Theorem Prover Lab

Episode 1: Introduction




Previously

Nothing.
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Previously

Nothing. But ideally, you are familiar with
m Basics of functional programming
m Logic, e.g., via the courses Formal Systems, Constructive Logic etc.
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Course Organisation

Lectures

m 18 time slots

m 8 lectures
m 9 slots for project work
m 1 slot for presentations

m Wednesday, 14:00 - 15:30 at InformatikKOM SR2
m After lectures, before winter break: project topics

Link to Website
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https://formal.kastel.kit.edu/teaching/theoremproverlab/ws-2526/
https://ilias.studium.kit.edu/ilias.php?baseClass=ilrepositorygui&ref_id=2777751
https://matrix.to/#/

Course Organisation
and Homework, yay!

Lectures Homework
m 18 time slots m Only during lectures
m 8 lectures :
= 9 slots for project work m One exercise sheet per week
m 1 slot for presentations m Optional, no bonus points
m Wednesday, 14:00 - 15:30 at InformatiKOM SR2 m Exercises and submission via ILIAS (This is the only
m After lectures, before winter break: project topics thing that we will use ILIAS for!)
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Course Organisation

Lectures Homework

m 18 time slots m Only during lectures

m 8 lectures :

= 9 slots for project work m One exercise sheet per week

m 1 slot for presentations m Optional, no bonus points
m Wednesday, 14:00 - 15:30 at InformatikOM SR2 m Exercises and submission via ILIAS (This is the only
m After lectures, before winter break: project topics thing that we will use ILIAS for!)

Link to Website Link to ILIAS Course

Questions, discourse and announcements over on the Matrix Channel :)
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Recommended References

Books and Official Documentation Additional Resources

m A Gentle Introduction to Isabelle
m Crash Course in Formale Systeme Il - Anwendung
m Functional Data Structures and Algorithms
Book is evolving over time!
m Archive of Formal Proofs (collection of proof libraries
and examples)

m https://isabelle.in.tum.de/
m Concrete Semantics book
m |sabelle/HOL: A Proof Assistant for Higher-Order Logic

For your final project, we expect you to be able to use what we covered in our lectures.
These references go beyond that, but may deepen your understanding of the material.
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https://isabelle.in.tum.de/
https://www.concrete-semantics.org/
https://link.springer.com/book/10.1007/3-540-45949-9
https://github.com/gteege/gentle-isabelle/tree/main
https://ilias.studium.kit.edu/ilias.php?baseClass=ilrepositorygui&ref_id=2090850
https://fdsa-book.net/
https://www.isa-afp.org/

What is Isabelle?

The official website states:

Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language
and provides tools for proving those formulas in a logical calculus.

What does that mean?
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What is Isabelle?

The official website states:

Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language
and provides tools for proving those formulas in a logical calculus.

m Generic infrastructure for building deductive systems
m Support for formal mathematical proofs

m Interactive work with formulas and proofs

m Automatic correctness checking

Why is this useful?
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What is Isabelle?

The official website states:

Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language
and provides tools for proving those formulas in a logical calculus.

m Human reasoning is error-prone; machine-checked

m Generic infrastructure for building deductive systems reasoning provides a “safety net”

m Support for formal mathematical proofs m Discovery of subtle mistakes (famous example: Four
m Interactive work with formulas and proofs Color Theorem, formalized in Coq)

m Automatic correctness checking m Automation tools can help find proofs / proof steps!

m Export to nicely typeset text, code generation
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What is Isabelle?

Do people actually use this in practice?

6/1 2025-10-29 Henriette Farber: Theorem Prover Lab — 01 KASTEL &‘(IT



What is Isabelle?

Do people actually use this in practice? Yes, they do!

Operating system

C compiler (CompCert) microkernel (seL4)
iy . S SAT solver (IsaSAT
Competitive with gcc -01, Used in safety-critical applications = =54 Fiv oo CNI(-' Encod)ing Race
Won 2021 ACM Software System Won 2022 ACM Software System 2021

Award Awa rd -

)

Xavier Leroy (& Co) Gerwin Klein (& Co) Mathias Fleury (& Co)
INRIA Paris University of New South Wales Unlver.5|ty of Freiburg
using Rocq using Isabelle using Isabelle
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What is Isabelle/HOL?

|sabelle:
m Generic infrastructure for building deductive systems

m Small fixed kernel, the “meta-logic”, containing
fundamental inference rules

m Meta-logic is extended by so called object logics

|sabelle/HOL.:
m HOL: most versatile object logic for Isabelle
m Isabelle/HOL: most widespread instance of Isabelle
m What exactly is HOL? Wait for lecture 4! ;)

For now, think:

HOL = Functional Programming + Logic
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Babies First Proof

chapter < Commutativity \label{ch:com} »

lemma or_comm: "AVvV B— BV A"
proof
"A vV B"
then "BV A"
proof
A
then "BV A" by simp
next

then "BV A" by simp
ged
ged
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This is a simple proof written in the Isar proof language

m Structured proofs, not linear
m Readable, (hopefully) intuitive

m Need to state what is to proven at any given point
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Babies First Proof

AVB—BVA

AV B

BV A

BV A

BV A

8N
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Three different languages for writing theory content:

1. Inner syntax: mathematics
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Babies First Proof

chapter < Commutativity \label{ch:com} »
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Three different languages for writing theory content:

1. Inner syntax: mathematics

2. Textural content, extended from IATEX source code

KASTEL

AT



10

11

12

13

14

Babies First Proof

lemma or_comm:
proof

then !
proof

then
next

then
ged
ged

" by simp

" by simp

8N 2025-10-29
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Three different languages for writing theory content:

1. Inner syntax: mathematics

2. Textural content, extended from IATEX source code
3. Outer syntax: organization of fragments in inner

syntax and textual content
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Babies First Proof

chapter < Commutativity \label{ch:com} »

lemma or_comm: "AVvV B— BV A"
proof
"A vV B"
then "BV A"
proof
A
then "BV A" by simp
next

then "BV A" by simp
ged
ged
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Three different languages for writing theory content:
1. Inner syntax: mathematics
2. Textural content, extended from IATEX source code

3. Outer syntax: organization of fragments in inner
syntax and textual content

Content in different syntax must be clearly separated:
m Inner syntax within double quotes “...”
m Textual content within cartouche delimiters «. . .>

Quotation marks around a single identifier can be dropped!
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Babies First Proof

chapter < Commutativity \label{ch:com} »

lemma or_comm: "AVvV B— BV A"
proof
"A vV B"
then "BV A"
proof
A
then "BV A" by simp
next

then "BV A" by simp
ged
ged
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What does simp mean?
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Babies First Proof

(*x Generally: x)

proof
form_0
have form_1 by method_1

have form_n by method_n
thesis by ...
ged
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What does simp mean? It’s a proof method.

All proofs, whether generated interactively or automatically,
are ultimately reduced to a sequence of steps that the
kernel can check for validity.

A proof method an automated procedure that attempts to
prove a goal using proven lemmas / theorems / rules.
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Babies First Proof

(*x Generally: x)

proof
form_0
have form_1 by method_1

have form_n by method_n
thesis by ...
ged
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What does simp mean? It’s a proof method.

All proofs, whether generated interactively or automatically,
are ultimately reduced to a sequence of steps that the
kernel can check for validity.

A proof method an automated procedure that attempts to
prove a goal using proven lemmas / theorems / rules.
Prominent examples:
m simp simplifies assumptions and conclusion using all
available simplification rules
m auto solves as many subgoals as it can, mainly by
simplification
'="is used only from left to right!
m - is the empty proof method, which does nothing
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Types

Isabelle is strongly typed: every term must have a type

m Base types: bool, nat (N), int (Z)

m Type variables denoted by preceding prime (e.g. 'a)
m Types (usually) specified via datatype command

m Type constructors: list, set, x, ...
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value "True" (* :: "bool" *)
value "3::nat" (* :: "nat" x)
term II3II (* :: ] ] lall *)

datatype color = Red | Green | Blue | Yellow

n7

datatype 'a list = Nil | Cons ’'a "’'a list"
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Types

Isabelle is strongly typed: every term must have atype .| (x datatype bool = True | False x)

m Base types: bool, nat (N), int (Z) ;|datatype 'a list = Nil | Cons 'a "'a list"
m Type variables denoted by preceding prime (e.g. ’'a) .

m Types (usually) specified via datatype command s|fun conj :: "bool=- bool=- bool" where
m Type constructors: list, set, x, ... ¢| "conj True True = True" |
= Function types denoted by = 7| "conj _ _ = False
Type constructors. .. o fun flip :: "bool list= bool list" where
m Written as postfix o) “flip Nil = Nil" |

11| "flip (Cons True x) = Cons False x" |

m Take precedence over = 2||"flip (Cons False x) = Cons True X"
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Terms and Formulas

A term is either

m A constant i |term "“True" (* :: "bool" x)

m Obtained via function application 2

m Obtained via function abstraction s| term “conj True False® (* :: "bool" *)
However, there is also lot of syntactic sugar that we will 5| AX. X (* i "'a="a" x)
see later on. There are also some infix symbols like
A, + and <.
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Terms and Formulas

A term is either
m A constant
m Obtained via function application
m Obtained via function abstraction

However, there is also lot of syntactic sugar that we will
see later on. There are also some infix symbols like
A, +and <.

Formulas are terms of type bool:
m Constants True, False
m Logical connectives -, A, V, —

m Equality available via function = (Also works on
formulas!)
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term "True" (x :: "bool" %)

term "conj True False" (x :: "bool" *)
MX. X (x :: "'a="'a" x)
term "1 = 1" (x :: "bool" x*)

term "(1 = (2::nat)) = (1 = (3::nat))" (*

term "(=)" (x :: "'a= 'a= bool" )

:: "bool" x)
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The Anatomy of the Editor

& Flle Edit Search Markers Folding View Utiies Macros Plugine Help

DEe®d@F & 9¢ P00 @& DR B & @

o Bxamples ' Babies. First_Theorem.ihy (~/teaching/theorem-prover-labl) E sabelle - @
src/HOL/Examples/Sec 5 3
- mmo%mmmym‘T thgory BablegiFlrstiTheorem Filter: % -
8 src/HOUExamples/Ack imports Main Babies_First_Theorem.thy 2
8 src/HOL/Examples/ML. s theory Babies_First_Theorem o
g sre/Tools/SML/Exampli begl" I lemma or_comm: "A VB — BvA" 3
3 src/Pure/ROOT.ML =
S $ML_SOURCES/ROOT. . .. . . L .
g Release Notes (* Commutative property of disjunction in propositional logic *) §
; ANNOUNCE &
S| README I
B NEWS lemma or comm: "A vV B — B v A" g
| COPYRIGHT - 5
CONTRIBUTORS proof -
Contrib/README assume "A v B" )
sre/Tools/jEdit/READM n o
Isabelle Tutorials then ShOW B v AE. g
prog-prove: Program p roof ]
locales: Tutorial on L¢ 2
classes: Tutorial on T assume A
datatypes: Tutorial o then ShOW " B v A"
functions: Tutorial or
corec: Tutorial on Not next
codegen: Tutorial on
nitpick: User's Guide assume B
sledgehammer: Use then show "B v A"
eisbach: The Eisbach d
sugar: LaTeX Sugar fc qe
Isabelle Reference Manu qed
main: What's in Main
isar-ref: The Isabelle;
implementation: The
system: The Isabelle e"d
jedit: Isabelle/jEdit
Demo Documents
Old Isabelle Manuals
Original jEdit Documenta
n: "AVB-— BVA"

[/] Proof state /] Auto hovering [/] Autoupdate | Update | Search: v  100% v
Search result : proof (prOVe)
T using this:
AV B

goal (1 subgoal):
1. BV A

0|+ Output Query | Sledgehammer| Symbols
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The Anatomy of the Editor

File Browser Documentation 4 | B

& Flle Edit Search Markers Folding View Utiies Macros Plugine Help 2025/HOL - Bat

D&ed@p &

Examples

e X P8 R@ DEDoEE @& & @

' Babies. First_Theorem.ihy (~/teaching/theorem-prover-labl)
| P ) N

sre/HOL/Exampl
src/HOL/Examples/Dril
src/HOL/Examples/Ack
src/HOL/Examples/ML.
sre/Tools/SML/Exampl
sre/Pure/ROOT.ML
$ML_SOURCES/ROOT.I
Release Notes
ANNOUNCE
README
NEWS
COPYRIGHT
CONTRIBUTORS
contrib/README
src/Tools/Edit/READM!
Isabelle Tutorials
prog-prove: Program
locales: Tutorial on Lt
classes: Tutorial on T
datatypes: Tutorial o
functions: Tutorial or
corec: Tutorial on Not
codegen: Tutorial on
nitpick: User's Guide
sledgehammer: Use
eisbach: The Eisbach
sugar: LaTeX Sugar fc
Isabelle Reference Manu
main: What's in Main
isar-ref: The Isabelle;
implementation: The
system: The Isabelle
jedit: Isabelle/jEdit
Demo Documents
Old Isabelle Manuals
Original jEdit Documenta

T

User Input

Theory: definitions, proofs, comments, ...

I B isabelle -

Filter: i\(

Sidekick:
Structured view
of theory text
(interactive)

State:
Proof state

Theories:
Current and

Output

Result of theory text processing (up to cursor position)

Often Helpful: proof state!

ancestor theories

0|+ Output Query | Sledgehammer| Symbols

sauoayL |23e3s PINEPIS sHNsay yoreasiadAy | 4 (D
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Break Time!

If you haven'’t done so already, use the time to install Isabelle from https://isabelle.in.tum.de/installation.html
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https://isabelle.in.tum.de/installation.html

Basic Theory Structure

Isabelle/HOL takes input in form of theory files: ; ;:S(;ZSTE ... T, (x parent theories x)
m Naming convention: MyThy. thy s ||begin
m Theory = content of a theory file 4
m Theory MyThy must live in MyThy. thy! s| (x defintions, theories, proofs, ... *)
m Each theory must import at least one theory file! ° end
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Basic Theory Structure

|sabelle/HOL takes input in form of theory files:

m Naming convention: MyThy.thy
m Theory = content of a theory file
m Theory MyThy must live in MyThy . thy!

m Each theory must import at least one theory file!

The Theory Main

theory T
imports T;... T, (x parent theories *)
begin

(*x defintions, theories, proofs, ... *)

end

m Union of all basic predefined theories (arithmetic, lists, sets, ...)

m Generally: always include directly or indirectly!
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Peano Numerals

theory Peano

imports Main (* Remember! x)
begin

datatype nat = Zero | Suc nat

fun leq :: "nat=- nat= bool" where
(*x Your turn! x)

end
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Let’s build our own (Peano) numbers!
1. How can we define the < operator?

2. How can we show that Zero is less or equal to all nat

numbers?
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Peano Numerals

theory Peano
imports Main
begin

datatype nat = Zero | Suc nat

fun leq :: "nat=- nat= bool" where
“leq Zero _ = True" |

"leq (Suc m) Zero = False" |

"leq (Suc m) (Suc n) = leq m n"

end
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Let’s build our own (Peano) numbers!
1. How can we define the < operator?

2. How can we show that Zero is less or equal to all nat

numbers?
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Peano Numerals

theory Peano
imports Main
begin

(*x ... %)

lemma zero_leg_all: "leq Zero n"
proof (cases n)

case Zero

then ?thesis by simp
next

case (Suc m)

then ?thesis by simp
ged

end
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Let’s build our own (Peano) numbers!
1. How can we define the < operator?

2. How can we show that Zero is less or equal to all nat
numbers?
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Peano Numerals

theory Peano
imports Main
begin

datatype nat = Zero | Suc nat

fun leq :: "nat=- nat= bool" where
“leq Zero _ = True" |

"leq (Suc m) Zero = False" |

"leq (Suc m) (Suc n) = leq m n"

(x Easier: x)
lemma zero_leg_all: "leq Zero n" by simp

end
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Let’s build our own (Peano) numbers!
1. How can we define the < operator?

2. How can we show that Zero is less or equal to all nat
numbers?

3. How do we define addition for our nats?

KASTEL &‘(IT



10

11

Peano Numerals

theory Peano
imports Main
begin

datatype nat = Zero | Suc nat
fun add :: "nat= nat=- nat" where
"add Zero n = n" |

"add (Suc m) n = Suc(add m n)"

end
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Let’s build our own (Peano) numbers!
1. How can we define the < operator?

2. How can we show that Zero is less or equal to all nat
numbers?

3. How do we define addition for our nats?
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Simple Induction

datatype nat = Zero | Suc nat

fun add :: "nat=- nat=- nat" where
"add Zero n = n" |
"add (Suc m) n = Suc(add m n)"

lemma add_zero: "add m Zero = m"
proof

(x ... %)
ged
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How would you prove this on paper?
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Simple Induction

datatype nat = Zero | Suc nat

fun add :: "nat=- nat=- nat" where
"add Zero n = n" |
"add (Suc m) n = Suc(add m n)"

lemma add_zero: "add m Zero = m"
proof

(x ... %)
ged
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How would you prove this on paper? Induction!

Intuitively:
IB: add Zero Zero = Zero by definition of add
IH: For some arbitrary but fixed n, assume

add n Zero = n

|S: Show add (Suc n)Zero = Suc n
By definition of add:
add (Suc n)Zero = Suc(add n Zero)
Together with the IH, we thus show
add (Suc n)Zero = Suc n.
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Simple Induction

datatype nat = Zero | Suc nat

fun add :: "nat=- nat=- nat" where
"add Zero n = n" |
"add (Suc m) n = Suc(add m n)"

lemma add_zero: "add m Zero = m"
proof (induction m)

case Zero

then ?case by simp
next

case (Suc m)

then ?case by simp
ged
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How would you prove this on paper? Induction!

Intuitively:
IB: add Zero Zero = Zero by definition of add
IH: For some arbitrary but fixed n, assume
add n Zero = n
|S: Show add (Suc n)Zero = Suc n
By definition of add:
add (Suc n)Zero = Suc(add n Zero)
Together with the IH, we thus show
add (Suc n)Zero = Suc n.

The proof method induction performs structural induction
on some variable (if the type of the variable is a datatype).
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Conclusion

What you should be able to answer now:
m What Isabelle/HOL is and why you might want to use it
m How to define types in Isabelle/HOL
m How to structure simple proofs with Isar
m How to do simple induction in Isabelle/HOL
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https://ilias.studium.kit.edu/ilias.php?baseClass=ilrepositorygui&ref_id=2777751

Conclusion

Until next week:

What you should be able to answer now: m Join the Matrix Channel
m What Isabelle/HOL is and why you might want to use it m Find a partner for your project
m How to define types in Isabelle/HOL (or decide that you want to work alone)
m How to structure simple proofs with Isar m Download and work on the first exercise sheet
m How to do simple induction in Isabelle/HOL m Submit your solution to ILIAS

See you next week! :)
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Further Examples

The following are larger examples of how to structure Isar
proofs. Notice that you can

m Label cases and assumptions for easier reference
m Use previously proved lemmas via the keyword using
m Reference an induction hypothesis via casename. IH

lemma id_leq: "leq n n"
by (induction n) simp_all

lemma add_suc_2 : "Suc(add n m) = add n (Suc m)"
by (induction n) simp_all
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lemma leq suc: "leq n m— leq n (Suc m)"

proof (induction n arbitrary: m)
case Zero

then ?case by simp
next
case step: (Suc k)
then ?case
proof (cases m)
case Zero
then ?thesis by simp
next
case (Suc 1)
then ?thesis using step.IH by simp
ged
ged
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Further Examples

lemma leg_sum: "leq m (add m n)"
proof(induction n)
case Zero
then ?case using add_zero id_leq by auto
next
case step: (Suc k)
then ?case
proof (cases m)
case Zero
then ?thesis by simp
next
case m_is_suc: (Suc 1)
then have "leg m (Suc (add 1 k))" using step by auto
then have "leg m (add 1 (Suc k))" using add_suc by simp
then have "leg m (Suc (add 1 (Suc k)))" using leg_suc by auto
then have "leg m (add m (Suc k))" using m_is_suc by auto
then ?thesis by simp
ged
ged
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