Theorem Prover Lab

Episode 2: Recursion & InductionTerru Stübinger | 2025-11-05

Today

- 1. Homework
- 2. More on induction
- 3. About simp and auto

We're following Sections 3 & 4 of Tobias Nipkow's *Concrete Semantics* lecture (http://concrete-semantics.org/)

Recap: Structural Induction

Last time, we had simple induction over datatypes:

```
datatype nat = Zero | Suc nat

lemma add_zero: "add m Zero = m"

proof (induction m)

case Zero

then show ?case by simp

next

case (Suc m)

then show ?case by simp

qed
```

- datatype has multiple cases
- proof follows structure of the type
- (and all values are finite)

$$\frac{P(0) \quad \bigwedge \mathbf{n}. \ P(\mathbf{n}) \longrightarrow P(\operatorname{Suc} \mathbf{n})}{P(\mathbf{n})}$$

Exercise1.thy

2025-11-05

Recap: Recursive Functions

We've also seen how to define functions:

```
fun add :: "nat \Rightarrow nat" where

"add Zero n = n" |

"add (Suc m) n = Suc (add m n)"
```


Recap: Recursive Functions

We've also seen how to define functions:

```
fun add :: "nat \Rightarrow nat" where

"add Zero n = n" |

"add (Suc m) n = Suc (add m n)"
```

May have many equations:

```
fun ack :: "nat ⇒ nat ⇒ nat" where
    "ack 0 n = Suc n"
    | "ack (Suc m) 0 = ack m (Suc 0)"
    | "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
```

Must prove termination! (if the automatic proof by size argument fails, you can use function instead and give it manually)

Motto: Theorems about recursive functions are proved by induction

Reversing lists

How to reverse a list?

```
fun rev :: "'a list ⇒ 'a list" where
"rev [] = []" |
"rev (x # xs) = rev xs @ [x]"
```


2025-11-05

Reversing lists

How to reverse a list?

```
fun rev :: "'a list >> 'a list" where
"rev [] = []" |
"rev (x # xs) = rev xs @ [x]"
```

We can also do a tail-recursive version:

```
fun itrev :: "'a list \(\Rightarrow\) 'a list" where
"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"
```

Now prove that itrev xs [] = rev xs!

Induction_Demo.thy

2025-11-05

Stuck? → Generalise!

```
| lemma "itrev xs [] = rev xs"
proof (induction xs)
   case Nil
   then show ?case by simp
5 next
   case (Cons a xs)
   have "itrev (a#xs) [] = rev (a#xs)"
     by (* ? *)
   then show ?case by simp
10 qed
```


Stuck? Generalise!

```
lemma rev_append: "itrev xs ys = rev xs @ ys"
proof (induction xs arbitrary: ys)
   case Nil
   then show ?case by simp
5 next
  case (Cons a xs)
  thus "itrev (a#xs) ys = rev (a#xs) @ ys"
     by simp
ged
lemma "itrev xs [] = rev xs"
  using rev append[of xs "[]"] by simp
```


Induction Rules (Non-Structural Induction)

So far, all proofs used structural induction,

Induction Rules (Non-Structural Induction)

So far, all proofs used *structural induction*, because all functions were *primitive-recursive*

Induction Rules (Non-Structural Induction)

So far, all proofs used structural induction,

because all functions were *primitive-recursive*

```
fun sep :: "'a 'a list 'a list" where
"sep a [] = []" |
"sep a [x] = [x]" |
"sep a (x#y#zs) = x # a # sep a (y#zs)"
```

Gives sep.induct:

$$P \ a \ [] \qquad \bigwedge a \ x. \ P \ a \ [x] \qquad \bigwedge a \ x \ y \ zs. \ P \ a \ (y\#zs) \longrightarrow P \ a \ (x\#y\#zs)$$

$$P \ a \ xs$$

Induction rules follow the computation

For $f :: \tau \Rightarrow \tau$, we get an *induction schema* to prove P(x) for all $x :: \tau$ For each defining equation

$$f(e) = \dots f(x_1) \dots f(x_2) \dots$$

prove P(e) assuming $P(x_1), P(x_2), \dots$

Generally: properties of f are best proved using f.induct!

(note: fun proves termination, otherwise would be ill-founded)

Using an induction rule

Heuristic: For an occurrence f a b c ... of f applied to parameters in a goal, we want to use

```
apply(induction a b c ... rule: f.induct)
```

Ideally, a, b, c ... are variables

Induct_Demo.thy

Part II: Simplication

simp applies rewriting rules from **left to right, as long as possible** Rules are equations l = r marked with [simp]: as "simp rules" Depending on rules, the simplifier might not terminate!

You can turn on tracing: using [[simp_trace]] apply simp

Conditional Rewriting

Rules may also have preconditions:

$$P_1 \implies P_2 \implies \cdots \implies I = r$$

Example:

$$f 0 = True$$

$$f x \implies g x = True$$

Lets us derive g 0.

(Non-)Termination

What happens if we have a simp rule f x = f x?

Rules are applied eagerly, so might get stuck even if there's an easy solution!

Heuristic for good rules: left side should be "bigger" than right side & all preconditions

Good: $n < m \implies Suc \ n \le m = True$

Not: $Suc \ n \leq m \implies n < m = True$

In practice, rarely an issue ...

Specifying simp rules

```
On goal P_1 \Rightarrow P_2 \Rightarrow \ldots \Rightarrow C apply (simp add: eq1 eq2 ...)
```

will simplify C and all P_i using:

- Given facts eq1 eq2 ...
- \blacksquare The assumptions P_i
- Definitions of fun and datatype;
- \blacksquare definitions must be given explicitly as f_{def} (or marked as [simp])
- Any lemma marked with [simp]
- (also: can ignore simp rules using del:)

simp & auto

Convention: simp is supposed to terminate, auto doesn't have to

- auto is often more powerful
- auto operates on all subgoals
- auto can split cases
- auto can sometimes prove (basic) things about quantifiers (but not a lot)
- auto takes the same arguments, but prefixed with simp (so simp add: instead of add: ...)

Simp_Demo.thy

Conclusion

You should be able to answer now:

- How to use structural induction
- How to use induction rules
- When to use which one
- How does the simplifier work

Until next week:

- Download and work on the second exercise sheet
- Submit your solution to ILIAS

See you next week! :)

