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Episode 2: Recursion & Induction
Terru Stübinger | 2025-11-05



1. Homework
2. More on induction
3. About simp and auto

We’re following Sections 3 & 4 of Tobias Nipkow’s Concrete Semantics lecture
(http://concrete-semantics.org/)
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Today

http://concrete-semantics.org/


Last time, we had simple induction over datatypes:
1 datatype nat = Zero | Suc nat
2

3 lemma add_zero: "add m Zero = m"
4 proof (induction m)
5 case Zero
6 then show ?case by simp
7 next
8 case (Suc m)
9 then show ?case by simp

10 qed

datatype has multiple cases
proof follows structure of the type
(and all values are finite)

P(0)
∧

n. P(n) −→ P(Suc n)
P(n)
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Recap: Structural Induction



Exercise1.thy
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We’ve also seen how to define functions:
1 fun add :: "nat⇒ nat⇒ nat" where
2 "add Zero n = n" |
3 "add (Suc m) n = Suc (add m n)"

May have many equations:
1 fun ack :: "nat⇒ nat⇒ nat" where
2 "ack 0 n = Suc n"
3 | "ack (Suc m) 0 = ack m (Suc 0)"
4 | "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"

Must prove termination! (if the automatic proof by size argument fails, you
can use function instead and give it manually)
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Recap: Recursive Functions
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Recap: Recursive Functions



Motto: Theorems about recursive functions are proved by induction
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How to reverse a list?
1 fun rev :: "’a list ⇒ ’a list" where
2 "rev [] = []" |
3 "rev (x # xs) = rev xs @ [x]"

We can also do a tail-recursive version:
1 fun itrev :: "’a list ⇒ ’a list ⇒ ’a list" where
2 "itrev [] ys = ys" |
3 "itrev (x#xs) ys = itrev xs (x#ys)"

Now prove that itrev xs [] = rev xs!
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Reversing lists
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Reversing lists



Induction_Demo.thy
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1 lemma "itrev xs [] = rev xs"
2 proof (induction xs)
3 case Nil
4 then show ?case by simp
5 next
6 case (Cons a xs)
7 have "itrev (a#xs) [] = rev (a#xs)"
8 by (* ? *)
9 then show ?case by simp

10 qed
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Stuck? →Generalise!



1 lemma rev_append: "itrev xs ys = rev xs @ ys"
2 proof (induction xs arbitrary: ys)
3 case Nil
4 then show ?case by simp
5 next
6 case (Cons a xs)
7 thus "itrev (a#xs) ys = rev (a#xs) @ ys"
8 by simp
9 qed

10

11 lemma "itrev xs [] = rev xs"
12 using rev_append[of xs "[]"] by simp
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Stuck? →Generalise!



So far, all proofs used structural induction,

because all functions were primitive-recursive
1 fun sep :: "’a ’a list ’a list" where
2 "sep a [] = []" |
3 "sep a [x] = [x]" |
4 "sep a (x#y#zs) = x # a # sep a (y#zs)"

Gives sep.induct:

P a []
∧

a x . P a [x ]
∧

a x y zs . P a (y#zs) −→ P a (x#y#zs)
P a xs
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Induction Rules (Non-Structural Induction)
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Induction Rules (Non-Structural Induction)



For f :: τ ⇒ τ’ we get an induction schema to prove P(x) for all x :: τ

For each defining equation

f (e) = . . . f (x1) . . . f (x2) . . .

prove P(e) assuming P(x1),P(x2), . . .

Generally: properties of f are best proved using f.induct!
(note: fun proves termination, otherwise would be ill-founded)
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Induction rules follow the computation



Heuristic: For an occurrence f a b c ... of f applied to parameters in a goal,
we want to use

1 apply(induction a b c ... rule: f.induct)

Ideally, a, b, c ... are variables
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Using an induction rule



Induct_Demo.thy
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simp applies rewriting rules from left to right, as long as possible
Rules are equations l = r marked with [simp]: as “simp rules”
Depending on rules, the simplifier might not terminate!

You can turn on tracing: using [[simp_trace]] apply simp
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Part II: Simplication



Rules may also have preconditions:
P1 =⇒ P2 =⇒ · · · =⇒ l = r

Example:
f 0 = True

f x =⇒ g x = True
Lets us derive g 0.
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Conditional Rewriting



What happens if we have a simp rule f x = f x?
Rules are applied eagerly, so might get stuck even if there’s an easy solution!

Heuristic for good rules: left side should be “bigger” than right side & all
preconditions

Good: n < m =⇒ Suc n ≤ m = True
Not: Suc n ≤ m =⇒ n < m = True

In practice, rarely an issue ...
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(Non-)Termination



On goal P1 =⇒ P2 =⇒ ... =⇒ C
1 apply (simp add: eq1 eq2 ...)

will simplify C and all Pi using:
Given facts eq1 eq2 ...

The assumptions Pi

Definitions of fun and datatype;
definitions must be given explicitly as f_def (or marked as [simp])
Any lemma marked with [simp]

(also: can ignore simp rules using del:)
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Specifying simp rules



Convention: simp is supposed to terminate, auto doesn’t have to
auto is often more powerful
auto operates on all subgoals
auto can split cases
auto can sometimes prove (basic) things about quantifiers (but not a lot)
auto takes the same arguments, but prefixed with simp (so simp add:

instead of add: ...)
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simp& auto



Simp_Demo.thy
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You should be able to answer now:
How to use structural induction
How to use induction rules
When to use which one
How does the simplifier work

Until next week:
Download and work on the second
exercise sheet
Submit your solution to ILIAS

See you next week! :)

20/20 2025-11-05 Terru Stübinger: Theorem Prover Lab – 04 KASTEL

Conclusion

https://ilias.studium.kit.edu/ilias.php?baseClass=ilrepositorygui&ref_id=2777751

