

See you next week! :)
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The following are larger examples of how to structure Isar
proofs. Notice that you can

Label cases and assumptions for easier reference
Use previously proved lemmas via the keyword using

Reference an induction hypothesis via casename.IH

lemma id_leq: "leq n n"
by (induction n) simp_all

lemma add_suc_2 : "Suc(add n m) = add n (Suc m)"
by (induction n) simp_all

lemma leq_suc: "leq n m→ leq n (Suc m)"
proof (induction n arbitrary: m)
case Zero
then show ?case by simp

next
case step: (Suc k)
then show ?case
proof (cases m)
case Zero
then show ?thesis by simp

next
case (Suc l)
then show ?thesis using step.IH by simp

qed
qed

17/1 2025-10-29 Henriette Färber: Theorem Prover Lab – 01 KASTEL

Further Examples



lemma leq_sum: "leq m (add m n)"
proof(induction n)
case Zero
then show ?case using add_zero id_leq by auto

next
case step: (Suc k)
then show ?case
proof (cases m)
case Zero
then show ?thesis by simp

next
case m_is_suc: (Suc l)
then have "leq m (Suc (add l k))" using step by auto
then have "leq m (add l (Suc k))" using add_suc by simp
then have "leq m (Suc (add l (Suc k)))" using leq_suc by auto
then have "leq m (add m (Suc k))" using m_is_suc by auto
then show ?thesis by simp

qed
qed
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Further Examples


