Theorem Prover Lab

Episode 2: Recursion & Induction
Terru Stibinger | 2025-11-05




Today

1. Homework |
2. More on induction
3. About simp and auto

We're following Sections 3 & 4 of Tobias Nipkow's Concrete Semantics lecture

(http://concrete-semantics.org/)
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http://concrete-semantics.org/

Recap: Structural Induction

Last time, we had simple induction over datatypes:

datatype nat = Zero | Suc nat

lemma add zero: "add m Zero = m"
proof (induction m)

case Zero

then ’case by simp
next

case (Suc m)

then ’case by simp
ged
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m datatype has multiple cases

m proof follows structure of the type

m (and all values are finite)

PO) An. P(n) — P(Suc n)

P(n)
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Exercisel.thy
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Recap: Recursive Functions

We've also seen how to define functions:

|fun add :: "nat = nat = nat" where

./"add Zero n = n" |
./"add (Suc m) n = Suc (add m n)"
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Recap: Recursive Functions

We've also seen how to define functions:

fun add :: "nat = nat = nat" where

"add Zero n = n" |
"add (Suc m) n = Suc (add m n)"

May have many equations:

fun ack :: "nat = nat = nat" where

"ack O n = Suc n"
| "ack (Suc m) O = ack m (Suc 0)"

| "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"

Must prove termination! (if the automatic proof by size argument fails, you

can use function instead and give it manually)
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Motto: Theorems about recursive functions are proved by induction
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Reversing lists

How to reverse a list?

Jfun rev :: "’a list = ’a list" where
J"rev [] = [1" |

J"rev (x # xs) = rev xs 0@ [x]"
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Reversing lists

How to reverse a list?
fun rev :: "’a list = ’a list" where

"rev [1 = [I" |

"rev (x # xs8) = rev xs @ [x]"

We can also do a tail-recursive version:

fun itrev :: "’a list = ’a list = ’a 1list" where
"itrev [] ys = ys" |

"itrev (x#xs) ys = itrev xs (x#ys)"

Now prove that itrev xs [] = rev xs!
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Induction Demo.thy
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Stuck? - Generalise!

lemma "itrev xs [] = rev xs"
proof (induction xs)

case
then
next
case
have
by
then
ged

Nil
‘’case by simp

(Cons a xs8)
"itrev (a#txs) [] = rev (a#xs)"
(* 2 %)

‘’case by simp
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10

11
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Stuck? - Generalise!

lemma rev_append: "itrev xs ys = rev xs Q@ ys"
proof (induction xs arbitrary: ys)

case Nil

then ’case by simp
next

case (Cons a xs)

"itrev (a#xs) ys = rev (a#xs) @ ys"
by simp

ged

lemma "itrev xs [] = rev xs"
using rev_append[of xs "[]"] by simp
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Induction Rules (Non-Structural Induction)

So far, all proofs used structural induction,
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Induction Rules (Non-Structural Induction)

So far, all proofs used structural induction,

because all functions were primitive-recursive
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Induction Rules (Non-Structural Induction)

So far, all proofs used structural induction,

because all functions were primitive-recursive
Jfun sep :: "’a ’a list ’a list" where

J"sep a [1 = [1" |
"sep a [x] = [x]" |
|"sep a (x#y#zs) = x # a # sep a (y#zs)"

Gives sep.induct:

P all Nax. P a|x| Naxyzs. Pa(y#zs) — P a (x#y#zs)
P a xs
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Induction rules follow the computation

For £ :: 7 = 7’ we get an induction schema to prove P(x) for all x :: 7

For each defining equation
fle)=...f(x))...f(x)...

prove P(e) assuming P(x;), P(x), ...

Generally: properties of f are best proved using f.induct!

(note: fun proves termination, otherwise would be ill-founded)
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Using an induction rule

Heuristic: For an occurrence £ a b ¢ ... of £ applied to parameters in a goal,
we want to use

apply(induction a b ¢ ... rule: f.induct)

Ideally, a, b, c ... are variables
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Induct Demo.thy
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Part Il: Simplication

simp applies rewriting rules from left to right, as long as possible
Rules are equations / = r marked with [simp]: as “simp rules”

Depending on rules, the simplifier might not terminate!

You can turn on tracing: using [[simp_trace]] apply simp
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Conditional Rewriting

Rules may also have preconditions:
Ph = P, = .. = [=r

Example:

f 0= True
f x = g x= True

Lets us derive g 0.
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(Non-) Termination

What happens if we have a simp rule f x = £ x?

Rules are applied eagerly, so might get stuck even if there's an easy solution!

Heuristic for good rules: left side should be “bigger” than right side & all
preconditions

Good: n<m = Suc n<m= True
Not: Suc n<m = n< m= True

In practice, rarely an issue ...
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Specifying simp rules

Ongoal Py = P = ... = C

apply (simp add: eql eq2 ..

)

will simplify C and all P; using:

m Given facts eq? eq2 ...

m [ he assumptions P,

m Definitions of fun and datatype;

m definitions must be given explicitly as f_def (or marked as [simp])

m Any lemma marked with [simp]

m (also: can ignore simp rules using del:)
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simp & auto

Convention: simp is supposed to terminate, auto doesn't have to
m auto is often more powerful

m auto operates on all subgoals

m auto can split cases

m auto can sometimes prove (basic) things about quantifiers (but not a lot)

m auto takes the same arguments, but prefixed with simp (so simp add:

instead of add: ...)
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Simp Demo.thy
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Conclusion

You should be able to answer now: Until next week:

m How to use structural induction m Download and work on the second
m How to use induction rules exercise sheet

m When to use which one m Submit your solution to ILIAS

m How does the simplifier work

See you next week! :)
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https://ilias.studium.kit.edu/ilias.php?baseClass=ilrepositorygui&ref_id=2777751

