
3TAPThe Many-Valued Theorem-ProverReiner H�ahnleBernhard BeckertStefan Gerberding
3rd EditionSeptember 1994University of KarlsruheInstitute for Logic, Complexity andDeduction Systems

AbstractThis is the 3TAP handbook. 3TAP is a many-valued tableau-based theorem prover developed atthe University of Karlsruhe.The handbook serves a triple purpose: �rst, it documents the history and development of theprover 3TAP ; second, it provides a user's manual, and third it is intended as a reference manualfor future developers, including porting hints.This version of the handbook describes 3TAP Version 3.0 as of September 30, 1994.Authors' AddressBernhard Beckert, Reiner H�ahnle:Institute for Logic, Complexity and Deduction SystemsDepartment of Computer ScienceUniversity of KarlsruheKaiserstra�e 1276128 KarlsruheGermanyEmail: beckert@ira.uka.de, reiner@ira.uka.deWWW: http://i12www.ira.uka.de/Stefan Gerberding:Institute for Programme- and Inference SystemsDepartment of Computer ScienceTechnical University of DarmstadtAlexanderstra�e 1064283 DarmstadtGermanyEmail: stefan@inferenzsysteme.informatik.th-darmstadt.deWWW: http://kirmes.inferenzsysteme.informatik.th-darmstadt.de/~stefan

ContentsPreface 11 Introduction 41.1 History and Development of 3TAP : 41.1.1 The TCG Project : 41.1.2 The DFG Schwerpunktprogramm \Deduction Systems" : : : : : : : : : : 51.1.3 Chronology of 3TAP 's Development : 51.2 3TAP 's Main Features : 71.3 Theoretical Advances : 71.4 Documentation : 91.5 Getting 3TAP and the Documentation : 111.5.1 Copyright : 111.5.2 How to Get 3TAP via the Word Wide Web : : : : : : : : : : : : : : : : : : 111.5.3 How to Get 3TAP via FTP : 121.5.4 Please Contact Us : 122 Theoretical Background 132.1 Analytic Tableaux : 132.2 Dissolution : 182.3 Many-Valued Logic : 192.4 Lemma Generation : 212.5 Universal Formulae : 232.6 Equality Handling : 242.6.1 Introduction : 242.6.2 Syntax and Semantics of Equality : 242.6.3 Equality Handling by Mixed E-Uni�cation : : : : : : : : : : : : : : : : : 252.6.4 Universal, Rigid and Mixed E-Uni�cation : : : : : : : : : : : : : : : : : : 252.6.5 Extracting E-Uni�cation Problems from Tableaux : : : : : : : : : : : : : 272.6.6 Solving Mixed E-Uni�cation Problems : 282.7 Many-Valued Tableaux Using Sets-As-Signs : 38i

ii3 Syntax of Knowledge Bases 423.1 Parts of a Knowledge Base : 423.2 Sorts and Sort Declarations : 423.3 Signature De�nition : 443.4 Axioms and Theorems : 453.4.1 Names : 453.4.2 Connectives : 453.4.3 Equality : 473.5 Comments : 474 An Overview of the System Architecture 485 System Description by Modules 525.1 Proveall, Information, Boot, Interface : 525.1.1 The User Interface : 525.1.2 Proveall : 525.1.3 Information : 545.1.4 Boot : 545.1.5 Interface : 555.2 Main : 585.3 Closure, Heuristics : 605.3.1 Heuristics : 605.3.2 Closure : 635.4 Choice, Inference : 645.4.1 Choice : 655.4.2 Inference : 665.5 Data Structures : 665.5.1 Representation of Terms : 675.5.2 Representation of Formulae : 685.5.3 Representation of Signed Formulae : 705.5.4 Representation of Extensions : 715.5.5 Representation of Conclusions : 715.5.6 Representation of Branches : 715.5.7 Data Structures for Equality Handling : 735.5.8 Data Structures for Achieving Fairness : 775.6 Sysdep : 785.7 Global Variable Management : 785.8 Uni�cation : 79

iii5.8.1 Unsorted Uni�cation : 795.8.2 Sorted Uni�cation : 795.8.3 Special Treatment of Universal Formulae : : : : : : : : : : : : : : : : : : 805.9 Declarations : 805.9.1 Declaration of the Signature Used in a Logic : : : : : : : : : : : : : : : : 805.9.2 Declaration of Complementary Signs : 815.9.3 No Rule de�ned : 825.9.4
-Formulae : 825.9.5 Output-Utility Support : 825.9.6 Internal Declarations : 825.9.7 Initialization : 835.10 Rules : 835.10.1 The Rules Predicate : 835.10.2 Supporting Lemma Generation : 855.11 Dissolution : 855.11.1 The Dissolution Rule : 865.11.2 Passes : 865.11.3 Computation of Links : 875.11.4 Fairness Handling : 875.11.5 Facilitation of Understanding : 885.11.6 Dissolution Heuristics : 885.11.7 Optimizations : 885.12 Index, Makekbx, Preproc : 895.12.1 Generating a Compiled Knowledge Base : : : : : : : : : : : : : : : : : : : 895.12.2 Reading Compiled Knowledge Bases : 905.12.3 Computing the Link Information : 905.12.4 Syntax of Compiled Knowledge Bases : 935.12.5 Pre-processing Formulae : 935.13 Complete, Equality : 935.13.1 Overall Structure of Equality Handling : 935.13.2 Extracting Equalities and Uni�cation Problems : : : : : : : : : : : : : : : 945.13.3 Complete's Main Loop : 955.13.4 Precedence of Possible Rule Applications : : : : : : : : : : : : : : : : : : 955.13.5 Term Weight : 965.13.6 Parameters Limiting Completion and Normalization : : : : : : : : : : : : 965.13.7 The Lexicographic Path Ordering Used : : : : : : : : : : : : : : : : : : : 975.13.8 Computing Additional Solutions : 97

iv 5.13.9 Handling Substitutions : 985.13.10Checking Consistency of Constraints : 985.13.11Applying Demodulators to a Term : 1015.14 Output, Msg tap : 1015.14.1 The Predicates X write and X nl : 1015.14.2 Auxiliary Output Predicates : 1025.14.3 Error Messages : 1025.14.4 Predicates for Displaying Data Structures : : : : : : : : : : : : : : : : : : 1035.14.5 Output of Complete : 1035.15 The Compiler : 1065.15.1 Calling the Compiler : 1065.15.2 Implementation Language : 1065.15.3 Scanner.l : 1075.15.4 Grammar.y : 1075.15.5 Output.c, Output.h : 1076 Utility Programs 1086.1 Visualizing Proofs : 1086.1.1 Navigate Through Tableaux Using moreTab : : : : : : : : : : : : : : : : : 1086.1.2 Typesetting Tableaux Using tabTEX : 1086.2 3TAP 's Commands to Generate Tableau Output : : : : : : : : : : : : : : : : : : : 1096.3 The Overall Structure of the Output : 1096.4 moreTab : 1106.4.1 Options : 1106.4.2 Commands : 1116.5 tabTEX : 1136.5.1 Options : 1136.5.2 The Style File : 1146.6 Syntax of moreTab's or tabTEX's Input : 1157 Getting Started 1177.1 Preliminary Remarks : 1177.2 Directory Structure : 1177.3 A Sample Session : 117

v8 Evaluation 1228.1 Problem Sets for Testing 3TAP : 1228.1.1 The Statistical Information : 1228.1.2 Simple Test Problems : 1238.1.3 D'Agostino's Problems : 1238.1.4 Murray & Rosenthal's Problems : 1248.1.5 Cook & Reckhow's Problems : 1248.1.6 Kalish & Montague's Problems : 1258.1.7 Problems Constructed according to Morgan : : : : : : : : : : : : : : : : : 1258.1.8 The \Pigeonhole" Problems : 1268.1.9 Problems from Group Theory : 1278.1.10 Pelletier's Problems : 1278.1.11 Other Two-Valued Problems : 1288.1.12 Problems from Three-Valued Logic : 1308.2 Shortcomings and Strengths : 1318.3 Settings of Switches and Parameters : 1328.3.1 Settings of Switches that Might Help if No Proof is Found : : : : : : : : : 1328.3.2 Settings of Switches that Might Shorten the Proof Found : : : : : : : : : 1339 Using Di�erent Logics 1349.1 3TAP 's Logics : 1349.2 Changes to the Declarations Module : 1349.3 Changes to the Rules Module : 1359.4 Changes to the Compiler : 1359.4.1 De�ning New Operators : 1359.4.2 External and Internal Representation : 1369.4.3 Priority : 1369.4.4 Arity : 137A Commands Reference Manual 139B Switches and Parameters 150C Installation 163C.1 3TAP 's Main Parts : 163C.2 3TAP 's Various Files : 163C.3 Installing 3TAP Using the Make�le : 165C.4 Installing the Prover : 166C.5 Installing the Compiler : 167C.6 Installing the Utilities for Visualizing Proofs : 167C.7 Using the Equality Handling Method Stand-alone : : : : : : : : : : : : : : : : : : 168

viReferences 169Index 174

PrefaceThis is the 3TAP handbook. 3TAP (Three-valued Tableau-based Automated Theorem Prover) isa many-valued tableau-based theorem prover developed at the University of Karlsruhe. Despiteits name, 3TAP is capable of handling arbitrary �nitely-valued �rst-order logics (and, of course,classical two-valued logic as well).The handbook serves a triple purpose: �rst, it documents the history and development of theprover 3TAP ; second, it provides a user's manual, and third it is intended as a reference manualfor future developers, including porting hints.The decision to include all this in a single document was based on the observation that all threeparts have a considerable amount of intersection and we can minimize the costs for preparationand printing this way. We hope to deviate the main disadvantage of this form of presentation,the danger of becoming unhandy, with a clear structure of the chapters, generously placed crossreferences and a subject index.In Chapter 1 we give a detailed description of 3TAP 's history and that of the projects as part ofwhich 3TAP was developed and is still being maintained, and we summarize the ensuing problemsand how they were solved. In Chapter 2 we provide the theoretical background which is neededfor a deepened understanding of the way the prover works. In particular we discuss the calculuswhich is used in the prover. In Chapter 3 the formal syntax of the input to the prover is givenand discussed. Chapter 4 provides a general overview of 3TAP 's architecture. Its modularizationand the interplay between the modules are discussed. The modules are described in detail inChapter 5. Together with the documentation in the source code itself these descriptions aim togive a future implementor enough information for successfully making changes to 3TAP . Severalutility programs which are not part of the source code of 3TAP itself and which are thereforenot required for running it are described in Chapter 6. These concern exclusively the inspectionof formal tableau proofs generated by 3TAP . Chapter 7 presents a tutorial for using 3TAP inform of a sample session in the course of which all relevant features are used and discussed.Chapter 8 is dedicated to the evaluation of 3TAP . Part of the 3TAP -package is a batch of testproblems for classical and many-valued logic on the propositional as well as on the �rst-orderlevel. We explain how to use these test problems, give statistical �gures for the latest versionand discuss evidence of these tests. 3TAP is capable of dealing with arbitrary logics with �nitelymany truth values. Chapter 9 lists the changes that have to be made in order to adapt 3TAPto a new logic. Appendixes A and B serve as references for available commands and switches,respectively. Finally, Appendix C shows how to install 3TAP on a computer and what has to bechanged, when it is to be ported to a di�erent con�guration than the supported ones.1The aforementioned triple purpose of this report implies that not all parts are equally relevant forall potential readers. Therefore, we make a suggestion which readers should read what chapters:The reader who quickly wants to get a general impression of the prover 3TAP shouldread Chapters 1, 4, 6.1, 8.1.1, and 8.1.2. If he or she is interested in the theoretical aspects,Chapter 2 is adequate additional reading, while readers who want to get a feeling of how 3TAPbehaves in reality should also consult Chapter 7.1 These are currently: Quintus Prolog 3.0/3.1 and SICStus Prolog 2.1 on SUN Sparc under SunOS 4.1.x.1

2The reader who wants to use 3TAP should read Chapters 1, 3, 6.1, 6.2, 6.4, 6.5, 7, 8.1, 8.2and Appendices A, B. If he or she wants to use the many-valued version, Chapters 2 and 9should be at least skimmed.The reader who wishes to change or port 3TAP should read anything recommended forthe user plus Chapter 4 and the sections of Chapters 5, 6, 9 and Appendix C that match hispurposes. Since many of the modules are closely interacting, however, a complete reading of thewhole report is recommended.The reader who wants to install 3TAP may read|in addition to Appendix C|Sections 3.2,3.4 and 5.15, and for testing Chapter 7 or Chapter 8.The reader who is particularly interested in the handling of equality should readSections 2.6, 5.5.7, 5.13, and 5.14.5.To our best knowledge 3TAP is the �rst and only automated theorem prover capable of dealingwith arbitrary many-valued logics. Moreover, the statistical �gures in Chapter 8 suggest that itstwo-valued version (and therefore also the many-valued version, for reasons that become clear inChapter 2) does perform not too bad if compared to conventional theorem provers.This version of the handbook describes 3TAP Version 3.0 as of September 30, 1994.What's New in Version 3.0?The major changes that have been made (as compared to Version 2.1) are:� 3TAP now uses a completion-based method for equality handling (instead of the old method,that was based on computing equivalence classes).2� 3TAP has been ported to SICStus Prolog. It now runs under SICStus Prolog 2.1 (andQuintus Prolog 3.0/3.1).� The compiler, that translates knowledge bases into 3TAP 's internal representation, has beenre-implemented.Besides that, there have been a lot of small improvements.Sections Taken from Other PublicationsWith the authors' permission, substantial parts of Chapter 2 have been taken from (H�ahnle,1992c), Section 2.5 has been taken from (Beckert & H�ahnle, 1992; Beckert & Posegga, 1994b),and Section 2.6 from (Beckert, 1994b) and (Beckert, 1994a).AcknowledgmentsAs Included in the First EditionBefore diving into the facts it is my duty and my pleasure to thank all people who have beeninvolved in or helped with TCG Karlsruhe in some way or another:Stefan Bayerl, Toni Bollinger, Sven D�orr, Thomas Kropf, Sven Lorenz, Sabine L�uckehe, MarkusMock, Martin M�uller, Prof. Daniele Mundici, Prof. Neil Murray, Udo Pletat, Joachim Posegga,2 The new method for equality handling can be used stand-alone; see Section C.7.

3Klaus Ries, Prof. Wolfgang Sch�onfeld, Gisela Sch�opke, Gernot Stenz, Andreas V�olter, WolfgangWernecke. Extra thanks go to Martin Kreidler for writing the section on dissolution.Special thanks go to Bernhard Beckert, Stefan Gerberding and Werner Kernig who constantlyworked as \Hiwis" for TCG with great expertise and devotion and who are also co-authors ofthis report. Without their help the project simply could not have been done.A extra-special thank you goes to Prof. Peter Schmitt, the initiator of TCG Karlsruhe. In theearly stages of the project he gave the necessary guidelines, in the later stages the necessaryfreedom and invaluable comments at any time. It is mainly his achievement that many-valuedtheorem proving has lost the obscurity it had for most people three years ago.Reiner H�ahnleKarlsruhe, May 1992As Included in the Second EditionWe would like to thank the following people for testing 3TAP , pointing out errors, suggestingimprovements or helping in other ways to develop the new version: Stefan Gerberding, OrtrunIbens, Bertram Lud�ascher, Martin M�uller, Prof. Peter Schmitt.Reiner H�ahnle, Bernhard BeckertKarlsruhe, February 1993For the Third EditionAgain, a lot of people helped improving 3TAP . We would like to thank the following people fortesting 3TAP , pointing out errors, or suggesting improvements: Ulrich B�ock, Uwe Egly, StefanGerberding, Peter Oel, Christian Pape, Prof. Uwe Petermann, Joachim Posegga, and Prof. PeterSchmitt.Special thanks go to Ortrun Ibens, who works as \Hiwi" for the project. She implemented thenew compiler, ported 3TAP to SICStus Prolog, and helped improving 3TAP in various other ways.Bernhard Beckert, Reiner H�ahnleKarlsruhe, September 1994

1 Introduction1.1 History and Development of 3TAP1.1.1 The TCG ProjectIn June 1989 IBM Germany launched ILFA1, a joint project together with the Universities ofDuisburg and Karlsruhe with the aim of developing an integrated environment that providestools for knowledge-based inference systems. In July 1990 the subprojects of IKBS at IBMGermany in Heidelberg and University of Karlsruhe were separated from the mainstream andlabelled TCG2.The task of the Karlsruhe part of TCG was to develop a many-valued theorem proving system,suitable at least for a certain three-valued logic that occurred in connection with natural languageprocessing (Fenstad et al., 1985; Schmitt, 1989). The area of natural language processing wasthe initial motivation for building a many-valued theorem prover, but it has been later given upin favour of hardware veri�cation. Since no serious implementations of a many-valued theoremprover have ever been reported, the �rst goal of the project was to lay the theoretical foundationsfor a way to do that e�ciently. The project tasks (in updated form from July 1990) were thus:1. Speci�cation of the theoretical foundations of a three-valued inference engine.2. Speci�cation of the theorem prover.3. Implementation of a prototype.4. Integration of the prototype with TC3 and LEU45. Evaluation of the prototype (a) on module level and (b) within LEU.6. Speci�cation of the theoretical foundations of an inference engine for a temporal logic.The basic tasks 1, 2, 3, 4, 5(a) have been fully accomplished. Tasks 5(b) and 6 proved to be notfully accomplishable under the given organizational and time constraints. The input languagespeci�cation, the �rst version of the compiler5, the index generator and most of the integrationwork with TC and LEU was done by TCG Heidelberg. The other parts were done in Karlsruhe.Another measure of the project's success is the scienti�c progress that was made during itslifetime. Five scienti�c papers, three technical reports, �ve Studienarbeiten, two Diplomarbeitenand one dissertation have been produced in connection with it (see Section 1.4). The theoretical1 Integrated Logical Functions for Advanced Applications.2 Tableau Calculus mit Gleichheit.3 A system that has been developed at IKBS in Heidelberg4 Logik Entwicklungsumgebung.5 Later, in 1994, the compiler was re-implemented in Karlsruhe.4

1.1. HISTORY AND DEVELOPMENT OF 3TAP 5advances made during the course of the project reach far beyond many-valued logics and will befurther developed at the University of Karlsruhe and other places after the end of TCG.It is our opinion that both the �elds of many-valued logic and of tableau-based theorem provinghave received interesting stimuli by TCG.The people who were chie
y concerned with design and implementation in Heidelberg are Wolf-gang Sch�onfeld and Wolfgang Wernecke for TC and in Karlsruhe Reiner H�ahnle for 3TAP . PeterSchmitt supervised TCG Karlsruhe.1.1.2 The DFG Schwerpunktprogramm \Deduction Systems"Since June 1992, after the end of the TCG project, 3TAP has been maintained and is still beingimproved as part of a new project at the University of Karlsruhe, that is funded by the DeutscheForschungsgemeinschaft (DFG) as part of the Schwerpunktprogramm \Deduction Systems". Ob-jective of this project is to re�ne proof methods based on semantic tableaux, i.e., to add newfeatures and to increase their e�ciency. In this context 3TAP is used as a platform for experimentsand for testing new methods.The people mainly involved with the project are Reiner H�ahnle (executive until July 1993), Bern-hard Beckert (executive since July 1993), Joachim Posegga, and Prof. Peter Schmitt (supervisor).1.1.3 Chronology of 3TAP 's DevelopmentIn the following table we give a chronological history of 3TAP 's development.June 1989 TCG Karlsruhe was launched, then under the name of ILFA.October 1989 Since this date several possible scenarios for an application oriented eva-luation were considered.November 1989 Overall design of 3TAP completed.December 1989 The theoretical basis of 3TAP emerged. The concept of sets-as-signs wasdeveloped and later published (H�ahnle, 1990a; H�ahnle, 1990b; H�ahnle,1991). It became clear that the restriction to three truth values is unne-cessary and it was dropped henceforth.February 1990 Start of implementation of uncritical modules.May 1990 Theoretical foundations completed.June 1990 Speci�cation completed.July 1991 Separation from ILFA. As a consequence, the prover TC developed inHeidelberg and 3TAP had to be merged.September 1990 Theoretical foundations and speci�cation published as (H�ahnle, 1990a).October 1990 International presentation of the theoretical concepts of 3TAP at CSL'90;published in (H�ahnle, 1990b).January 1991 First prototype ready for classical �rst-order logic.

6 CHAPTER 1. INTRODUCTIONFebruary 1991 Speci�cation of common core with TC and interface to LEU. It wasdecided to take the input syntax from TC which is a subset of the LEUsyntax as a common basis. Compiler and preprocessing modules aretaken from TC while the prover and internal data structures come from3TAP which is also the name of the common system. Since TC wascapable of handling order-sorted logic 3TAP was extended accordingly.March 1991 Many-Valued prototype ready. This prototype is evaluated in a scenariofrom decision support. The results are documented in (Sch�opke, 1991).April 1991 Integration of TC and 3TAP completed.May 1991 International presentation of further theoretical results; published in(H�ahnle, 1991).July 1991 It was decided that the main evaluation of 3TAP should be done in thearea of hardware veri�cation and as a stand alone system, i.e. not as apart of LEU.6July 1991 Hardware scenario is prepared.July 1991 Two-Valued equality handling implemented. It is documented in (Bec-kert, 1992). The approach marks a substantial advance in tableau-basedequality proving and will be internationally presented in (Beckert &H�ahnle, 1992).December 1991 Successful evaluation of 3TAP with a three-valued �rst-order logic in thedomain of interval arithmetic; documented in (Gerberding, 1991).March 1992 3TAP is integrated in LEU.March 1992 Signi�cant new developments of the tableau framework reaching beyondthe current 3TAP implementationare presented on an international works-hop (H�ahnle, 1992a). These imply the possibility of building an e�cientprover for temporal logics.April 1992 As a possible means of enhancing the performance of 3TAP , the disso-lution rule is added to the two-valued version and tests are performed;documented in (Kreidler, 1992).May 1992 Successful evaluation of 3TAP with a seven-valued propositional logic inthe domain of hardware veri�cation; documented in (Kernig, 1992).May 1992 Compilation of this report and handing over the �nal version of 3TAP toIBM. End of the TCG project.June 1992 The DFG project begins.February 1993 The 2nd edition of the 3TAP handbook is completed.June 1993 The new completion-based equality handling replaces the old method,that was based on computing equivalence classes.December 1993 3TAP is ported to SICStus Prolog.April 1994 The compiler module that translates knowledge bases into 3TAP 's internalrepresentation is re-implemented.August 1994 Completion of 3TAP Version 3.0 and of this version of the handbook.6 There are two reasons for this decision: �rst, the interest in linguistic applications had ceased at IKBS; sinceLEU is part of a natural language processing system, it would have made no longer sense to evaluate 3TAPwithin LEU. Second, the machines provided by IBM for the Karlsruhe TCG project were too small to runLEU.

1.2. 3TAP 'S MAIN FEATURES 71.2 3TAP 's Main FeaturesThe implementation language of 3TAP is Prolog (there are versions for Quintus Prolog and forSICStus Prolog) with a small amount of portable C. Parts of 3TAP 's compiler module and ofthe utilities for visualizing proofs are written using the Unix tools Lex and Yacc (resp. Flex andBison).It is easy to install 3TAP on a Unix machine with Quintus Prolog Version 3.0 (or later) or SICStusVersion 2.1 (or later) and a C compiler available. To achieve acceptable performance, at least8MB main memory and 20MB swap space should be con�gured.The design of 3TAP is as modular as possible. Thus, it should be easy to port it to otherarchitectures than the one described above and to add new features.3TAP Version 3.0 as of September 30, 1994 includes the following features:� Full two-valued �rst-order logic with equality and sorted terms.� Many-valued �rst-order logic with quasi-classical quanti�ers. The prover is adaptable toany �nitely-valued logic involving arbitrary connectives within a few hours, provided thetruth tables of the connectives are given. The process is described in detail in Chapter 9.Sorted terms and two-valued equality are still available with many-valued logics.� Various strategies that may shorten proofs such as lemma generation are implemented andmay optionally be switched on in all versions.� In the two-valued version a restricted version of the dissolution inference rule of Murray& Rosenthal (Murray & Rosenthal, 1987) is implemented and may optionally be switchedon.3TAP is able to prove benchmark problems for (two-valued) theorem provers in reasonable time,see Chapter 8. Response times for problems which are not too di�cult are typically under 500ms.The user interface of 3TAP is the Prolog shell enriched with certain predicates for proving theo-rems, loading databases etc. This has the advantage that the user can quickly write his ownpredicates on top of these to accomplish specialized tasks. Moreover, it is very easy to integrate3TAP into any existing system via its interface predicates.7The syntax of databases is based on that of �rst-order predicate logic in a very natural notation.No normal form is required. In particular, equalities may occur in arbitrary places within aformula, see Chapter 3 for examples and details.1.3 Theoretical AdvancesStarting point for TCG Karlsruhe has been the requirement to use analytic tableaux as a generalframework and a theoretical paper by Carnielli (Carnielli, 1987) describing a way to axiomatizeevery �nitely-valued logic with analytic tableaux. This approach proved to be intractable inpractice even for very small examples.The solution was a consequent generalization of the sign language in analytic tableaux. It has theadvantage that a kind of semantic structure sharing can automatically be achieved as depictedin Figure 1.1. For the technical details we refer to Chapter 2. The result was �rst published in7 Currently, an X-Windows based interface is under development. It will be part of 3TAP 's next release.

8 CHAPTER 1. INTRODUCTION������� PPPPP�����

 BBBBBJJJJJ ����� BBBBB

 @@@@@����� BBBBB����� BBBBB ������� HHHH����� BBBBB����� BBBBB LLLLL�����
@@@@@I @@@@@I @@@@@Ii � j �partially isomorphicsubtrees

fi; jg �Figure 1.1: Schema of semantic structure sharing using sets-as-signs.(H�ahnle, 1990b). The signi�cance of the technique is backed up by the fact that in the meantimeit has (independently) been rediscovered for special cases by other researchers (Doherty, 1991).We will call the approach of (H�ahnle, 1990b) which is crucial for 3TAP 's e�ciency the sets-as-signs approach to many-valued reasoning, since it operates by using subsets of the set of truthvalues as signs in tableaux.Starting from the sets-as-signs approach we were able to identify many-valued logics that haveparticularly simple tableau proof systems if Smullyan's uniform notation (Smullyan, 1968) isadapted. Moreover, we were able to give very simple quanti�er rules for the many-valued gene-ralizations of 8 and 9 (H�ahnle, 1991) under mild restrictions.As a byproduct of the project a new liberal version of the classical �-rule for �rst-order tableauxwhich was �rst mentioned in (Schmitt, 1987) could be proven to be sound (H�ahnle & Schmitt,1993). Later, an even more liberalized version was developed (Beckert et al., 1993).The investigations made for implementation of equality (Beckert, 1992) have also proved to befruitful and were internationally acknowledged (Beckert & H�ahnle, 1992; Beckert, 1994b). 3TAPis the �rst working tableau-based prover that is able to solve problems with equality beyond thescope of textbook examples.A further generalization of the sets-as-signs approach (H�ahnle, 1992a) resulted in a new trans-lation from (many-valued) deduction problems into the domain of mixed integer programming.Immediate consequences are simple NP-containment proofs for various many-valued logics thathave been di�cult before and, for the �rst time, the possibility to e�ciently perform theorem

1.4. DOCUMENTATION 9proving in in�nitely-valued logics. Other consequences of this new technique whose presentationis well beyond the scope of this report cannot fully be foreseen yet. They will be investigated inthe future.Finally, the evaluation scenario within hardware veri�cation (Kernig, 1992; Beckert et al., 1994)for the �rst time accomplished formal veri�cation of switch-level speci�cations with deductivemethods. These have up to now been handled by mere simulation tools.A multitude of statistical �gures will be given in Chapter 8. Here, we provide some �gures to backup our claim that an e�ciency jump in many-valued theorem proving could be achieved usingthe sets-as-signs technique. In Table 1.1 we give numbers of closed branches (these resembleapproximately the size of the proof) and run times for a couple of problems using the na��veapproach and the sets-as-signs approach. The second column indicates whether the problem issatis�able. problem sat na��ve sets-as-signsTime[s] Branches Time[s] Branchesthhornor1 Y 8.00 1334 0.27 36thvernor1 Y 5.13 806 0.15 17thvernor3 N 25.47 4487 2.93 518Lem. 5.1 Y 1.18 206 0.17 7Fig. 5.17 Y 1 1 1.37 36Table 1.1: Comparing na��ve and sets-as-signs approaches.The �rst three problems are taken from (Kernig, 1992) and are about hardware veri�cation. Theyare formulated in a propositional seven-valued logic. The other problems from (Gerberding, 1991)are about interval arithmetic and formulated in a three-valued �rst-order logic. The gain of thesets-as-signs approach is in both cases considerable. The last problem could only be solved withsets-as-signs.3TAP can be seen|to a certain extent|as the parent of the leanTAP prover (Beckert & Posegga,1994c; Beckert & Posegga, 1994b). leanTAP is an instance of lean deduction. It is written inProlog and implements a complete and sound theorem prover for classical �rst-order logic basedon free-variable semantic tableaux. The unique thing about leanTAP is that it is probably thesmallest theorem prover around. The idea of lean deduction is to achieve maximal e�ciencyfrom minimal means. Every possible e�ort is made to eliminate overhead; based on experiencein implementing (complex) deduction systems|namely 3TAP|, only the most important ande�cient techniques and methods are implemented.1.4 DocumentationWe summarize the papers and reports written in connection with 3TAP , or as part of the TCGproject or the DFG Schwerpunkt, and give their type and purpose.

10 CHAPTER 1. INTRODUCTIONReference Type Purpose/Remarks(H�ahnle, 1990a) IWBS Report Overall design and coarse speci�cation of3TAP . Sketch of sets-as-signs concept. Par-tially outdated now. In German.(H�ahnle, 1990b) In proceedings Sets-as-signs concept in full detail.(Mock, 1990) Studienarbeit Investigation into and implementation ofmany-valued function minimization algo-rithms, cf. (H�ahnle, 1992c). In German.(Kernig, 1990) Studienarbeit Proving theorems about bilattices withOTTER. In German.(Gerberding, 1990) Studienarbeit Exploring the C interface of Quintus Pro-log. In German.(H�ahnle, 1991) In proceedings Uniform notation for many-valued logicsand many-valued �rst-order logic.(Wernecke, 1991) Internal paper TCG input language speci�cation of inte-grated system.(Beckert, 1991) Studienarbeit Building equality into 3TAP . In German.(Gerberding, 1991) Diploma thesis Axiomatizing interval arithmetic with mul-tiple-valued logic and evaluating 3TAP withit. In German.(Beckert & H�ahnle, 1992) In proceedings Building equality into a tableau-based pro-ver.(Sch�opke, 1991) IWBS Report Study of potential application areas for amany-valued theorem prover.(Beckert, 1992) IWBS Report Building equality into 3TAP . In German.(Kernig, 1992) Diploma thesis Using many-valued logic for hardware ve-ri�cation and evaluating 3TAP with it. InGerman.(Kreidler, 1992) Studienarbeit Building dissolution into 3TAP . In German.(H�ahnle, 1992a) In proceedings Short version of (H�ahnle, 1992b).(H�ahnle, 1992b) In proceedings Translation from semantic tableaux to in-teger programming.(H�ahnle, 1992c) PhD thesis Theory of multiple-valued tableau-basedtheorem proving.(H�ahnle & Schmitt, 1993) Article Liberalized �-rule in classical tableaux. Toappear.(H�ahnle & Kernig, 1993) In proceedings Using many-valued logic for hardware ve-ri�cation.(Beckert et al., 1993) In proceedings The even more liberalized �-rule in free va-riable tableaux.(H�ahnle, 1993a) Book Monograph on automated proof search inmultiple-valued logics. Includes an exten-sive bibliography.(H�ahnle, 1993c) In proceedings Short normal forms for arbitrary �nitely-valued logics.

1.5. GETTING 3TAP AND THE DOCUMENTATION 11Reference Type Purpose/Remarks(Beckert, 1993a) In proceedings Completion-based handling of equality insemantic tableaux.(H�ahnle, 1993b) In proceedings E�cient deduction in many-valued logics.(Beckert, 1993b) Diploma thesis Completion-based handling of equality insemantic tableaux. In German.(H�ahnle, 1994a) In proceedings E�cient deduction in many-valued logics.(Beckert & Posegga, 1994c) In proceedings Description of the leanTAP prover. Shortversion of (Beckert & Posegga, 1994b).(Beckert, 1994b) In proceedings A completion-based method for solving mi-xed E-uni�cation problems.(H�ahnle, 1994b) Article Short conjunctive normal forms in �nitely-valued logics. To appear.(Beckert, 1994a) In proceedings Overview: Adding equality to semantictableaux.(Beckert & Posegga, 1994a) In proceedings Position paper on lean deduction.(Beckert, 1994c) In proceedings Using E-uni�cation to handle equality inuniversal formula semantic tableaux.(Beckert et al., 1994) In proceedings Description of the concept of \anti-links".(Beckert & Posegga, 1994b) Article Description of the leanTAP prover. Toappear.Remark 1.1 (Wernecke, 1991) and (Sch�opke, 1991) were contributed by TCG Heidelberg. Thelatter paper was written during a guest scholarship of Dr. Sch�opke at IBM Heidelberg.1.5 Getting 3TAP and the Documentation1.5.1 Copyright3TAP Version 3.0 is copyrighted c
 1994 by the University of Karlsruhe, Institute for Logic,Complexity and Deduction Systems.Permission to use, copy, and distribute this software and its documentation is hereby granted,subject to the following conditions:1. Permission to modify 3TAP is granted, but not the right to distribute the modi�ed code.2. If 3TAP is distributed|in whole or part|, the above copyright notice must appear in allcopies, and both that copyright notice and this permission notice must appear in supportingdocumentation.3. Distributors must not demand a fee for distributing 3TAP .4. 3TAP must not be used for commercial purposes without the written consent of the authors.3TAP is provided \as is" without express or implied warranty.1.5.2 How to Get 3TAP via the Word Wide WebThe easiest (and most fashionable) way to get 3TAP 's source code and most of the documentslisted in Section 1.4 is opening the page

12 CHAPTER 1. INTRODUCTIONhttp://i12www.ira.uka.de/~threetapon the World Wide Web (WWW). With this document you can retrieve the program and thedocumentation online.Once you have got hold of the �le threetap.tar.gz, which is a compressed TAR �le, andcontains both the source code and the 3TAP Handbook, use the shell commandgunzip threetap.tar.gzto uncompress threetap.tar.gz. Then unpack the TAR �le threetap.tar using the commandtar -xf threetap.tarA directory threetap containing the 3TAP source code and the Handbook will be generated.For those who have no access to the WWW, we describe the access by anonymous FTP inthe following section. If you should not have FTP access, either, contact the authors (seeSection 1.5.4).1.5.3 How to Get 3TAP via Anonymous FTP3TAP 's source code and the documentation is also available via anonymous FTP on Internet fromsonja.ira.uka.de [129.13.31.3]Open this host with an FTP program, log in as \anonymous" and type your e-mail address aspassword. Change (cd) to the directory pub/threetap and switch to binary �le transfer mode.This is usually done by typing \binary" in your FTP program.Then get the �le threetap.tar.gz, and proceed to uncompress and unpack this �le as describedin the previous section.1.5.4 Please Contact UsIf you are interested in getting the 3TAP source code or some of the documents, and you do nothave access to the WWW or FTP, if you have any questions or suggestions concerning 3TAP , or ifyou wish to be on an e-mail list to receive updates, bug �xes, information on new releases, etc.,then please contact us (preferably by e-mail). We appreciate feedback! The contact address is:Institute for Logic, Complexity and Deduction SystemsDepartment of Computer ScienceUniversity of KarlsruheKaiserstra�e 1276128 KarlsruheGermanyEmail: beckert@ira.uka.de, reiner@ira.uka.deWWW: http://i12www.ira.uka.de/

2 Theoretical Background2.1 Analytic TableauxSemantic (or analytic) tableaux have been introduced by E. W. Beth (Beth, 1986) and K. J. J.Hintikka (Hintikka, 1955) in the 1950s, its ancestors being Gentzen systems. R. Smullyan (Smul-lyan, 1968) gave a particular elegant version of tableaux which increased their popularity largelyand most tableaux systems used today are based on the formulation he gave. Tableaux systemscome in two versions, namely signed and unsigned, from which we will always be using theformer.In the classical case our set of signs (sometimes also called pre�xes) will be fF;Tg where F ofcourse corresponds to the truth value 0 and T to 1.De�nition 2.1 (Signed Formula) A signed formula is a string of the form S �, where � is a(propositional or �rst-order) formula and S is either F or T. If L is the set of formulae in alogic, the set of signed formulae will be denoted with L�.Following Smullyan we may divide the set of signed formulae into four classes: � for propositionalformulae of conjunctive type, � for propositional formulae of disjunctive type,
 for quanti�edformulae of universal type and �nally � for quanti�ed formulae of existential type. Smullyancalled this uniform notation. It simpli�es presentation and proofs considerably.� �
 ��1 �1 �2
1(t) �1(c)�2 where t is an arbi-trary term. where c is a Skolemconstant that is notoccurring on the cur-rent branch.Table 2.1: Tableaux rule schemas for di�erent formula types.This classi�cation is motivated by the tableau expansion rules which are associated with eachsigned formula. The rules characterize the assertion of a truth value (corresponding to its sign)to a formula by means of asserting truth values to its direct subformulae. For example, T (� ^)holds if and only if T � and T hold. In Table 2.1 the rule schemes for the various combinationsof signs and formula types are given schematically. Premises and conclusions are separated by ahorizontal bar, while vertical bars in the conclusion denote di�erent extensions which are to bethought as disjunctions. In Table 2.2 the correspondence between formulae and formula types isshown. 13

14 CHAPTER 2. THEORETICAL BACKGROUND� �1 �2T (� ^) T � T F (� _) F � F T :� F � F �F :� T � T � � �1 �2T (� _) T � T F (� ^) F � F

1(t)T (8x)�(x) T �(t)F (9x)�(x) F �(t) � �1(c)F (8x)�(x) T �(c)T (9x)�(x) F �(c)Table 2.2: Correspondence between rule types and formulae.For our purposes it is su�cient to visualize a tableau proof as a �nite labelled binary tree, whosenode labels are signed formulae, constructed as follows:De�nition 2.2 (Classical Tableaux) Let L� be a language of signed formulae. The set T (L�)of all tableaux over L� is de�ned as the set of trees that can be constructed by �nitely manyapplications of the following rules:(T1) A �nite linear tree whose nodes are signed formulae taken from a set � � L� is a tableauover L�.(T2) If T is a tableau over L� and � is a node label from T then a new tableau T0 is constructedby extending all branches of T that contain � by as many new linear subtrees as the rule1corresponding to � has extensions, the nodes of the new subtrees being labelled with theformulae in the extensions.If T is a tableau and � is the set in step (T1) above, then T will also be called a tableau for �.De�nition 2.3 (Branch) Let T be a tableau. A branch BT of T is a maximal path in T.Usually, when no confusion can arise, we omit the subscript from BT. Sometimes, when wespeak of a branch B, we actually mean the set of node labels (signed formulae) on B, but westill use the symbol B.De�nition 2.4 (Complementary Signs and Formulae) Two signs S1; S2 are complemen-tary i� S1 6= S2. Let S1�; S2 be two formulae on a tableau branch B. They are called comple-mentary formulae i� S1; S2 are complementary signs and � = .De�nition 2.5 (Closed and Open Branch) A tableau branch is closed i� it contains a pairof complementary formulae. Otherwise it is called open.1 It is obtained by looking up the subformulae corresponding to � in Table 2.2 and instantiating the matchingrule schema in Table 2.1.

2.1. ANALYTIC TABLEAUX 15To prove tautologyhood of a formula � we begin with a tree whose single node is labelled byF �, that is we assume that � is false in some model. A tableau proof represents a systematicsearch for such a model. Every tableau branch corresponds to a partial possible model in whichthe formulae on the branch are assigned the truth value corresponding to their sign. Therefore,a complementary pair of formulae, and thus a closed branch, denotes an explicit contradiction,since in every model each formula has a unique truth value.De�nition 2.6 (Closed Tableau, Tableau Provable) A tableau is closed i� all of its bran-ches are closed. An L-formula � is classically tableau provable, in symbols `c �, i� there existsa closed classical tableau for fF �g.De�nition 2.7 (Complete Branch, Complete Tableau) A tableau branch is complete i� itis either closed or no rule application to a formula on the branch produces a formula that wasnot already present. A tableau is complete i� each of its branches is.A tableau proof tree represents a proof of the negated root formula when all branches in thetree can be closed simultaneously, in other words, when every attempt to construct a model thatmakes the root formula false leads to a contradiction.At this point a few remarks are in order:Remark 2.8 (Closure of Branches)� If 0-ary propositional connectives such as t (which evaluates constantly to 1) and f (whichevaluates constantly to 0) are present additional closure conditions for branches becomenecessary. The constant operators t; f are handled by letting branches also be closed whenthey contain one of the formulae T f ,F t.� Thus the following alternate de�nition of branch closure, which will prove useful in thefollowing, is motivated.Alternate De�nition of Branch Closure:Let Contrc = ffT �;F �gj � 2 Lg [ffT fg; fF tgg be the contradiction set for classicaltableaux. Then a tableau branch B is closed i� 2B \ Contrc 6= ;.� From now on we will use this de�nition. In all tableau systems for the various logics thatwe will consider, what will change besides the formula syntax are the tableau expansionrules and the choice of the contradiction set.� Finally, it is su�cient to consider complementary pairs of formulae on the atomic level.Theorem 2.9 (Soundness, Completeness) Let L be a classical �rst-order logic and let � beany L-sentence. Then there is a closed classical tableau for fF �g over L� i� � is a �rst-orderclassical tautology. In symbols �L � i� `c �:Proof: See, for example, (Fitting, 1990).Remark 2.10 (Deletion of used formulae) It is is su�cient for completeness to apply �-,�- and �-rules only once to every formula in each branch. Consequently, formulae of these typesmay be deleted locally to the current branch after rule application. Note, however, that
-formulaemust be used repeatedly sometimes and hence may not be removed.

16 CHAPTER 2. THEORETICAL BACKGROUNDRemark 2.11 (Systematic Tableaux and Fairness) Tableau construction for a set of for-mulae � is a highly non-deterministic procedure. We did not specify, for example, in which orderthe tableau rules should be applied to the formulae on a branch, in which order newly generatedbranches should be processed, or what terms in which order should be \guessed" by the
-rules.Somewhere on the way to an actual implementation, however, these questions have to be ad-dressed, since any real program on a real machine behaves deterministically. Our completenessresult, on the other hand, does not exhibit anything of the order in which the tableau is built up.If one wishes to extend the completeness result toward a concrete implementation the notion ofsystematic tableaux (Smullyan, 1968) usually is introduced. The main issue to be paid attentionto are the
-rule applications. If the
-rule is repeatedly applied to the same formula every termin the language �nally must occur in the conclusion. Moreover, the order of rule applicationsto
-formulae is to be \fair". Basically, this means that a tableau construction is carried out insuch a way that to every
-formula the corresponding rule is applied arbitrarily often. Dependingon the rules that are used, fairness conditions can grow quite complex, in particular when otheroptimizations, like indexing of formulae (see Section 5.12.3) or free variables (see the followingremark) are implemented.Fairness strategies in 3TAP are discussed in Sections 5.3.1.1, 5.4.2, 2.6.6.3, 2.6.6.4 and 5.11.4.Remark 2.12 (Ground vs. Free Variable Tableaux) One of the most important optimiza-tions in tableau-based theorem proving deals with the
-rules. Instead of guessing an arbitraryground term, as it is done in the
-rule we are using here, one does mark the quanti�ed variablein the conclusion as free and it is instantiated only later with a term that is actually neededfor a branch closure. Of course something has to be done then also with the �-rules in order topreserve soundness. For obvious reasons we speak of a free variable tableau system when rulesof this kind are used and of a ground tableau system when the present rules are used.In recent papers by H�ahnle & Schmitt (H�ahnle & Schmitt, 1993) and Beckert, H�ahnle & Schmitt(Beckert et al., 1993) the earlier result of (Fitting, 1990) has been improved.We give the free quanti�er rules for classical logic from (H�ahnle & Schmitt, 1993) in Table 2.3.The results carry over to the many-valued case without any restrictions or modi�cations.
 �
(x) �(f(x1; : : : ; xn))where x is a free variable. where x1; : : : ; xn are the free variables oc-curring in � and f is a new function sym-bol.Table 2.3: Liberalized free tableau rules for quanti�ed formulae.The proviso of the �-rule ensures that the introduced Skolem term preserves satis�ability of thecurrent branch, even when the free variables become instantiated later during the proof.In (Beckert et al., 1993) it has been shown that in two-valued logic the �-rule can be even moreliberalized: if the �-rule is applied to formulae that are identical up to variable renaming, thesame Skolem function symbol can be used multiply.

2.1. ANALYTIC TABLEAUX 17Remark 2.13 (Strong Soundness and Completeness) In classical logics, strong soundnessas well as completeness can easily be proved by observing that for all classical logics L and all�rst-order sentences �1; : : : ; �n; f�1; : : : ; �ng �L � i� �L (�1 ^ : : :^ �n) � �holds. This fact, which is a kind of deduction theorem, does not hold in most many-valued logics,and worse, consequence is not necessarily characterizable by �nite logics at all. We will, therefore,in the following mostly be not concerned with consequences, but only with tautologies. For somemany-valued logics, however, deduction theorems can be formulated.We conclude this section with two small examples which have merely the purpose to introduceour notation for tableau proof trees.Example 2.14 With the tree drawn on the left we prove that`c (9x)(8y)r(x; y) � (8y)(9x)r(x; y) ;while the tree on the right proves `c p � (q � p) :Formulae marked with an asterisk are being removed during the construction.The formulae on the trees are numbered in the order of their appearance, starting with (1). Thesenumbers are enclosed by round brackets. The numbers in square brackets indicate the numberof the parent formula. Beneath each closed branch the numbers of the formulae which led to theclosure are given.� (1) [�] F (9x)(8y)r(x; y) � (8y)(9x)r(x; y)� (2) [1] T (9x)(8y)r(x; y)� (3) [1] F (8y)(9x)r(x; y)(4) [2] T (8y)r(c; y)(5) [3] F (9x)r(x; d)(6) [4] T r(c; d)(7) [5] F r(c; d)closed with (6; 7)
� (1) [�] F p � (q � p)(2) [1] T p� (3) [1] F q � p(4) [3] T q(5) [3] F pclosed with (2; 5)On the left side, in (4) a new Skolem constant c has been introduced via a �-rule application to(2), while (6) was inferred from (4) by a
-rule application, whereby y was instantiated with d.Similarly, (7) was inferred from (5) and (5) in turn from (3). The �rst rule applied to the treewas the �-rule on (1), corresponding to F and implication, thus generating formulae (2) and (3).The example on the right should be obvious enough.For some more sophisticated examples of classical proof trees, see (Smullyan, 1968).

18 CHAPTER 2. THEORETICAL BACKGROUND2.2 DissolutionDissolution is a sound and complete inference rule for classical �rst-order logic that has beenintroduced in 1986 by Murray & Rosenthal (Murray & Rosenthal, 1986; Murray & Rosenthal,1987), see (Murray & Rosenthal, 1990a; Murray & Rosenthal, 1993) for a detailed description. Itoperates on formulae in prenex negation normal form that are built up from n-ary conjunctionsand disjunctions. It has some similarity with Bibel's connection method (Bibel, 1987) in thatthe focus is on maximal conjunctive paths through the formula tree. It can also be seen as are�nement of a proof method by Prawitz (Prawitz, 1970).In order to keep things simple, we constrain our exposition to the propositional case. Considera formula built up from ^;_ and : in NNF, which is represented as a graph, where nodes areformulae and edges are either of conjunctive or disjunctive type.In the left part of Figure 2.1 we have drawn the graph for � = D^(A_B)^(A_C). Conjunctiveconnections are drawn vertically, while disjunctive connections are drawn horizontally.
A _ C^A _ BD̂ ĈA _ B _ ÂBD̂
Figure 2.1: Dissolution for classical propositional logic.Now consider maximal sets of conjunctively connected literals, so-called c-paths2 in �. For thepresent example, these areffD;A;Ag; fD;A;Cg; fD;B;Ag; fD;B;Cgg:A pair of complementary literals lying on the same c-path is called a link. The dissolution ruleoperates always on a link in focus.3 The central idea behind dissolution is to restructure aformula in such a way that exactly the c-paths containing the link in focus are removed. Theright part in Figure 2.1 shows � after dissolving on the link (A;A), which is highlighted on theleft hand side. One observes that the set of c-paths now isffD;A;Cg; fD;B;Ag; fD;B;Cgg;where the one path containing (A;A) has been removed. The completeness of the method nowfollows from the fact that after a �nite number of steps there can be no more c-paths left thatcontain any links. Since in an unsatis�able formula each c-path must contain at least one link,2 We will not de�ne formally the graph-based notions that are used in the following. The intuitive readingshould be clear and we refer the reader to (Murray & Rosenthal, 1990a) for the exact de�nitions.3 In practice, that is. In general, a multiple-link dissolution rule can be de�ned. The multiple-link rule representsalso an alternative approach to many-valued dissolution. It turns out, however, that implementation andcontrol of multiple-link rules is not feasible in practice and hence will not be considered here.

2.3. MANY-VALUED LOGIC 19the empty graph must be produced after a �nite number of dissolution steps if and only if thestarting formula was unsatis�able.In (Murray & Rosenthal, 1990b) it was shown that already in the propositional case the restrictedapplication of dissolution to tableau situations (that is, the input formulae containing the linkmust be on the same branch) can yield substantially shorter tableau proofs.The dissolution rule built into 3TAP does also function for �rst-order formulae. In that case thedissolution step involves uni�cation of the complementary link literals and, as a consequence,possible instantiations of free variables.The version of dissolution for tableaux which is used in 3TAP is described in Section 5.11. Fora deepened discussion of dissolution and tableaux, see (Murray & Rosenthal, 1990b; Kreidler,1992).2.3 Many-Valued LogicThe formal language of many-valued logic is essentially the same as that for classical logic. Theonly di�erence is that now and then some additional unary or binary propositional connectiveswill occur.Very much as in classical logic, we can specify the semantics of a many-valued logic with eithertruth tables or by recursive de�nition of a meaning function vM which assigns for every modelM to each formula a truth value. The only di�erence is that the set of truth values does nolonger consist of only two elements, but any �nite number.4 We will take for the set of truthvalues N natural numbers, that is N = f0; 1; 2; : : :; n� 1g for an n-valued logic.As an example take three-valued conjunction. The truth table^ 0 1 20 0 0 01 0 1 12 0 1 2and vM(� ^) := minfvM(�); vM()g where 0 < 1 < 2de�ne exactly the same three-valued connective.A subset D of the set of truth values will be called designated. The truth values in D play therole of true in the classical case and support validity.A model is simply a mapping from atomic formulae into N , in other words the determination ofvM on atoms which is uniquely extended to all formulae. A formula � is satis�able i� vM(�) 2 Dfor some M. If a formula � is satis�ed by any model it is called tautology.We sketch a somewhat na��ve method of extending tableaux to handle any �nitely-valued �rst-order logic. The method is due to S. Surma who presented it on the International Symposium onMultiple-Valued Logic in 1974 (Surma, 1984). Some years later, W. Carnielli (Carnielli, 1987)�lled the gaps in Surma's somewhat sketchy presentation and extended the treatment to a broadclass of many-valued quanti�ers, including the standard ones that we consider.4 Or even an in�nite number of truth values. 3TAP can handle only �nitely many truth values, however.

20 CHAPTER 2. THEORETICAL BACKGROUNDAssume for the moment that we are working in a three-valued logic. Then, obviously, sayingthat a formula � is not true is not equivalent to saying that it is false, or more precisely sayingthat � has not truth value 2 is not equivalent to saying that it has truth value 0. Yet anotherformulation of this fact, with respect to signed tableaux, is that not T � is not the same as F �.But being able to express this fact, that not T �, is crucial for the tableau method to work, sincethis is what we must put in the initial tableau if the tautologyhood of � is to be established.The solution is to introduce other signs than T and F , namely as many as there are truth valuesin a logic. Let us �x SL = f0; 1; : : :; n � 1gas the set of signs for an n-valued logic in this section. Each sign corresponds to a truth value inan obvious way. We use the same symbols for signs and truth values, only the former are printedin Sans Serif typeface and understand this convention as an implicit type conversion function.We are now able to express invalidity of a formula in the following way:not 2 � i� 0 � or 1 � (2.1)So far, so good|but how does one compute the tableau rules corresponding to a certain signand connective in this new setting? Assume that we wanted to compute the rule correspondingto 1 and conjunction for n = 3. If we take a look at the truth table above we see that there arethree entries that are equal to 1 (which corresponds to 1). From these entries we can extract thenecessary and su�cient conditions on the direct subformulae of a formula �^ that characterizethe assertion 1 (� ^). More precisely, we have that1 (� ^) i� (1 � and 2) or (1 � and 1) or (2 � and 1):Transforming this into a tableau rule, we get1 (� ^)1 � 1 � 2 �2 1 1 With the same method one can compute rules for all combinations of signs and connectives,provided the truth tables are known and the sign does occur in the truth table of the connective.If it does not the current branch can be closed at once, since an assertion of that kind can neverbe satis�ed. A convenient method to handle these cases is to include them in the contradictionset of a tableau system.Let us collect some immediate observations:1. The rules in general fall neither into the �- nor into the �-schema.2. The number of extensions generated by a rule for a formula S� can be equal to the numberof entries corresponding to S in the truth table of the leading connective of �. For n truthvalues and k-ary connectives the worst case is a branching factor of nk � n with k(nk � n)formulae in the conclusion. Since every entry in the truth table has to be analyzed inexactly one of the rules corresponding to the connective, the number of extensions in allrules for a connectives is but in rare cases, when simpli�cations are possible, equal to nk.

2.4. LEMMA GENERATION 21� 0 1 20 2 2 21 2 2 22 0 1 2 : �0 2 21 1 22 0 0Table 2.4: Truth tables of propositional connectives for n = 3.3. The rules themselves are uniquely determined up to the ordering of the extensions in theconclusion and the formulae within each extension.4. With equation (2.1) we can express the assertion that a formula is not satis�able. The price,however, is that the construction of two tableaux is required. In general, when n > 3, asmany tableaux as there are non-designated truth values are required.Example 2.15 In Figure 2.2 the proof trees corresponding to the proof of the three-valued tau-tology :p � (� p ^:p) are shown. The truth tables of �; : and � are given in Table 2.4. Notethat we need two proof trees in order to refute the two non-designated truth values 0 and 1 .Formulae in the left tree correspond to formulae with same numbers in the right tree.For �rst-order logic we de�ne many-valued generalizations of the usual quanti�ers 9 and 8 bytreating them as in�nitary disjunctions and conjunctions, resp.:1. v�((8y)�) = minfv�uy (�)ju 2 Ug, where min is interpreted naturally on N .2. v�((9y)�) = maxfv�uy (�)ju 2 Ug, where max is interpreted naturally on N .� is a variable assignment and �uy is the same as �, but with the value of y changed to u. Thenotation is completely analogous to classical logic, cf. (Fitting, 1990).First-order logic is handled as well by Carnielli's approach, but the resulting tableau rules arerather bulky. We do not give them here.2.4 Lemma GenerationConsider the application of a (symmetric) �-rule to a formula on the current branch, say toF (� ^). One has to make a decision which branch is put into focus for the next rule application.This decision generally is based on some heuristics. We are not interested right now on which, butit is clear that a decision has to be made somehow. So one of the newly generated branches willbe closed �rst, say the left one. Obviously it would have been better then to use an asymmetricrule, namely the one in the middle in Table 2.5 which gives us more information about the stillopen branch. And this is exactly what we do: Before actually applying a �-rule, decide whichbranch is put into focus next. Then apply an asymmetric version of the rule which provides moreinformation on the branch processed last.We call this technique Lemma Generation, because if we interpret the additional formula inan asymmetric rule as a lemma the branch that is closed �rst can be seen as a proof for thatlemma. Lemma generation is not merely an ad hoc e�ciency hack, rather it lifts classical analytictableaux to a better proof length complexity class.In 3TAP lemma generation can be switched on with two di�erent priorities. It works also inmany-valued logics, but then it is not easy to compute adequate lemmata. See (H�ahnle, 1992c,p. 103�) for the details. Technically, lemma generation can be achieved by changing the rule setand the heuristics for rule selection, see Section 5.8.2.

22 CHAPTER 2. THEORETICAL BACKGROUND(1) [�] 0 (:p � (� p ^ :p))(2) [1] 2 :p(3) [1] 0 (� p ^ :p)(4) [2] 0 p(5) [3] 0 � p(7) [5] 2 pclosed with (4; 7)��� @@@(12) [3] 0 :p(13) [12] 2 pclosed with (4; 13) (1) [�] 1 (:p � (� p ^ :p))(2) [1] 2 :p(3) [1] 1 (� p ^ :p)(4) [2] 0 p(5) [3] 1 � p(6) [3] 2 :p(7) [6] 0 pclosed with (5)!!!
!!! aaaaaa(11) [3] 1 � p(12) [3] 1 :p(13) [12] 1 pclosed with (4; 13)(8) [3] 2 � p(9) [3] 1 :p(10) [9] 1 p(14) [8] 0 pclosed with (4; 10),,, lll(15) [8] 1 pclosed with (4; 10)Figure 2.2: Tableau proof of :p � (� p ^ :p) using the method of Surma and Carnielli.F (� ^)F � F F (� ^)F � F T � F (� ^)F � F T Table 2.5: Symmetric and asymmetric tableau rules.Note that in �rst-order logics lemma generation is not always advantageous, since it may enlarge

2.5. UNIVERSAL FORMULAE 23the search space.2.5 Universal FormulaeFormulae, and in particular equalities, have often to be applied more than once in order to close abranch, each time with di�erent substitutions for the free variables occurring in them. A typicalexample is the associativity axiomAs = (8x)(8y)(8z)[(x �y) �z � x � (y �z)] from group theory. Inmost cases it has to be applied several times with di�erent instantiations of x, y and z to proveeven simple theorems of group theory.In semantic tableaux the mechanism to do so usually is to apply the
-rule more than once toAs and thus generate several instances of As, each with di�erent free variables substituted forx, y and z.Consequently, to prove a theorem the
-limit q has to be at least as high as the maximal numberof necessary applications of the same formula with di�erent substitutions for the free variables itcontains. However, the higher the limit q is, the more branches have to be closed and the biggerthe tableau becomes. Moreover, it is quite di�cult to choose the limit q appropriately, becauseone does not know how many instances of
-formulae will be needed.For equalities, the problem could be avoided if they were not allowed to occur nested in other for-mulae, but appeared only on the top-level. We did, however, not want to employ this restrictionin order to allow for a natural formulation of problems. Nevertheless, the problem can at leastpartly be solved if one is able to recognize formulae (and in particular equalities) whose universalclosure is strongly implied by the formulae on the branch. These are \locally universal"; theycan be used repeatedly with di�erent substitutions for the variables they contain.De�nition 2.16 (Strong Consequence Relation) Let �; be �rst-order formulae;� j=� if for all interpretations I and for all variable assignments �:if valI;�(�) = true then valI;�() = trueRemark 2.17 Note, that for example p(x) 6j=� (8xp(x)), but p(x) j= (8xp(x)), where \ j=" deno-tes the weak consequence relation.De�nition 2.18 (Universal Formula) Suppose � is a formula on some tableau branch B. � isuniversal on B with respect to the variable x ifB j=� (8x�) :5Now, we can use a new rule for closing branches that takes this de�nition into account:De�nition 2.19 (Closed Tableau with Universal Formulae) A tableau consisting of the kbranches B1; : : : ; Bk is closed if there are1. a substitution �,2. literals li; �li 2 Bi, and5 In the sequel, we will often refer to a formula � which is universal on a branch B w.r.t. a variable x just by\the universal formula �", and to the variable x by \the universal variable x" (if the context is clear).

24 CHAPTER 2. THEORETICAL BACKGROUND3. substitutions �i, such that(a) li�i and �li�i are complementary, and(b) if �i(x) 6= �(x) then both li and �li are universal on Bi w.r.t. x.With this de�nition of closed tableaux it is possible that a tableau is closed after less applicationsof expansion rules than in the standard free-variable tableau calculus. Thus, the calculus isstrengthened.The problem of recognizing universal formulae is of course undecidable in general. However, awide and important class can be recognized quite easily: assume there is a sequence of tableaurule applications that does not contain a disjunctive rule (i.e., the tableau does not branch). Allformulae that are generated by this sequence are universal w.r.t. the free variables introduced bythe sequence. Substitutions for these variables can be ignored, since the corresponding inferencesteps could be repeated arbitrarily often to generate new instances of the universal variables(without generating new branches).More formally, we use the following theorem:Theorem 2.20 A formula � on a branch B is universal w.r.t. x if � was put on B by either1. applying a
-rule and x is the free variable introduced by the application of this rule, or2. applications of non-branching rules to a formula 2 B, where is universal on B w.r.t. x.Recognizing the above subset of universal formulae is implemented in 3TAP by keeping a list ofin this sense universal variables for each formula.2.6 Equality Handling2.6.1 IntroductionOne of the main goals of Automated Deduction is to e�ciently handle �rst-order logic withequality. In this section we describe how \mixed" E-uni�cation (Beckert, 1994b), a combinationof the classical \universal" E-uni�cation and \rigid" E-uni�cation (Gallier et al., 1992), can beused to e�ciently handle equality in free variable and in universal formula semantic tableaux(see Section 2.5).A more detailed description of this new approach can be found in (Beckert, 1993b), includingproofs for its soundness and completeness, examples, and an analysis of the shortcomings inprevious approaches (the important results, but without proofs, can be found in (Beckert, 1994b;Beckert, 1994a), too).2.6.2 Syntax and Semantics of EqualityLet us assume that the set R of predicate symbols of the �rst-order language L contains a binarypredicate symbol for equality which we denote by � such that no confusion with the meta-levelequality predicate = can arise. We stress that there is no restriction where equalities can occurin formulae.We use sequences of natural numbers to denote positions in terms; tp is the subterm at position pin the term t (e.g. f(a; b)h2i = b).

2.6. EQUALITY HANDLING 25For the sake of simplicity and without any loss of generality, we use a slightly non-standardnotion of substitutions: They have to be idempotent and of �nite domain; Subst is the set ofthese substitutions. id is the empty substitution. The application of a substitution � to a term tis denoted by t�; if a substitution is applied to a quanti�ed rule, equality, or term, the boundvariables are never instantiated. � denotes the specialization relation on substitutions: � � � i�there is a �0 such that �0 � � = � .A model M = hD; Ii (with domainD and interpretation I) is called normal i� �I is the identityrelation on D. A model is called canonical if, moreover, for every d 2D there is a term t in Lsuch that tI = d. The following theorem shows that canonical models are analogous to Herbrandmodels.Theorem 2.21 If a set S of universal sentences is satis�ed by a normal model, then there isalso a canonical model that satis�es S.2.6.3 Equality Handling by Mixed E-Uni�cationConstructing a tableau for a �rst-order formula � can be considered a search for a model of �.Therefore, as part of the tableau calculus, methods have to be employed for: (i) adding formulaethat are valid in a model M of � to the tableau branch that corresponds to M (i.e., that is apartial de�nition of M), and (ii) recognizing formulae or sets of formulae that are unsatis�able;these formulae close branches on which they occur.In canonical models, on the one hand, additional formulae are valid and, thus, have to be addedto a branch: If P (a) and a � b are true in a canonical model M, then M is a model of P (b),too. On the other hand, there are additional inconsistencies: :(a � a) is false in all canonicalmodels.Accordingly, there are two techniques for handling equality in semantic tableaux: The �rst andmore straightforward method is to de�ne additional tableau rules for expanding branches by allthe formulae valid in the canonical models they (partially) de�ne; then very simple additionalclosure rules can be used (Je�rey, 1967; Reeves, 1987; Fitting, 1990). The second possibility isto use a more complicated notion of closed tableaux: E-uni�cation is used to decide whether atableau branch is unsatis�able in canonical models and, therefore, closed. Then, no additionalexpansion rules are needed.The common problem of all the methods for handling equality, that are based on additionaltableau expansion rules, is that there are virtually no restrictions on the \application" of equa-lities. This leads to a very large search space; even very simple problems cannot be solved inreasonable time.It is di�cult to employ more elaborate and e�cient methods for handling equality in semantictableaux, such as completion-based approaches, because it is nearly impossible to transformthese methods into (su�ciently) simple tableau expansion rules. Contrary to that, arbitraryalgorithms can be used, if the handling of equality is reduced to solving E-uni�cation problems.2.6.4 Universal, Rigid and Mixed E-Uni�cationThe intention of de�ning di�erent versions of E-uni�cation is to allow equalities to be useddi�erently in a proof: in the universal case the equalities can be \applied" several times withdi�erent instantiations for the variables they contain; in the rigid case they can be \applied"more than once but with only one instantiation for each variable they contain; in the mixed casethere are both types of variables. To distinguish the di�erent types of variables syntactically,equalities can be explicitly quanti�ed:

26 CHAPTER 2. THEORETICAL BACKGROUNDDe�nition 2.22 A mixed E-uni�cation problemhE; s; ticonsists of a �nite set E of equalities of the form (8x1) � � � (8xn)(l � r) and terms s and t.6A substitution � is a solution to the problem, i�E� j= (s� � t�) ;where the free variables in E� are \held rigid", i.e. treated as constants.7A mixed E-uni�cation problem hE; s; ti is called purely universal if there are no free variablesin E, and purely rigid if there are no bound variables in E.The major di�erences between this de�nition and that generally given in the (extensive) literatureon (universal) E-uni�cation are:1. The equalities in E are explicitly quanti�ed (instead of considering all the variables in Eto be implicitly universally quanti�ed).2. In di�erence to the \normal" notion of logical consequence, free variables in E� are \heldrigid".3. The substitution � is applied not only to the terms s und t but as well to the set E.Example 2.23 All substitutions are solutions to the purely universal problemhf(8x)(f(x) � x)g; g(f(a); f(b)); g(a; b)i :The (very similar) purely rigid problemhf(f(x) � x)g; g(f(a); f(b)); g(a; b)ihas no solution.fy=bg is a solution to the mixed problemhf(8x)(f(x; y) � f(y; x))g; f(a; b); f(b; a)i ;since the variable x is quanti�ed, it does not have to be instantiated by the uni�er.For handling equality in semantic tableaux, several E-uni�cation problems have to be solvedsimultaneously (one for each branch):De�nition 2.24 A �nite setfhE1; s1; t1i; : : : ; hEn; sn; tnig (n � 1)of mixed E-uni�cation problems is called simultaneous E-uni�cation problem.A substitution � is a solution to the simultaneous problem i� it is a solution to every componenthEk; sk; tki (1 � k � n).Since purely universal E-uni�cation is already undecidable, (simultaneous) mixed E-uni�cationis|in general|undecidable as well. Is is, however, possible to enumerate a complete set ofmost general uni�ers. (Simultaneous) purely rigid E-uni�cation is decidable (Gallier et al., 1992;Goubault, 1993).86 Without making a real restriction, we require the sets of bound and free variables in the problem to be disjoint.7 This is equivalent to E� j=� (s� � t�).8 Purely rigid E-uni�cation is NP-complete (Gallier et al., 1992); simultaneous purely rigid E-uni�cation isNEXPTIME-complete (Goubault, 1993).

2.6. EQUALITY HANDLING 272.6.5 Extracting E-Uni�cation Problems from TableauxThe equality theory de�ned by a tableau branch B consists of the equalities on B; they are (ex-plicitly) quanti�ed w.r.t. to the variables w.r.t. which they can be recognized as being universal:De�nition 2.25 Let B be a tableau branch. The set E(B) of equalities consists of the equalities(8x1) � � � (8xn)(s � t)such that1. T (s � t) is formula on B,2. T (s � t) is recognized as being universal w.r.t. fx1; : : : ; xng on B.9There are uni�cation problems for each inequality on a branch B and each pair of atoms thatpotentially close B, i.e., atoms with the same predicate sign and complementary truth valuesigns:De�nition 2.26 Let B be a tableau branch. The set P(B) of uni�cation problems consistsexactly of the sets of term pairs: fhs1�; t1�i; : : : ; hsn�; tn�igfor each pair T P (s1; : : : ; sn);F P (t1; : : : ; tn) 2 Bof (potentially closing) atoms such that P 6= �, andfhs�; t�igfor each inequality F (s � t) 2 B :The substitution � = fx1=y1; : : : ; xm=ymg renames all the variables x1; : : : ; xm w.r.t. which bothT P (s1; : : : ; sn) and F P (t1; : : : ; tn) are recognized as being universal (resp. w.r.t. which F (s � t)is recognized as being universal); y1; : : : ; ym are new variables.If one of the problems in the set P(B) of uni�cation problems of a branch B has a solution �(w.r.t. the equalities E(B)), B� is unsatis�able in canonical models; therefore the branch Bis closed under the substitution �. The pair of potentially closing atoms corresponding to thesolved uni�cation problem has been proven to actually be complementary; or the correspondinginequality has been proven to be inconsistent (provided the uni�er is applied to the tableau).The following is a formal de�nition of the simultaneous mixed E-uni�cation problems that haveto be solved to close a tableau:De�nition 2.27 A universal formula tableau T with branches B1; : : : ; Bk is closed i� in the setsof uni�cation problems P(Bi) there are elementsfhsi1; ti1i; : : : ; hsini ; tiniig 2 P(Bi)(1 � i � k) such that there is a solution to the simultaneous mixed E-uni�cation problemf hE(B1); s11; t11i; : : : ; hE(B1); s1n1; t1n1i;...hE(Bk); sk1; tk1i; : : : ; hE(Bk); sknk; tknki g(see De�nitions 2.25 and 2.26).9 An arbitrarymethod for recognizing universal formulaemay be used; 3TAP uses the method from Theorem 2.20.

28 CHAPTER 2. THEORETICAL BACKGROUNDActually, it is not necessary to split pairsT P (s1; : : : ; sn) and F P (t1; : : : ; tn)of potentially complementary atoms into n term pairshs1; t1i; : : : ; hsn; tnithat have to be uni�ed. Instead the single problemhP (s1; : : : ; sn); P (t1; : : : ; tn)icould be used. That, however, is ine�cient, because the n simpler problems can be solvedindependently.Example 2.28 As an example we use the tableau from Figure 2.3. Its left branch is deno-ted by B1 and its right branch by B2. If the method for recognizing universal formulae fromTheorem 2.20 is used, E(B2) contains the equalitiesb � c and (8x)(g(f(x)) � x) :E(B1) contains in addition the equality g(x2) � f(x2) :Both P(B1) and P(B2) contain the setfhg(g(a)); ai; hb; cig :P(B2) contains in addition the set fhx2; aig :The tableau is closed (De�nition 2.27), because the substitution � = fx2=ag is a solution to thesimultaneous mixed E-uni�cation problemfhE(B1); g(g(a)); ai;hE(B1); b; ci;hE(B2); x2; aig :2.6.6 Solving Mixed E-Uni�cation ProblemsThe Unfailing Knuth-Bendix-Algorithm (UKBA) (Knuth & Bendix, 1970; Bachmair et al., 1989)with narrowing (Nutt et al., 1989), that is generally considered to be the best algorithm for uni-versal E-uni�cation and has often been implemented, cannot be used to solve rigid or mixedproblems. Completion-based methods for rigid E-uni�cation have been described in (Gallieret al., 1992; Goubault, 1993). These, however, are non-deterministic and unsuited for implemen-tation (they have, in fact, never been implemented). In (Beckert & H�ahnle, 1992) a method forsolving mixed E-uni�cation problems has been introduced that does not use completion but isbased on computing equivalence classes.10The basic idea of our approach|and the main di�erence to the classical unfailing completionprocedure|is that during the completion process free variables are never renamed, even if equa-lities that have variables in common are applied to each other. In addition, constraints consistingof a substitution and an order condition are attached to the reduction rules and terms.1110 This method has been used in all earlier versions of 3TAP , but it is now substituted by the method describedin the following.11 In (Chabin et al., 1993) a similar type of constraints is used for E-uni�cation|but only for its purely universalversion. In (Beckert & H�ahnle, 1992) substitutions are used to restrict the validity of terms. For a completion-based approach, however, this is not su�cient because the validity of reduction rules depends on the orderingon terms.

2.6. EQUALITY HANDLING 29
(1) T (8x)((g(x) � f(x)) _ :(x � a))(2) T (8x)(g(f(x)) � x)(3) T (b � c)(4) T P (g(g(a)); b)(5) T :P (a; c)(6) F P (a; c)(7) T (g(f(x1)) � x1)(8) T ((g(x2) � f(x2)) _ :(x2 � a))(9) T (g(x2) � f(x2))"""" bbbb(10) T :(x2 � a)(11) F (x2 � a)Figure 2.3: A free variable tableau for the given formulae (1) to (5). By applying the stan-dard free variable tableau rules, formula (6) is derived from (5), (7) from (2), (8) from (1),(9) and (10) from (8), and (11) from (10). Formula (7) is recognized as being universalw.r.t. x by the method from Theorem 2.20.

30 CHAPTER 2. THEORETICAL BACKGROUND2.6.6.1 ConstraintsFor di�erent substitutions �, the completion of E� contains di�erent reduction rules. Ne-vertheless, a single completion can be computed for all E�, if constraints are attached to therules to restrict their validity to certain (sets of) substitutions.The �rst part of the constraints we attach to reduction rules and terms is an order condition; itexpresses a restriction on the ordering of terms w.r.t. the reduction ordering �LPO.The reduction ordering �LPO on terms is an arbitrary but �xed lexicographic path ordering(LPO) (Dershowitz, 1987) that is total on ground terms.De�nition 2.29 (Lexicographic Path Ordering) A total ordering >F on the set of functionsymbols induces a lexicographic path ordering on terms: s �LPO t, where s = f(s1; : : : ; sm) andt = g(t1; : : : ; tn), i�1. si �LPO t or si = t for some 1 � i � m, or2. f >F g and s �LPO tj for all 1 � j � n, or3. f = g, (s1; : : : ; sn) ��LPO (tn; : : : ; tn) and s �LPO ti for all 1 � i � n.��LPO is the lexicographic ordering on term tupels induced by �LPO, i.e.,hs1; : : : ; sni ��LPO ht1; : : : ; tnithere is an 1 � i � n, such that sj = tj for all 1 � j < i and si �LPO ti.Example 2.30 A reduction system equivalent to E� = fx � yg� either consists of the rule(x! y)� or the rule (y ! x)�, depending on which of the terms �(x) and �(y) is greater w.r.t.the LPO used.The expression x � y is the natural choice for a restriction such as \the term substituted for xhas to be greater than that substituted for y":De�nition 2.31 Order conditions are composed of the atomic order conditions s � t (s and tare terms) using the logical connectives :, ^, _ and �, and the constants true and false.Ground order conditions, i.e., order conditions that contain no variables, are assigned a truthvalue by interpreting the (predicate) symbol � by a (�xed) LPO.A (non-ground) order condition O is true i� O� is true for all ground substitutions �, false (orinconsistent) i� its negation :O is true, and consistent i� it is not false.Since LPOs are total on ground terms, the truth value of ground order conditions is well de�ned;non-ground order conditions are (similar to �rst order formulae) either consistent or inconsistent,and may be true or false.Example 2.32 The order condition f(a) � a is true; (x � y) ^ (y � x) is false; and x � y isconsistent. The truth value of a � b depends on the LPO used to interpret �.In some cases, order conditions are not su�cient for describing the set of substitutions for whicha reduction rule is valid:Example 2.33 Suppose E = ff(b) � a; f(x) � cg; the reduction rule c! a is part of the com-pletion of E� i� �(x) = b (then the equalities are a critical pair).

2.6. EQUALITY HANDLING 31One could use the formula x � t to express conditions of the form \x has to be substituted by(an instance of) t", if the predicate symbol � were allowed in order conditions. That, however,would make the handling of conditions unnecessarily complicated. Instead the substitution fx=tgitself becomes part of the constraint:De�nition 2.34 A constraint c = h�;Oi consists of a substitution � and an order condition Osuch that the variables in the domain of � do not occur in O, i.e. O = O�.A substitution � satis�es a constraint c = h�;Oi i� � is a specialization of � and O� is true.� satis�es a set C of constraints i� there is a c 2 C satis�ed by � .Sat(c) (resp. Sat(C)) is the set of substitutions satisfying the constraint c (resp. the set C ofconstraints).Note, that sets of constraints implicitly represent disjunctions. To simplify the handling ofconstraints, we give some additional de�nitions and notations:De�nition 2.35 A constraint c1 subsumes a constraint c2 i� the substitutions satisfying c2satisfy as well c1: Sat(c2) � Sat(c1).A constraint c�1 that is satis�ed by the substitutions not satisfying c is called negation of c:Sat(c�1) = Subst n Sat(c).A constraint c1 u c2 that is satis�ed by the constraints satisfying both c1 and c2 is called acombination of c1 and c2: Sat(c1 u c2) = Sat(c1) \ Sat(c2).The empty constraint � = hid; truei consists of the empty substitution id and the order condi-tion true; it is satis�ed by all substitutions.There are e�cient algorithms for computing negations and combinations of constraints. Sincea constraint c1 subsumes a constraint c2 i� c�11 u c2 is inconsistent, these are an importantpart of the implementation. Deciding whether a constraint is satis�able is NP-hard (Comon,1990). The problem can however simpli�ed considerably: The order condition (s � x) ^ (x � t)is inconsistent if there is no term between s and t (w.r.t. the LPO used). Without causing anyharm, we can do without checking for such inconsistencies, that are very di�cult to detect (seeSection 5.13.10).2.6.6.2 Constrained Terms and Reduction RulesSince|syntactically|constrained reduction rules can be considered to be constrained terms,12it su�ces to de�ne the latter:De�nition 2.36 A constrained term t = (8�x)(t� c) is a term t with a constraint c = h�;Oiattached to it such that t� = t.13 It can be universally quanti�ed w.r.t. some or all of the variablesit contains (the quanti�cation includes the constraint).On �rst sight quanti�ed terms may look strange, but, later on, a constrained term t is used toexpress the fact that it can be derived from another term t0. Therefore, it is important to beable to make a distinction between rigid and non-rigid (quanti�ed) variables.Using constraints, for every equality an equivalent set of reduction rules can be constructed; evenfor those that cannot be oriented without constraints.12 Over a di�erent signature that contains! as a function symbol.13 The symbol� means \if".

32 CHAPTER 2. THEORETICAL BACKGROUNDExample 2.37 The equality f(x) � g(y) cannot be oriented without constraints, since (i) itsinstance f(g(a)) � g(a) has to be oriented from left to right, while (ii) its instance f(a) � g(f(a))has to be oriented from right to left. The constrained rules f(x) ! g(y) � hid; f(x) � g(y)i andg(y) ! f(x)� hid; g(y) � f(x)i, however, de�ne the same derivability relation as the equalityf(x) � g(y).Other typical examples are the constrained rules x! y � hid; x � yi and y ! x� hid; y � xi,that correspond to the equality x � y; and the constrained rule(8x)(8y)(f(x; y) ! f(y; x) � hid; f(x; y) � f(y; x)i) ;that is equivalent to (8x)(8y)(f(x; y) � f(y; x)) :The possibility to orient every equality justi�es the following de�nition, that assigns to each setof equalities a constrained reduction system. Since it will be the starting point of the completionprocess, it is called the initial system:De�nition 2.38 Let E be a set of equalities. Thenf(8�x)(s! t� hid; s � ti) j (8�x)(s � t) 2 E or (8�x)(t � s) 2 Egis the initial constrained reduction system assigned to E.A constrained reduction system R de�nes derivability relations)R and VR on the set of con-strained terms:De�nition 2.39 Let R be a constrained reduction system and t = (8�x)(t� ct) a constrainedterm. I� there is a rule r = (8�y)(l ! r� cr) in R, such that1. fx1; : : : ; xng \Var(r) = ; and fy1; : : : ; ymg \Var(t) = ;,142. p is a position in t where tjp is not a variable unless tjp = l = xi,3. tjp and l are (syntactically) uni�able with an MGU �,4. the combination cnew = h�;Onewi = ct u cr u h�; truei is consistent,then t)R t0, where t0 = (8�x)(8�y)((t[p=r])�� cnew).15I� in addition (i) tjp = l�, and (ii) cnew subsumes ct, then tVR t0. We call the triple hr; p; �ia justi�cation for t)R t0 (resp. tVR t0).The intuitive meaning of (8�x)(s� cs))R (8�y)(t� ct) is: there is a substitution � such thatt� can be derived from s� using a rule from R, and � satis�es the constraints cs, ct and thatattached to the rule.The main di�erence between the two derivability relations)R and VR (which is a sub-relationof)R) is that the derivation tVR t0 is \reversible", if the order on terms is not taken intoconcern. The derived term t0 can|in combination with the rules in R|take on the functionsof t. In contrary to that, a derivation t)R t0 is \irreversible" (provided t 6VR t0).14 This is not a real restriction, since the bound variables can be renamed.15 If the constraint cnew expresses restrictions on bound variables that do not occur in t[p=r], these restrictionscan be omitted. For example, (8x)(a! b� hid; x � ci) can be reduced to a! b� �.

2.6. EQUALITY HANDLING 33Example 2.40 Some examples for derivations and their justi�cation:(g(a; c)� �) V (g(a; b)� �) { h(c! b� �); h2i; idi(f(c) � �) V (c� �) { h((8x)(f(x) ! x� �); hi; idi(a� �)) (y � hfx=ag; a � yi) { h(x! y � hid; x � yi); hi; fx=agi(f(c) � �)) (c� hfx=cg; truei) { h(f(x) ! x� �); hi; fx=cgiIt is useful to de�ne a subsumption relation on constrained terms. It is similar to the relationbetween a term (without constraint) and its instances:De�nition 2.41 Let t1 = (8�x)(t1 � c1) and t2 = (8�y)(t2 � c2) be constrained terms. t1 sub-sumes t2 i� (i) t2 is an instance of t1, and (ii) the combination c1 u h�; truei subsumes theconstraint c2 (Def. 2.35).Example 2.42 The constrained term a� � subsumes a� hfx ag; truei. If b �LPO a, thenthe constrained rule x! a� hid; x � ai subsumes the rule b! a� hfx=bg; truei.2.6.6.3 Completion of Constrained Reduction SystemsGoal of the Completion The following transformation rules de�ne a method for completingconstrained reduction systems. If these rules are applied repeatedly (in a fair way) to an initialsystem R = R0, a system R1 is approximated. It represents the (classical) completions of allthe di�erent instances of E.In general, the instances ofR1 will not be irreducible and, therefore, not canonical. Nevertheless,the relation)R1 will be con
uent (in a sense clari�ed in Lemma 2.57), and thus have the featurecrucial for computing normal forms of constrained terms and solving E-uni�cation problems.The following example shows that it would not make sense to expect the instances to be canonical:Example 2.43 None of the transformation rules introduced in the next section can be appliedto the reduction system R1 = ff(x)! c� �; a! b� �g. Its instance ff(a)! c; a! bg is,nevertheless, not canonical, since it can be simpli�ed to ff(b)! c; a! bg.The Transformation Rules The rules that have to be applied to complete a reduction systemare presented in form of transformation rules.16Deletion: A rule that has an inconsistent constraint attached to it can be removed, because itcannot be applied anyway:(Del) R [f(8�x)(s ! t� c)gR c inconsistentExample 2.44 The rule x! f(x) � hid; x � f(x)i can be deleted, because its constraintis inconsistent.Subsumption: A constrained rule that is subsumed by another rule (Def. 2.41) can be removed:(Sub) R [fr; r0gR [frg r subsumes r016 The set of constrained rules below the line can be derived from the set above the line if the conditions on theright are met.

34 CHAPTER 2. THEORETICAL BACKGROUNDEquivalence Transformation: A constraint c attached to a reduction rule can be replacedby a set fc1; : : : ; cng of constraints that|disjunctively connected|are equivalent to c (i.e.Sat(c) = S1�i�n Sat(ci)). Since only a single constraint can be attached to a rule, n copiesof the original rule are generated:(Equ) R [f(8�x)(l ! r � c)gR [f(8�x)(l� ! r�� h�;Oi) j h�;Oi 2 Cg Sat(c) = Sat(C),C �niteThough this equivalence rule is not necessary for the completeness of our method, it isvery useful; it allows to transform constraints into a normal form, and thus simplify theirhandling signi�cantly.Example 2.45 The rule f(x; y)! f(a; b)� hid; f(x; y) � f(a; b)i can be replaced by thetwo rules f(x; y) ! f(a; b)� hid; x � ai and f(a; y) ! f(a; b)� hfx=ag; y � bi.Critical Pair Rule, Combination, Simpli�cation: The transformation rules described sofar allow to delete rules or to replace them by new ones without using the derivabilityrelation)R. But, to complete a reduction system,)R has to be taken into concernby applying one rule r2 2 R to another rule r1 2 R. Suppose r1 = (8�x)(s! t� c1),r2 = (8�y)(l ! r � c2), and the rule r2 can be applied to r1 to derive the ruler01 = (8�x)(8�y)(snew ! tnew � cnew), i.e., r1) r01 with a justi�cation hr2; p; �i. We cannotjust add the new rule r01 to R: Firstly, instances of r01 may be oriented di�erently; wetherefore have to use the two symmetrical versionsrnew1 = (8�x)(8�y)(snew ! tnew � cnew u hid; snew � tnewi)rnew2 = (8�x)(8�y)(tnew ! snew � cnew u hid; tnew � snewi) :Secondly, the form of the transformation rule depends on whether (i) r1 V r01 (besidesr1) r01) or not,17 and (ii) which side of r1 the rule r2 has been applied to, i.e., whether pis a position in s or in t.If r1 V r01, then rnew1 and rnew2 allow|together with r2|all the derivations possiblewith r1. If, in addition, r2 has been applied to the right side of r1, one can conclude thatthe constraint attached to rnew2 is inconsistent. In that case the transformation is calledsimpli�cation (Sim), since r1 can be replaced by the single new rule rnew1:(Sim) R(R n fr1g) [frnew1g p in t, r1 VR r01Else, if r2 has been applied to the left side of r1, the rule rnew2 cannot be left out, be-cause the constraint attached to it may be consistent. Such a transformation is calledcomposition (Com).(Com) R(R n fr1g) [frnew1; rnew2g p in s, r1 VR r01If r1 6V r01, the new rules cannot replace the old rule r1; it cannot be removed. Nevertheless,the transformation has to be carried out provided r2 has been applied to the left side ofr1. Then r1 and r2 are a critical pair , and the new rules are needed to make the reductionsystem con
uent:(CP) RR [frnew1; rnew2g p in s, r1 6VR r01In di�erence to the critical pair rule de�ned in (Gallier et al., 1992) the uni�er � is onlyapplied locally to the new rules (not to the whole system R).17 That is, r1V r01 with the same justi�cation as r1) r01; whether r1 V r01 with a di�erent justi�cation is notrelevant.

2.6. EQUALITY HANDLING 35Example 2.46 Suppose f �LPO c �LPO b �LPO a, and R contains the constrained reductionrules r1 = f(c) ! b� �r2 = b! a� � r3 = (8x)(f(x)! y � hid; f(x) � yi)r4 = f(x)! y � hid; f(x) � yiThe simpli�cation rule (Sim) can be applied to r1 and r2 to replace r1 by the single newrule f(c) ! a� �.The composition rule (Com) can be applied to r1 and r3 to replace r1 byy ! b� hid; (f(c) � y ^ y � b)i and b! y � hid; (f(c) � y ^ b � y)i :The critical pair rule (CP) can be applied to r1 and r4 (note, that in r4 the variable x isnot quanti�ed); the new rulesy ! b� hfx=cg; (f(c) � y ^ y � b)i and b! y � hfx=cg; (f(c) � y ^ b � y)ihave to be added.Fair Completion Procedures In general, an in�nite number of transformation steps can benecessary to complete a reduction system. But even if the computation does not terminate, acompletion R1 is approximated, consisting of the persistent reduction rules, that occur in allbut a �nite number of the resulting system. To generate a con
uent reduction systems, certainfairness conditions have to be met:De�nition 2.47 R j� R0 means that the constrained reduction system R0 can be derived from Rby applying one of the transformation rules from Section 2.6.6.3.A transformation procedure speci�es, when supplied with an initial reduction system R0, inwhich way (in particular: in which order) the transformation rules are to be applied to generatea sequence R0 j� R1 j� R2 j� � � � of reduction systems. Then, the reduction systemR1 = � Rm if the sequence is of length mSk�0Tm�kRm if the sequence is in�niteis called the completion of R = R0, and the completion of the set E of equalities if R is theinitial system for E.A transformation procedure is fair provided:1. There is no in�nite sequence (ri)i�0 � Sm�kRm such that for all i � 0 the rule ri+1 hasbeen derived from ri by an equivalence transformation.2. There is no in�nite sequence (ri)i�0 � Sm�kRm such for all i � 0 the rule ri+1 subsumesri, and ri has therefore been removed.3. For every persistent critical pair r1; r2 2 R1 there is an i � 0 such that Ri+1 has beenderived by applying the critical pair transformation rule to r1; r2 2 Ri.The �rst two fairness conditions are of a more technical nature: Condition 1 avoids in�nitesequences of equivalence transformations. Condition 2 assures that, if there is an in�nite sequenceof rules subsuming each other, at least one of them is in the completion R1.Condition 3 is the most important: it assures the application of the critical pair transformationrule to all persistent critical pairs. It is essential for achieving con
uence of the completion.Provided, the above fairness conditions are met, arbitrary heuristics can be used to choose thenext transformation rule to apply.

36 CHAPTER 2. THEORETICAL BACKGROUND2.6.6.4 Computing Normal FormsNormalization Rules Using constrained reduction systems and terms, a term has more thanone normal form|in general an in�nite number of them.Example 2.48 With R1 = fb! a� �; d! c� �g the constrained term x� � has three nor-mal forms: a� hfx=bg; truei, c� hfx=dg; truei, and x� � itself.The above example shows that there can be redundancies in a set of normal forms: the validityof x� � is not restricted to substitutions � such that �(x) 6= a and �(x) 6= b.The computation of normal forms is|similar to the completion procedure|presented in formof transformation rules operating on sets of constrained terms:De�nition 2.49 To compute the normal forms of a set T of constrained terms, the rules de-letion (Del), equivalence (Equ), subsumption (Sub), simpli�cation (Sim), and deduc-tion (Ded) can be applied to T ; the rules depend on a constrained reduction system R:(Del) T [f(8�x)(t� c)gT c inconsistent(Equ) T [f(8�x)(t� c)gT [f(8�x)(t� � h�;Oi) j h�;Oi 2 Cg Sat(c) = Sat(C),C �nite(Sub) T [ft; t0gT [ftg t subsumes t0(Sim) T [ftgT [ft0g tVR t0(Ded) T [ftgT [ft; t0g t)R t0; t 6VR t0Fair Normalization Procedures As for completion, an in�nite number of normalization stepscan be necessary; similar fairness conditions have to be met. A set T 1 of normal forms isapproximated, consisting of the persistent terms, that occur in all but a �nite number of the sets.De�nition 2.50 T j� T 0 means that the set T 0 of constrained terms can be derived from T byapplying one of the normalization rules from De�nition 2.49.A normalization procedure speci�es, when supplied with an initial set T 0 of constrained termsand a reduction system R, in which way the rules are to be applied to generate a sequenceT 0 j� T 1 j� T 2 j� � � � of sets of constrained terms. Then, the setT 1 = � T m if the sequence is of length mSk�0Tm�k T m if the sequence is in�niteis called the set of normal forms of T = T 0 (w.r.t. R).A normalization procedure is fair provided:1. There is no in�nite sequence (ti)i�0 � Sm�k T m such that for all i � 0 the term ti+1 hasbeen derived from ti by an application of equivalence (Equ).

2.6. EQUALITY HANDLING 372. There is no in�nite sequence (ti)i�0 � Sm�k T m such that for all i � 0 the term ti+1subsumes ti, and ti has therefore been removed.3. For every persistent term t 2 T 1 that a rule r 2 R can be applied to, there is an i � 0such that T i+1 has been derived by applying r to t 2 T i.The �rst two fairness conditions are similar to that of fair completion procedures (Def. 2.47).Condition 3 assures that whenever possible deduction and simpli�cation are applied to persistentterms.Combining Completion and Normalization Although a completion R1 may be in�nite, onehas to abandon the computation of further reduction rules at a certain point, if completion andnormalization of terms are separated. It is very di�cult to decide when this point is reached.Therefore, it is better to combine the completion and the normalization process:De�nition 2.51 A completion and normalization sequence (hRi; T ii)i�0 consists of constrainedreduction systems Ri and sets T i of constrained terms, where (for i � 0) either (i) Ri+1 has beenderived from Ri by applying a transformation rule (Sec. 2.6.6.3) and T i = T i+1; or (ii) T i+1has been derived from T i by applying a normalization rule (Def. 2.49) and Ri = Ri+1.Of course, when completion and normalization are combined, the fairness conditions (Def. 2.47and 2.50) still have to be met.2.6.6.5 Solving an E-Uni�cation ProblemNow we can solve an arbitrary mixed E-uni�cation problem hE; s; ti by completing the initialreduction system R0 for E and computing the sets of normal forms of the constrained termss� � and t� �. Using these normal forms, sets Ci of constraints can be computed that aresatis�ed by solutions to the uni�cation problem. These approximate a set C such that Sat(C) isa complete set of uni�ers:De�nition 2.52 Let hE; s; ti be a mixed E-uni�cation problem, R0 the initial system for E,S0 = fs� �g, T 0 = ft� �g, and (hRi;Sii)i�0 and (hRi; T ii)i�0 fair completion and normali-zation procedures. Then, for (i = 0; 1; 2; : : :;1) the sets Ci(hE; s; ti) consist of the constraintsfc1 u c2 u h�; truei j (8�x)(r1 � c1) 2 Si, (8�y)(r2 � c2) 2 T i,r1 and r2 are (syntactically) uni�able with an MGU � gC(hE; s; ti) denotes their union Si�0 Ci(hE; s; ti).2.6.6.6 Soundness, Completeness, Con
uenceIn this section we state soundness and completeness results for our method. Due to spacerestrictions the proofs are omitted; they can be found in (Beckert, 1993b).Theorem 2.53 (Soundness) Let hE; s; ti be a mixed E-uni�cation problem. A substitution �satisfying one of the constraints in C(hE; s; ti) (Def. 2.52) is a solution to hE; s; ti.Since our aim is to �nd most general uni�ers (MGUs), a subsumption relation on substitutions hasto be de�ned. One could use the specialization relation �. But, for solving mixed E-uni�cationproblems, the subsumption relation �E is better suited:1818 A similar subsumption relation|for purely rigid problems|has been de�ned in (Gallier et al., 1992).

38 CHAPTER 2. THEORETICAL BACKGROUNDDe�nition 2.54 Let E be a set of equalities. The subsumption relation �E is de�ned on the setof substitutions by: � �E � i� there is a substitution �0 such that E� j= (�0 � �)(x)Gl(�)(x) forall variables x, where the free variables in E� are held rigid.Theorem 2.55 (Completeness) Let hE; s; ti be a mixed E-uni�cation problem. The setSat(C(hE; s; ti))of uni�ers is ground-complete w.r.t. the subsumption relation �E (Def. 2.54), i.e., for everyground uni�er � of hE; s; ti there is a substitution � 2 Sat(C(hE; s; ti)) such that � �E �.A ground-complete set of uni�ers w.r.t. the relation � can be computed by inverting the con-strained rules in a completion R1 for E (i.e., by changing their orientation, not the validityof their constraints), and applying the inversion to the uni�ers in Sat(C(hE; s; ti)). Computingthese additional solutions can be necessary|in theory|to �nd solutions to a simultaneous E-uni�cation problem by combining solutions to its components. Fortunately, in practice this turnsout to be very rarely the case, in particular in the semantic tableau framework.�)R1 is in general not well founded. Therefore, our method is only a semi-deciding procedurefor uni�ability|even if the completionR1 is �nite (it is an open problem, whether �)R1 is wellfounded for purely rigid E-uni�cation problems). The following example shows that, in addition,�)R1 cannot be expected to be con
uent:Example 2.56 Supposed there are rules f(a) ! a� � and f(b) ! b� � in R1. Then fromthe constrained term s = f(x) � � terms t1 = a� hfx=ag; truei and t2 = b� hfx=bg; truei canbe derived (i.e. s)R1 t1 and s)R1 t2).If)R1 were con
uent, there would have to be a term derivable from both t1 and t2. That wouldnot make any sense but contradicts soundness.However, the derivability relation �)R1 can be proven to be \weak" con
uent (the proof ofTheorem 2.55 is based upon that):Lemma 2.57 If R1 is a fair completion, s, t1 and t2 are constrained terms such that1. s �)R1 t1 and s �)R1 t2,2. the combination c1 u c2 is consistent,then there are constrained terms u1 and u2, such that1. t1 �)R1 u1 and t2 �)R1 u2,2. u1 and u2 have a common instance.2.7 Many-Valued Tableaux Using Sets-As-SignsA closer inspection of the proof trees in Figure 2.2 reveals that all unsigned formulae in the treeon the left occur also in the tree on the right and at the same position: the tree on the left isisomorphic to a subtree of the tree on the right. Inspection of other examples shows that there isalways a very high degree of redundancy in the trees corresponding to the various non-designatedtruth values.

2.7. MANY-VALUED TABLEAUX USING SETS-AS-SIGNS 39Consider, for example, the signed formula 2 � �. Application of the corresponding tableaurule after Surma and Carnielli yields two new branches containing the formulae 0 � and 1 �respectively. Encounter of such a formula during a proof, however, does not give rise to anylogical reason to split the proof tree at once into the two cases determined by the extensions ofthe rule. If we were able to express the more complex assertion � has either truth value 0 or truthvalue 1 with a single signed formula we could avoid the splitting. Hence, our idea is to increasethe expressivity of the sign language in order to be able to state more complex conditions likethat. Perhaps the most natural thing to do is to admit subsets of the set of truth values as signs.De�nition 2.58 (Base Set of Signs) Let �S = ffk1; : : : ; kmgj fk1; : : : ; kmg � Ng = 2N be thebase set of signs.Here we assume that the set of signs SL in a logic L always obeysff1g; : : :; fkgg � SL � �S (2.2)We need the left part of equation (2.2), because otherwise unsound rules can be stated. In(H�ahnle, 1992c) a more general condition that is su�cient for soundness is given.Example 2.59 Let us �x the set of signs asS = ff0 g; f1 g; f2 g; f0; 1g ; f1; 2g gWe can express the assertion that � has either truth value 0 or truth value 1 with the signedformula f0; 1g �. An equivalent formulation would be to say that � cannot take on truth value 2,hence we need to build only one tableau proof tree for each proof.To compute the tableau rules corresponding to signed formulae of the form S � we must, similaras before, �nd a cover for all entries in the truth table of F that are a member of S and thenminimize the resulting expression. The di�erence to the former approach is that extensions inwhich formulae with generalized signs do occur cover more than one entry in general.For example, to compute the rule with premise f0; 1g (� ^) we have to cover all entries in thetruth table of ^. The minimal rule that does the job would bef0; 1g (� ^)f0; 1g � f0; 1g The rule for f1g (� ^) would be f1g (� ^)f1; 2g � f1g �f1g f1; 2g which is much simpler than Carnielli's rule for the same premise on page 20.Example 2.60 We show that `S :p � (� p ^ :p) holds in the tableau system corresponding tothe signs from Example 2.59 (it is an instructive exercise to compute the missing tableau rules).The same fact was proven in Example 2.15. Note that the single tree required now has exactlythe size of the smaller of the two trees before.

40 CHAPTER 2. THEORETICAL BACKGROUND(1) [�] f0; 1g (:p � (� p ^ :p))(2) [1] f2g :p(3) [1] f0; 1g (� p ^ :p)(4) [2] f0g p(5) [3] f0; 1g � p(6) [5] f2g pclosed with (4; 6)���� QQQQ(7) [3] f0; 1g :p(8) [7] f1; 2g pclosed with (4; 8)Note, however, that minimal tableau rules using sets-as-signs need not to be unique (see (H�ahnle,1992c) for examples).Quanti�er rules for many-valued logic are surprisingly simple if only certain signs are used. Wede�ne the following abbreviations for signs:<i = f0 ; : : : ; i� 1g for i 2 N>i = fi + 1; : : : ; n� 1g for i 2 NFor these signs we get the usual
- and �-rules, with the component rules as stated in Table 2.7.If we ask for singleton sets-as-signs we get the rules from Table 2.6. Note, however, that bothrules for singleton signs must be applied an inde�nite number of times to its premise in order toguarantee completeness. In this sense, they have a
-
avour, although they are not of
 shape.fig (8x)�(x)>i�1 �(t)fig �(c) fig (9x)�(x)<i+1 �(t)fig �(c)Where c is a new parameter and t is any term.Table 2.6: Tableau rules for quanti�ers with singleton signs.SummaryTheorem 2.61 (Completeness) Let � be a �rst-order formula. If � is a tautology then thereis a closed tableau with root N� D�, provided for the set of signs S used in the tableau rules holdsthat N �D 2 S � Si2Nf >i ; <i ;figg and (2.2). If � is propositional we need only condition(2.2).

2.7. MANY-VALUED TABLEAUX USING SETS-AS-SIGNS 41

(t)>i (8x)�(x) >i �(t)<i (9x)�(x) <i �(t)� �(t)<i (8x)�(x) <i �(c)>i (9x)�(x) >i �(c)Table 2.7:
 and � component rules.Theorem 2.62 (Soundness) Let � be a �rst-order formula. If there is a closed tableau withroot N� D� then � is a tautology, provided (2.2) holds for the set of signs S used in the tableaurules.

3 Syntax of Knowledge Bases3.1 Parts of a Knowledge Base3TAP 's input �les (called knowledge bases) consist of four major parts: the sort declarations,signature de�nitions, the axioms, and the theorems. These are described in the following section.Comments (Section 3.5) may be inserted at any place into an input �le.A formal de�nition of 3TAP 's input language is given in Table 3.1. For ease of understanding it ispresented by a mixture of regular expressions and a context-free grammar (similar to extendedBackus-Naur-form). Lowercase words denote lexems (terminals) and upper case words are usedfor non-terminals. Characters in quotes, e.g. '<', stand for themselves. Anything within squarebrackets [: : :] is optional. The operator � is the Kleene-hull, i.e. a� could be expanded to theempty word or any �nite sequence of as.3.2 Sorts and Sort DeclarationsThe sort declaration may be omitted in the propositional case. For one-sorted �rst-order problemsat least one sort has to be de�ned, e.g. top. The top sort is recommended for that case sincethe output utilities, which may be used to visualize a 3TAP proof, supply an option to omit thatsort.Remark 3.1 Please note, that the top sort is not prede�ned. It has to be declared like anyother sort.The <-notation is used to de�ne a sort hierarchy. The symbol < may be read as \is subsort of".The sortname on the left side of < must not already be de�ned, the sortname on the right sidemust be de�ned. Otherwise the compiler will print an error message.From a theoretical point of view it would be possible to use a �nite meet-semilattice of sorts sincea unique most general uni�er exists for such hierarchies. In 3TAP , however, we are restricted totree-shaped sort hierarchies.Example 3.2 The following declaration de�nes the sort hierarchy shown in Figure 3.1.sort fields.sort real < fields.sort complex < fields.sort rational < real. 42

3.2. SORTS AND SORT DECLARATIONS 43KNOWLEDGE BASE ::= (DECLARATION)�(AXIOMS AND THEOREMS)�DECLARATION ::= SORT DECLARATIONj PREDICATE DECLARATIONj CONSTANT DECLARATIONj FUNCTION DECLARATIONj VARIABLE DECLARATIONj COMMENTSORT DECLARATION ::= 'sort' SORTNAME (',' SORTNAME)�['<' SORTNAME] '.'SORTNAME ::= 'top' j NAMEPREDICATE DECLARATION ::= 'predicate' NAME (',' NAME)� [':' DOMAIN]'.'DOMAIN ::= SORTNAME ('x' SORTNAME)� '.'CONSTANT DECLARATION ::= 'constant' NAME (',' NAME)� : SORTNAME '.'FUNCTION DECLARATION ::= 'function' NAME (',' NAME)� : DOMAIN'->' SORTNAME '.'VARIABLE DECLARATION ::= 'variable' NAME (',' NAME)� : SORTNAME '.'AXIOMS AND THEOREMS ::= 'axiom' NAME ';' FORMULA '.'j 'theorem' NAME ';' FORMULA '.'j COMMENTFORMULA ::= ATOMIC FMAj FORMULA BINOP FORMULAj UNOP FORMULAj '(' FORMULA ')'j QUANTIFIER VARIABLES '(' FORMULA ')'ATOMIC FMA ::= NAME ['(' TERM (',' TERM)� ')']j TERM '=' TERM j TERM '==' TERMTERM ::= NAME ['(' TERM (',' TERM)� ')']VARIABLES ::= NAME (',' NAME)� [':' SORTNAME]QUANTIFIER ::= 'forall' j 'exists'BINOP ::= '&' j 'v' j '<=' j '<=>' j '=>'j '<-' j '<->' j '->' j '<�' j '<�>' j '�>' j '#'UNOP ::= '-' j '�' j 'jt' j 'jf' j 'ju' j 'jt' j 'a�' j 'nabla'COMMENT ::= '%' ALPHANUM�NAME ::= LOWERCASE ALPHANUM�LOWERCASE ::= 'a' j : : : j 'z'UPPERCASE ::= 'A' j : : : j 'Z'OTHER CHAR ::= '0' j : : : j '9' j ' 'ALPHANUM ::= LOWERCASE j UPPERCASE j OTHER CHARTable 3.1: De�nition of 3TAP 's input language.

44 CHAPTER 3. SYNTAX OF KNOWLEDGE BASES�eldsrealrational��� \\\complexFigure 3.1: The sort hierarchy from Example 3.2.3.3 Signature De�nitionEvery predicate, function, constant or variable symbol used in some axiom or theorem has to bede�ned �rst to establish its domain and|in the function case|its range.Example 3.3 sort top.predicate p.predicate q1, q2 : top.predicate r : top x top.function f,g : top x top -> top.constant c : top.variable x : top.The above de�nition declares p as propositional variable (predicate of arity 0); q1 and q2 arepredicates with one argument of sort top; and r is a predicate of arity 2 with both arguments ofsort top. f and g are declared as top-valued functions with two arguments of the same sort. c isa constant of sort top and x is a top-valued variable.Remark 3.4 It is not possible to declare functions of arity 0. That is what constants are for.If you try this, the compiler will respond with an error message such asERROR: line 10 near '->' : parse errorRemark 3.5 3TAP is not able to distinguish functions by their arity, i.e., you must not declarefunctions of di�erent arity with the same name. If you do, the compiler will print an errormessage:ERROR: Redeclaration of 'f'! 'f' is already declared as a function!The same is true for predicate declarations.In addition, it is not allowed to give the same name to di�erent types of symbols (e.g. a variableand a sort).A symbol has to be de�ned before it is used. There is no other restriction on the order of thedeclarations.The declaration of variables is an exception: Variables must either be de�ned by a variabledeclaration (as described above) or in the variable list following the quanti�er. For example,

3.4. AXIOMS AND THEOREMS 45v disjunction& conjunction=> material implication<= reverse material implication<=> equivalence- negationTable 3.2: Two-Valued connectives.: : :forall x:top: : :has the same e�ect asvariable x:top.: : :forall x: : :However, something likevariable x:top.: : :forall x:bottom: : :and evenvariable x:top.: : :forall x:top: : :is not allowed. If you try this, the compiler will respond withERROR: Redeclaration of 'x'! 'x' is already declared as a variable !3.4 Axioms and Theorems3.4.1 NamesSimilar to signature declarations, axiom and theorem names have to be unique. The axiom andtheorem names may be identical to names of sorts, predicates, functions, constants or variables;but this should be avoided because it is no good style.3.4.2 ConnectivesIn the (standard) two-valued version of 3TAP the connectives in Table 3.2 are available. For thethree-valued version the connectives from Table 3.3 may be used. Those connectives listed in thegrammar but not listed in some of the tables have no prede�ned semantics. They may be freelyde�ned to have any desired semantics. How to de�ne operators is described in Section 9.3.The connectives' priorities are de�ned in Table 3.4. Symbols in one box have the same priority.Please note that a higher priority means a lower precedence. For example, implication has ahigher priority than disjunction (the precedence of disjunction is greater), i.e., the meaning ofa v b => c is (a _ b)! c.

46 CHAPTER 3. SYNTAX OF KNOWLEDGE BASESv disjunction& conjunction=> weak implication<= reverse weak implication<=> weak equivalence# Lukasiewicz implication- strong negation~ weak negationnabla (r) nabla operatorjt a�rmationaff partial a�rmationju partial a�rmationjf falsi�cationTable 3.3: Three-valued connectives.
max. priority<=>#~> <~> <~-> <-> <-=> <=v&- ~aff jf ju jt nabla= ==min. priorityTable 3.4: Priority of the connectives.

3.5. COMMENTS 473.4.3 EqualityAs indicated by the grammar in Table 3.1, the equality sign = is a prede�ned in�x predicatesymbol. It must not be declared.Make sure that the two sides of an equality have compatible sorts. In the following exampletheorem t1 is illegal (in the scope of the sort declaration from Example 3.2), while theorem t2is correct:variable x : real.variable y : complex.variable r : rational.theorem t1; x = y.theorem t2; x = r.Remark 3.6 If incompatible sorts are used in an equality, the compiler will print an errormessage. For the above example the error message is the following:ERROR: The terms 'x:[real,fields|_5001]' and 'y:[complex,fields|_5002]'have incompatible types!Operator: =The demodulator sign == may appear anywhere where an equality sign is allowed. The samerestrictions concerning sort compatibility apply. More on demodulators can be found in Sec-tion 5.13.3.5 CommentsComments may be inserted into input �les between any lexems. As indicated by the grammar,anything following the %-sign in a line is a comment.To preserve readability, only two comment-rules are present in the grammar of Table 3.1. Thenon-terminal \COMMENT" may be inserted between any two symbols in the grammar. Topreserve the readability of the input �le, you should not make use of the additional places allowedfor comments. It is a better style to comment formulae immediately before their de�nitions.

4 An Overview of the SystemArchitectureIn this chapter we want to give the reader an idea of the general architecture of 3TAP and of howthe modules interact.We have already mentioned that 3TAP is mainly written in Quintus (resp. SICStus) Prolog withsmall pieces of C for e�cient management of global variables.Theorem proving in 3TAP is essentially a two stage process. One or more problems are collectedinto knowledge bases (see Chapter 3 for the syntax). In a �rst step these are compiled. Theresult is a representation of the problem in terms of 3TAP 's internal data structures together withstatic link information. This is written to a separate �le and thus needs to be computed onlyonce. The second step is the actual proof.The design of 3TAP tries to provide as much modularity as possible. The main tasks of the proverhave been identi�ed and were distributed in various modules. To understand their structure itwill be helpful to look at the slightly simpli�ed algorithm corresponding to the main predicatefor producing a closed tableau (see Section 5.2 for more details):1Algorithm of close multipleinput: the current branch B and the conclusion C produced from the last rule application.output: success i� all extensions Ei in C can be closed with B, fail else.if B [E1 can be closed immediatelythen successelse fetch one or more new formulae � from the knowledge base;if B [E1 [� can be closed immediatelythen successelseif B [E1 [� is exhaustedthen if B [E1 [� can be closed with equalitythen successelse failelse if switched on, try to dissolve;choose a formula �;apply rule to �;reorder conclusion �C;call close multiple recursively with B [E1 [� and �Cfifi;call close multiple recursively with B and E2; : : :En.The initial tableau is treated as an empty branch with a conclusion that consists of a singleextension, namely the initial branch. Note that not all formulae in the current knowledge base1 The if-then-else constructs represent choice points, i.e., the else-part of a construct is not only executed if thecondition evaluates to false, but also if the then-part fails.48

49need to reside on the initial branch, rather they are fetched on demand during the proof. Thisis advantageous when the knowledge base is large, but loosely connected.From the algorithm shown above it is clear that several tasks can be separated. The predicateclose multiple itself resides in the module main. Immediate closure between atomic formulaeis checked in closure, possibly using unification if sorted terms occur. Since there may beseveral candidate pairs for a closure, heuristics is needed. The heuristics module is neededin the next step as well to determine which formula to retrieve next from the current knowledgebase. It uses static indexing information for this. Since the knowledge base may be empty orcontain merely atomic formulae a branch can become exhausted at this point. If the problemcontained equalities, the branch is tried to be closed with the equality theory available at thispoint. If the branch is neither closed nor exhausted the expansion process is continued. Themodule choice selects the next formula in focus, while inference contains the predicates thatperform a rule application. Obviously, the information from rules is needed here. Anotherpredicate from inference reorders the newly generated conclusion to achieve fairness.We emphasize that all relevant data structures are encapsulated in the module datastructuresand can only be accessed through the interface predicates of that module. This informationhiding technique proved to be helpful several times when the internal representation underwentre�nements and changes. Similarly, all output predicates and error message texts are collectedin separate modules.Uni�cation with occur check is not provided as a built-in in Quintus Prolog resp. SICStus Prologand thus is programmed in Prolog. An attempt to gain a speed-up by using a C implementationproved to be in vain. The reason was the very rudimentary C interface of Quintus Prolog(Gerberding, 1990).The modules which together form the core of 3TAP are thus:choice complete equality inferencerules closure dissolve heuristicsmain unificationThe following modules provide general services or have a technical nature:datastructures msg tap sysdep globalvars quintus.cdeclarations output globalvars.c globalvars sicstus.cThese are the modules which form the shell:boot index information interfacemakekbx preproc proveallThe following modules form the compiler:scanner.l grammar.y output.c output.hThe following table summarizes 3TAP 's modules:

50 CHAPTER 4. AN OVERVIEW OF THE SYSTEM ARCHITECTUREModule Name Short Descriptionboot Loads and compiles all required modules; initializes variousvariables.choice Predicates for choosing the next formula in focus on the currentbranch.closure Predicates to check the current branch for closure with the currentextension.complete Predicates for implementing completion-based equality reasoning.datastructures Predicates that implement the main data structures. All maindata structures can solely be accessed via this module.declarations Global declarations concerning defaults for switches, initial sig-ning, �le names, operator names etc.dissolve Predicates for implementing the dissolution rule.equality Predicates for implementing equality reasoning.heuristics Representation of heuristics for selection of closure pairs and nextformula to retrieve from knowledge base.index Generation of static indexing information stored in compiledknowledge bases.inference Application of tableau rules and construction of conclusion in afair order from information in the rules module.information Predicates and texts of on-line help.interface Provides top-level predicates for compiling knowledge bases, doingproofs in various manners etc. Calls the compiler.main Provides the predicate close multiple which implements themain loop of the prover.makekbx Predicates for handling the compiler output and adding index andcontrol information and for loading a thus preprocessed KB intothe workspace. Adds index and control information.msg tap Contains error message texts. Not a module in the sense of Quin-tus (resp. SICStus) Prolog.output Predicates for writing formatted output information to streams.All output to the user is handled via this module.preproc Predicates for preprocessing formulae.proveall Predicates for testing a complete suite of problems and generatingstatistics.rules Representation of the tableau rules.sysdep Contains all predicates that are not conforming to DEC-10 Prolog,Unix speci�c predicates and C interface predicates.unification Predicates for uni�cation of sorted terms.globalvars.c C program for global variable management.globalvars quintus.c C program which is needed in addition to globalvars.c if Quin-tus Prolog is used.globalvars sicstus.c C program which is needed in addition to globalvars.c if SIC-Stus Prolog is used.scanner.l Contains the rules for the syntax-analysis. This �le is the inputfor the Unix tool Lex (or Flex) to generate the scanner.

51Module Name Short Descriptiongrammar.y Contains the grammar rules. This �le is the input for the Unixtool Yacc (or Bison) to generate the parser.output.c Contains the output procedures for the parser. This �le is writtenin C.output.h Header-File for output.c.We give the call dependency graph for the modules of the core and the shell in Figure 4.1. Forsake of simplicity we did not include dissolve which is called only optionally and heuristicswhich is called by a number of modules. Finally, Table 4.1 gives some statistics of 3TAP 's sourcecode (incl. comments). proveall��interfacesshhhhhhhhhhhhhhhhhhhhwwooooooooooo �� ,,XXXXXXXXXXXXXXXXXXXXXXXXparser makekbx�� main�� ((QQQQQQQQQQQQQ ++XXXXXXXXXXXXXXXXXXXXXXXXXXXX�� informationindex ��>>>>>>>>>>>>>>>>>> closure�� BBBBBBBBBBBBBBBBBBB�� inference~~ |||||||||||||||||| complete��choice equalityvvmmmmmmmmmmmmmrules unificationFigure 4.1: Dependency graph for the modules of 3TAP 's core.Language No. of lines KByteProver Prolog 23,600 799C 1,200 30Compiler C 1,600 46Yacc/Bison 500 14Lex/Flex 200 5Utilities C 2,400 89Lex/Flex 400 11Total 29,900 994Table 4.1: Statistics of 3TAP 's source code (incl. comments).

5 System Description byModules5.1 Proveall, Information, Boot, Interface5.1.1 The User InterfaceThe descriptions of these modules are collected in one section because these four modules togetherprovide the user interface for the prover 3TAP .With the module boot, the whole system is compiled and loaded into the workspace of Prolog.information supports several help pages and proveall can be used to compile and prove wholesets of problems. interface contains the predicates for starting a proof. The following foursections describe each module in detail.5.1.2 ProveallThis module provides predicates proveall/1,2,3 and compall/1; they have the following form:� proveall(+What to prove)� proveall(+What to prove,+Format)� proveall(+What to prove,+Parameter)� proveall(+What to prove,+Format,+Parameter)� compall(+What to prove)With the predicates proveall/1,2,3, sets of problems can be proved, and a �le statistics canbe generated containing statistics on the proof length, time etc. With the predicate compall/1,sets of problems can be compiled.The prede�ned problems are subdivided into groups as shown in Table 5.1. For a detaileddescription, see Section 8.1. tests dagostino mrcr meta pl pigeonpig alt kalish psgroups pel prop pel predpel eq phi three valuedTable 5.1: Groups of test problems for 3TAP .The �rst argument of proveall/1,2,3 and compall/1 can be either52

5.1. PROVEALL, INFORMATION, BOOT, INTERFACE 53� the name of a problem set,� a list of problem set names,� the keyword pelletier to prove or compile the three sets pel prop, pel pred and pel eq,or� the keyword all to prove or compile all the problem sets.Example 5.1 Some examples for the usage of proveall/1:� proveall(pel prop).proves the set pel prop which contains 17 propositional problems from (Pelletier, 1986).� proveall([pel prop,pel pred]).proves the sets pel prop and pel pred which contain 17 propositional and 28 �rst-orderproblems from (Pelletier, 1986).� proveall(pelletier).proves the sets pel prop, pel pred and pel eq which contain 62 problems from (Pelletier,1986).Remark 5.2 As indicated by its name, the problem set three valued can be proved (resp. com-piled) only with the three-valued version of 3TAP . In the two-valued version, all does not includethe problem set three valued.If proveall/1 is used or anything but the keyword tex is used as the second argument ofproveall/2 or the third argument of proveall/3 the statistics �le is written as a standard text�le, else the statistical informations are formatted such that they can be included into a LaTEX�le.Example 5.3 Some examples for the usage of proveall/1 and proveall/2 with the formattingoption:� proveall(all).proves all problem sets and writes the statistic information as a text �le.� proveall(all,ascii).does exactly the same.� proveall(all,tex).proves all problem sets and generates a LaTEX �le.The problems are proved using the command proveinc (but note the exception in Remark 5.5),i.e., either the parameter maxcounter or the parameter maxbranchlength is increased until a proofis found. By default maxcounter is used. maxbranchlength is increased if one of the keywordsmaxbranchlength and mbr is used as the second argument of proveall/2,3. The commandproveinc is described in Section 5.1.5.Each problem in a problem set is written in form of a list containing three members. The �rstmember is the name of the problem, the second member is a list containing the theorems to beproved and the third member is also a list, containing the setting of the switches that should beused. If this list is empty, the proof is tried with the default settings.

54 CHAPTER 5. SYSTEM DESCRIPTION BY MODULESExample 5.4 Two problems from the problem set pel pred:� [pel23,[pel23],[]] means: Prove the theorem pel23 from the problem pel23 and usethe default settings.� [pel34,[pel34],[set_maxcounter(1)]] means: Prove the theorem pel34 from the pro-blem pel34 and set maxcounter to 1.Remark 5.5 If a command set maxcounter(n) (resp. set maxbranchlength(n)) is containedin the list of settings associated with a problem, and maxcounter (resp. maxbranchlength) is theparameter to be increased, the problem is proved by calling prove using the value n for maxcounter(resp. maxbranchlength) instead of using proveinc.5.1.3 InformationThe information module is a module providing on-line help. It gives information about theavailable commands.It provides two predicates, info/0 and info/1. If you call info/0, you get an overview overthe available information pages concerning the following topics: compiler, prover, equality, diss,(dissolution), maintain (maintaining the workspace), variables, output (tableau output), unix,info, all.With the callinfo(+What_information)where What information is one of the keywords listed above, you can get further informationconcerning these topics, that is, hints for the setting of global variables, the current settings, adescription of the equality strategy or an overview over the available unix commands etc.Example 5.6 info. shows a list of the available information pages.info(prover). shows a list of available commands for proving a problem.info(all). prints all available information pages. It is recommended to select an outputstream other than the screen if you want to read all information. See also Section 5.14.5.1.4 BootThe boot module is the access to 3TAP . After invoking Prolog, you have to type| ?- compile(boot).to build the 3TAP system. The following actions take place:1. Compile the modules.2. Initialize the prover.3. Initialize the settings.4. Print the information overview page.After that, the whole user interface can be used in order to work with 3TAP .

5.1. PROVEALL, INFORMATION, BOOT, INTERFACE 555.1.5 InterfaceThe module interface contains predicates to compile, read, check and delete knowledge basesas well as to start the prover. The predicates can be classi�ed as follows:5.1.5.1 Predicates Concerning Knowledge BasesThe following predicates are used to create, manipulate, use and delete a knowledge base (KB)and extract information about a selected KB:� compkbx(+File).Calls the compiler for parsing the formulae in File and generates the static index. As theresult of the call, a �le file.kbx is created and written to the current working directory.This �le is in the format direct input as a KB.� readkbx(+File)Use a *.kbx �le and read it as a KB into the workspace.� usekbx(+File)Compile a �le and load it as a KB into the workspace. The e�ect is the same as executing�rst compkbx(File) and then readkbx(File) for some �le.� delkbsDelete all KBs from the workspace.� delkbdelkb(+KB)Delete the speci�ed (or by default the current) KB from the workspace. If afterwards theworkspace is not empty, the current KB is set to an arbitrary one available.� writekbwritekb(+KB)Write all formulae of the speci�ed (or by default the current) KB to the current outputstream.� writeidxwriteidx(+KB)Write all indexing information of the speci�ed (or by default the current) KB to the currentoutput stream.� writesortwritesort(+KB)Write all information on sorts of the speci�ed (or by default the current) KB to the currentoutput stream.� writekbxwritekbx(+KB)Write all formulae, index entries and sorts of the speci�ed (or by default the current) KBto the current output stream.Example 5.7 Suppose we have a �le test that contains a problem to be proved.� usekbx(test).compiles the �le test , creates a �le test.kbx and loads test.kbx into the workspace ofProlog. A list with theorems available is sent to the current output stream.

56 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES� readkbx(test). andcompkbx(test).in combination have exactly the same e�ect.� delkb(test).removes test.kbx from the workspace of Prolog. If you have only one *.kbx �le in theworkspace or test.kbx is the current KB, delkb. has the same e�ect.5.1.5.2 Predicates Concerning the ProofThe following predicates are used to prove something from a KB:� proveprove(+Theorem index)prove(+Theorem index,+KB)Call the prover to prove the theorem indicated by Theorem index. The default KB is thecurrent one and if no theorem index is speci�ed, it is assumed that the current KB ischecked for consistency.� proveincproveinc(+Theorem index)proveinc(+Parameter)proveinc(+Theorem index,+KB)proveinc(+Parameter,+Init)proveinc(+Theorem index,+Parameter,+Init)proveinc(+Theorem index,+KB,+Parameter)proveinc(+Theorem index,+KB,+Parameter,+Init)Call the prover to prove the theorem indicated by Theorem index. The default KB isthe current one and if no theorem index is speci�ed, it is assumed that the current KBis checked for consistency. Either the parameter maxcounter (default) or the parametermaxbranchlength (if Parameter is maxbranchlength or mbr) is increased until a proof isfound or a limit is reached. Init is the initial value for the parameter to be increased. Ifno value is given, 0 is used for maxcounter and 1 for maxbranchlength. The limit is givenby the parameters inc limit mc and inc limit mbr.� proveinc return mc(+Parameter,-Value)proveinc return mc(+Theorem index,+Parameter,-Value)These predicates do exactly the same as proveinc/1 and proveinc/2. In addition theygive back the smallest maxcounter (resp. maxbranchlength su�cient for the proof.� protproveprotprove(+Theorem index)protprove(+Theorem index,+KB)Prove a theorem from a speci�ed (or by default the current) KB and protocol the proof ina previously speci�ed output �le. With protprove/0, a consistency check is tried.� inconsistentinconsistent(+KB)These predicates try to close a tableau initially consisting of only the axioms contained inKB, i.e. they try to prove the inconsistency of a KB.Example 5.8 Let us continue the example from above. Suppose is a theorem th test in theknowledge base. Then

5.1. PROVEALL, INFORMATION, BOOT, INTERFACE 57� prove(th test). andprove(th test,test).do the same, namely to prove the theorem th test using the default parameter maxcounter.� proveinc(th test). andproveinc(th test,test).also do the same, that is, they prove th test, starting with maxcounter = 0, incrementmaxcounter every time the proof fails and start the whole proof procedure again with ahigher value.� Respectively,prove. andproveinc.try to prove the inconsistency of the axioms of test.� inconsistent. andinconsistent(test).do exactly the same as prove and prove/1.5.1.5.3 Help and Information PredicatesThere are two more predicates exported by this module:� lookupThis predicate shows the current settings of all switches and parameters.� stepcontrolChecks whether step mode is on and if so waits for a command to be entered beforecontinuing. Possible input commands are:{ c : continue{ a : abort{ h : help{ l : set step mode o�{ d : set the debug level to 0{ e : set the equality debug level to 0{ All other commands print the information page concerning step modes.5.1.5.4 How Does It Work?The predicates concerning the proof di�er in various settings and in the proof strategy, buthave in common that they all call the central predicate of the interface module which is thepredicatetap(+KB,+Theorem_index,+Idcs)This predicate calls 3TAP to prove the theorem with the index indicated by Theorem index fromthe denoted KB and ignore those which are listed in Idcs. The predicate works as follows:1. Set and reset global variables.

58 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES2. Select the desired output stream.3. Initialize the branch according to the desired proof, i.e. put the theorem on the branchif this was desired and put further axioms on the branch according to the setting of theswitch grepall. grepall controls the initialization of the branch as follows:� If grepall is on (the default), then all formulae from the workspace which have anatomic link to the theorem are \grepped" onto the branch. This is done using thepredicate add th connected fmae to branch/5.� If grepall is o�, all atoms (and only atoms) from the workspace which have an atomiclink to the theorem are \grepped" onto the branch. This is done using the predicateadd th connected atom to branch/5.4. If no theorem is to be proved, an arbitrary axiom is \grepped" from the workspace and isused for the initialization of the branch.5. Then it is checked if you actually use sort information for the proof (i.e. if you use morethan one sort).6. Finally, prove it: this is done via the close multiple/4 predicate in the main module, forfurther details see Section 5.2.7. When the proof search terminates, statistics are print and a message that tells whether aproof has been found.5.2 MainThis module contains the central predicate� close branch/3This is the implementationof the basic algorithm of (H�ahnle, 1990a) for a multi-valued automatedtheorem prover based on the tableau method.close branch/3 works as as follows:First a signed formula (sformula) is selected via the choose sformula/4 predicate from thechoice module, which is described in Section 5.4.1.Due to the possibility that choose sformula/4 could result in grepping some new sformulaefrom the workspace on the branch, we have to examine immediately whether the branch can beclosed with the selected sformula (treated as an extension). In that case, nothing else is doneand the predicate succeeds. Otherwise, there are several possibilities:1. The
ag dissolution is set to on. Then it is tried to close the branch via dissolution. Ifthis succeeds, nothing else is done and close branch/3 succeeds.If dissolution = off or no closure is possible with dissolution, then there are three morepossibilities:2. The branch is not exhausted. This is the most common case. The branch then is ex-panded via the apply rules/4 predicate in the inference module and the resulting newbranch(es) is (are) tried to be closed by the close multiple/4 predicate, which representsthe transitive closure of close branch/3 (see below).

5.2. MAIN 593. The branch is exhausted and it is possible to fetch new formulae from the workspace. Onenew formula is put onto the branch and close branch/3 is called recursively.4. The branch is exhausted and there is no formula in the workspace that can be put on thebranch:� If the
ag equality is set to on, the branch is tried to be closed via equality. This isdone by the predicate close branch with completion/1 from the complete module,see Section 5.13.� In all other cases, the predicate handle exhausted branch/1 is called andclose branch/3 fails. Prolog then tries to �nd a proof with backtracking.The other predicate of the main module,� close multiple/4is both the entry into the whole proof procedure as well as the controlling predicate for theclosure of the whole tableau. close multiple/4 tries to close the current branch together withthe �rst extension of the current conclusion.� This conclusion is in the initial step created by the tap/3 predicate from the interfacemodule and is either the theorem to be proven or an arbitrary formula in the case of aninconsistency proof.� Afterwards the current conclusion is the result of the apply rules/4 predicate applied ona selected sformula of the current branch.If it is possible to close the branch with the �rst extension, close multiple/4 is called recursivelywith the remaining extensions of the current conclusion, otherwise close branch/3 is called withthe �rst extension added to the branch. If the branch|together with one of the extensions|getslonger than maxbranchlength (cf. Appendix app-switches), close multiple fails.Interaction schema:The predicate close multiple/4 has the following structure:� Entry:close multiple(Branch,Conclusion,Diss info,No) :-: : :check closure(+Branch, ,+First extension, ,),: : :� If check closure/5 failsclose branch(New branch,Diss info,No),: : :close multiple(New branch,Remaining extensions,Diss info,No),: : :The predicate close branch/3 has the following structure:� Entry:close branch(Branch,Diss info,No) :-choose sformula(Branch,Sformula,Temporary branch,Added formula),check closure(Branch, ,First extension, ,),: : :

60 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES� If check closure/5 fails, but choose sformula/4 has found a new sformula:treat dissolution/10� If the branch is still not closedapply rules/4,close multiple/3,: : :� If no new sformula has been found to expand but there are still unused sformulae in theworkspace, then grep one new formula, put it on the branch and callclose branch/3� If no new expandable sformula has been found and no more sformulae are in the workspaceand the equality
ag is set:close branch with completion/1� Otherwise:handle exhausted branch/1,fail.5.3 Closure, HeuristicsWe describe these two modules in the same section, because the heuristics module containsthe predicate select complementary atoms/2 that represents the heuristic according to whicha branch will be closed, in particular, when there are two or more possibilities for a closure.5.3.1 HeuristicsThis module contains the predicates for representation of the heuristics for proof search used in3TAP . These are heuristics concerning the closure of a branch as well as the selection of sformulaeor atoms from the KBs for putting them on a branch.5.3.1.1 Heuristic for ClosureThe central predicate is:� select complementary atoms(+Complementary atoms list,-Selected pair)Complementary atoms list is a list of pairs of atoms, which have complementary1 signs (accor-ding to the corresponding predicate in the declaration module) and can be uni�ed. This listis generated in the closure module, see Section 5.3.2.The predicate selects the \best" complementary pair of all potential pairs. Therefore, two helppredicates are needed:� construct heuristic list(+Complementary atoms list,-Heuristics list)This predicate orders the potential pairs according to the following heuristic:{ Pairs whose uni�cation does not lead to variable instantiations are selected primary.1 In the many-valued case signs correspond to sets of truth values and these are thought to be complementaryi� they are inconsistent i� they have an empty intersection.

5.3. CLOSURE, HEURISTICS 61{ The secondary ordering is by the number of former usages in closures (to assurefairness).{ Finally pairs are ordered by the number of variable instantiations necessary to unifythem.Concisely: We choose the pair which does not lead to variable instantiations. If there is nosuch pair, we use the pair with the atoms which have been used fewest for closure so far. Ifthis is not unequivocal we order the pairs according to the least instantiations of variablesnecessary by the uni�cation of the atoms.A pair (a1; a2) is treated as if it had been used to close a branch B if B has been closedusing atoms (a01; a02) and1. a1 and a01 are identical up to variable renaming,2. a02 is an instance of a2.� construct pair list(+Heuristic list,+Acc,-Pair list)This predicate transforms the heuristic list from the previous predicate into a list of pairsof atoms by stripping o� the additional heuristic information.Via the sysdep member/2 predicate, we now select a pair of atoms and use this pair for theclosure of the branch. This is in the �rst case the �rst pair of the list, but it represents also achoice point, and if backtracking does occur we run all over the list.5.3.1.2 Heuristic for Sformula SelectionThere are several predicates which control which sformula or atom to fetch from the KB. Theseare:� grep connected formula(+Sign,+Atfma,+KB,+Idcs,-Signed fma,-Idx)This predicate is used for fetching a signed formula (and its index) from KB which containsthe atomic formula Atfma with a complementary polarity as indicated by Sign, but onlyif its index Idx is not yet contained in the indices list Idcs of the branch. (For additionalinformation on indexing and related topics see Section 5.12). If there is no new sformulain KB connected to Sign and Atfma this predicate fails.� grep atom(+Sign,+Atfma,+KB,+Idcs,-Signed fma,-Idx)Fetch an atom (and its index Idx) from KB but only if Idx is not yet contained in Idcs.Note: The �rst two arguments Sign and Atfma are not used in this version of 3TAP .� grep unconnected formula(+Idcs,+KB,-Signed fma,-Idx)Returns a signed formula not on the current branch so far (as indicated by Idcs and itsindex Idx. If there is no such formula in KB, this predicate fails.� grep formulae(+Branch,+Branch no,-New branch,-Closed)This predicate adds formulae from the workspace to the branch before a rule is applied.All cases in which this has to be done are combined in this predicate. The cases are:1. It is possible to grep a formula by a new atomic link(a) It is possible to close the branch with the new formula. Nothing else has to bedone, the
ag Closed is set to true.

62 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES(b) It is not possible to close the branch with the new formula and the new formulais an atom. The predicate calls recursively itself. This recursion is continued aslong as it is possible to grep atoms by new atomic links and as long as these newatoms do not close the branch.(c) The new formula is not an atom. Nothing else is done, the
ag Closed is set tofail.2. There is no new formula on the branch and there are still new formulae in the work-space. One new formula from the workspace is added to the branch, Closed indicates,whether the new formula closes the branch.3. In all other cases nothing is done and the
ag Closed is set to fail.Note: The predicate never fails.� new grep formulae(+Branch,-New branch,-Added formulae)This predicate adds formulae from the workspace to the branch before a rule is applied.This is done only if no unused sformulae are on the branch. All cases in which this has tobe done are combined in this predicate. The cases are:1. It is possible to grep a formula by a new atomic link.(a) The new formula is an atom. The predicate then calls itself recursively. Thisrecursion is continued as long as it is possible to grep atoms by new atomic links.(b) The new formula is not an atom. Nothing else is done.2. There are new formulae on the branch and there are still new formulae in the work-space. One new formula from the workspace is added to the branch.3. In all other cases nothing is done.The last two predicates both use a predicate grep new formula/3 which is only used within theheuristics module.� grep new formula(+Branch,-New Formula,-New Index)Get some formula from the workspace unused on the branch so far. If a theorem is to beproved the choice is restricted to a connected formula; if consistency is to be proven alsoan unconnected formula may be chosen.Note: The formula returned is ready to be added to the list of new formulae on the branch.As mentioned above, the formulae grepped preferably from the workspace are the ones that havea new atomic link. This is tried via the following predicate:� grep formula by new atomic link(+Branch,-New Branch,-New sformula)If there is an unused atom on the branch with a link to a formula not yet marked, thisformula is grepped from the workspace and added to the branch. If there is no such formula,the predicate fails.Finally, there are two predicates which handle grepping of formulae in connection with theequality strategy (See Section 5.13 for more details).� grep formula for exhausted branch(+Branch,-New branch)This predicate adds a formula from the workspace to an exhausted branch. In this version,a formula that contains an equality is added. If there are no such formulae in the workspaceor the
ag equality is o�, the predicate fails.

5.3. CLOSURE, HEURISTICS 63� grep equality without link(+Branch,-New Branch)If there is a formula in the workspace that has a link to an inequality or a negated demo-dulator, it is added to the branch.The predicates stated so far control grepping of formulae and atoms on the current branch.They are mainly used during initialization of a branch and in the case when there are no moreexpandable sformulae on a branch.There is one more (help) predicate in this module:� get free vars(+Fma,-Var list)Gives back a list of the free variables in the formula Fma.5.3.2 ClosureThis module contains the predicates which check a branch together with an extension for apossible closure. The central predicate is:� check closure(+Branch,+Branch no,+Extension,-Updated branch,-Flag)It works as follows:� check closure/5 is called. If Branch together with Extension can be closed Flag is setto 1. Updated branch contains the modi�ed branch, that is, some variables may havebeen instantiated and the counter of an atom may have been increased. The argumentBranch no is used for statistical and output purposes.In order to check for a closure,� close extension(+Branch,+Branch No,+Extension,-Close flag,-New branch)is the �rst predicate called. It tries to close Branch together with Extension. If a closureis possible, New branch is the updated version of Branch.The separation between check closure/5 and close extension/5 has historical reasons.In an older version of 3TAP we examined all extensions we got back from a rule applicationfor a possible closure with Branch. Therefore, check closure/5 was the control predicateand worked with a list of extensions rather than only one. close extension/5 was calledby it for each of these extensions.close extension/5 uses the following predicates:� collect_atoms_of_extension(+Extension,+Atm_list,-Close_flag,Branch,Branch_No)This predicate has two functions: First, it collects all atoms of the extension and second, ifduring the search for atoms a sformula is found, it is checked here, whether a tableau ruleis de�ned for it. In the two-valued version, this is always the case, but in the three-valuedversion, e.g. for [, , ,wneg(Fma),uSign] no rule is de�ned and the branch in which itdoes occur is closed.If we have found atoms or the branch is not already closed,� search complementary atoms of extension(+Atm list,-Compl atoms list)is called. It checks, whether the extension itself contains complementary atoms. If we havefound some,

64 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES� add flag to pairs(+Pair list,ext,-Triple list)is called to record that this complementary pair was found in the extension (ext is thekeyword for extension).Next, via get all atoms of branch/2 from the datastructuresmodule and the predicate� search_complementary_atoms(+Ext_atms_list,+Branch_atms_list,-Comp_atms_list)we check, whether there are atoms on the branch being complementary to the atom(s) inthe extension. Again we record this fact via� add flag to pairs(+Pair list,branch,-Triple list).If we have found complementary atoms, we use the predicate select complementary atoms/2from the heuristics module to select the best one.Now we do some statistics, instantiate the necessary variables by uni�cation and eventually up-date the branch and set Close flag. Some help predicates of close extension/5 are explainednow:� check if no rule defined(+Branch,+Sfma,-Close flag,-New branch)This predicate checks if a closure of the branch is possible because there is no rule de�nedfor the sformula Sfma, see above.� search complementary pairs(+Atom,+Atom list,-Pair list)This predicate looks, whether in Atom list one or more atoms exist which are complemen-tary to Atom. Each complementary pair is added to Pair list. If Atom is an equality or ademodulator and equality is switched on the results is the empty list.Two more predicates are in closure are related to closure checking:� check_closure_by_sformula_from_kb(+Branch,+No,+New_sfm,-New_branch,-Closed)Checks, whether the branch can be closed with the help of New sfm, which is taken fromthe workspace. This predicate is used in association with the grep * predicates from theheuristics module and simply interprets New sfm as an extension and then callscheck closure/5.� handle exhausted branch(+Branch)This predicate does everything what has to be done when a branch is exhausted, in par-ticular the updating of statistical information. It is normally called before backtrackingstarts.Finally,� substitute_univ_vars_sorted(+Atm,+Univ_var_list,-New_atm,-New_univ_var_list)is included in this module which substitutes the variables in Atm with respect to which itis universal by new ones which have the same sort as the old ones.5.4 Choice, InferenceDuring the proof procedure the predicate choose sformula/4 in the choice module usuallysupplies the next sformula to be expanded via apply rules/4 in the inference module. Adetailed description of these two modules is given in the following two sections.

5.4. CHOICE, INFERENCE 655.4.1 ChoiceThis module contains predicates for the selection of sformulae. During a proof, two kinds ofsformulae have to be chosen from the branch:1. If the branch has to be expanded, we need a sformula to serve as premise for a tableau ruleapplication.2. If we look for a possible closure of a branch, we need an atom from the branch which isable, together with an atom from the current extension, to close the branch.The two associated predicates are1. choose sformula(+Branch,-Sformula,-New branch,-Added formulae)This predicate selects the next sformula to be expanded. If the chosen sformula� is not linked to another sformula on the branch or� is not linked to an axiom in the workspace and or� does not contain an (in)equality.and removeunlinked is switched on, it is removed and another sformula is chosen.The selection of the sformula proceeds in the following precedence:(a) Look for an unused2 sformula on the branch. If there is no such sformula,(b) look for an unused sformula in the workspace. If there is no such sformula,(c) look for an already used sformula from the branch (this must be a
-formula!). Ifthere is no such sformula,(d) no sformula has been found to be expanded next.New branch can contain more or fewer sformulae than Branch. The list Added formulaecontains the formulae added to the branch.Note: choose sformula/4 never fails. If no sformula can be chosen, the atom none isreturned as value of the Prolog variable Sformula.2. choose atom(+Branch,-Atomic fma)This predicate selects an atom from the branch. First it looks for atoms which have notbeen used for a closure, and if all unused atoms are examined, the already used atoms are se-lected. This is done via the get best atom of branch/2 predicate in the datastructuresmodule.The other predicates in this module are used to judge the usefulness of the chosen sformula.These are:� can be removed from branch(+Sformula,+Branch)Succeeds, if Sformula can be removed from the branch, i.e.{ it is not linked to a formula on the branch or{ it is not linked to an axiom in the workspace or{ it does not contain an equality (only if equality is set to on).2 That is, it has not been used before as a premise for rule application.

66 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES� contains an equality(+Sformula,+KB)Succeeds, if Sformula contains an equality or an inequality. We need the current KB,because this information has already been computed and is stored in the associated lookuptable of KB.� is linked to branch(+Sformula,+Branch,+KB)Succeeds, if Sformula is linked to one of the sformulae on Branch.� is linked to axiom not on branch(+Sformula,+Branch,+KB)Succeeds, if Sformula is linked to one of the axioms in the workspace not on the branchyet.� are linked sformulae(+Sformula 1,+Sformula 2,+KB)Succeeds, if the two sformulae are linked.5.4.2 InferenceThis module contains the predicates for the application of tableau rules and the construction ofappropriate conclusions.The main predicate isapply_rules(+Branch,+Sformula,+Maxcounter,-Conclusion,-Updated_branch)It applies the proper tableau rule (fetched via the rule/8 predicate of the rules module) toSformula. For further details regarding rule application, see Section 5.10.The conclusion is constructed using the appropriate predicates in the datastructures module.This conclusion is then rearranged via juggle conclusion/2, which is used to achieve fairness.For fairness the labels associated with each operator in each sformula are used. With each labela global counter is associated (see Section 5.5).Then, if the
ag uselemmata is either alpha or on, the predicates add lemmata alpha/8, respecti-vely add lemmata/8 are used to generate lemmata which are added to the conclusion. For adescription of lemma generation, see Section 2.4, as well as 5.10 and 5.5.5.5 Data StructuresAll data structures used by the 3TAP system are de�ned in the module datastructures. Accessto data structures is provided through the access predicates de�ned in that module. The datastructures and the access predicates are discussed in the following subsections. The systemdependent parts of the module datastructures are hidden in the module which is describedin Subsection 5.6. Some of 3TAP 's data structures need global variables; these are implementedusing the C programming language and the foreign language interface of Quintus (resp. SICStus)Prolog. The semantics of the interface and the implementation of the global variables in themodule globalvars are described in Subsection 5.7.

5.5. DATA STRUCTURES 675.5.1 Representation of TermsThe basic data structures for manipulating tableaux are terms and formulae. The representationof the former is discussed in this subsection, the latter are handled in Section 5.5.2.As stated in Chapter 3 every term in the 3TAP -system has some speci�c sort. The sort informationis speci�ed as a list which determines the complete path from the root of the sort hierarchy3 tothat sort plus an additional variable tail. Consider the sort declaration from Example 3.2:sort fields.sort real < fields.sort complex < fields.sort rational < real.The sort information for a term of sort fields is [fields|_]. The sort rational is representedby [fields,real,rational|_]. Please note the variable tail albeit rational does not have anysubsort. The variable tails for the same sorts need not to be the same.A term is a constant or variable symbol or a function application followed by a colon and the listwhich represents the term's sort. For example, in the scope of the above sort declaration andconstant a,b : real.function f : real x real -> rational.the term f(a,b) is represented by the following Prolog term (white space has been added toachieve readability):f(a:[fields,real|_], b:[fields,real|_]) : [fields,real,rational|_].Here are the predicates supplied by the module datastructures to access the data structuresassociated with terms and sorts:� get term of sorted term/2Determine the (unsorted) term of a sorted term, i.e. the part to the left of the colon.� get sort of sorted term/2Determine the sort of a sorted term, i.e. the list to the right of the colon.� split sorted term/3This predicate splits the sorted term (hence the name) into two parts: The (unsorted) termas returned by get term of sorted term/2 and the list returned byget sort of sorted term/2.� get simple sort/2As stated above, the sort information is represented by a list with an uninstantiated tail.The list represents the path from the root of the sort hierarchy to the sort which is to berepresented. This predicate determines the last instantiated element of that list.� get incomplete sort/2Returns the uninstantiated tail of the list described above.� get simple and incomplete sort/3Does the same as get simple sort/2 and get incomplete sort/2 together.3 Which indeed is a tree.

68 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES5.5.2 Representation of FormulaeFormulae are represented by special Prolog terms. The form of these terms is discussed in thefollowing subsections.5.5.2.1 LabelsEvery formula in the 3TAP -system has a label attached to it. The label is used to identify thisformula throughout the whole tableau construction and to index a special data structure asdescribed in Section 5.7. In the current version of the 3TAP -system labels are built from Prologatoms starting with the character l followed by some integer (e.g. l17). New labels are generatedby the genlabel/1 predicate. The predicate is label/1 may be used to test a given atom forlabelhood.5.5.2.2 Atomic FormulaeThe simplest formula is an atomic formula, which is a propositional variable or a predicate.Atomic formulae are represented by Prolog terms whose leading functor is atfma/2 (which isan abbreviation of atomic formula). The term's �rst argument is the predicate or propositio-nal variable and the second argument is a label. For example, the atomic formula p(a,b) isrepresented by the Prolog term atfma(p(: : :,: : :), l1). Terms have been omitted for easeof reading. l1 is a label. The predicate is atomic fma/1 may be used to test, whether a for-mula is atomic. To extract the formula part of an atomic formula from the Prolog term useget atom of formula/2. That predicate simply returns the �rst argument of the atfma/2 term.5.5.2.3 Compound FormulaeLike atomic formulae compound formulae are represented by certain Prolog terms. There is aProlog functor for every connective in the given logic. The arity of that functor is one plus thearity of the connective. The additional argument is used to attach a label to every subformula.The label is always the last argument of the functor. Table 5.2 lists the functors associated withthe connectives of the two-valued version of 3TAP and table 5.3 does the same for the three-valuedversion. The connectives not used in the standard version of the 3TAP system are associated withfunctors of the same name, e.g. the functor for the connective �> is �>/3.connective functor/arityv dis/3& con/3=> imp/3<= pmi/3<=> equi/3- sneg/2Table 5.2: Two-Valued connectives and associated functors.Quanti�ed formulae are represented in the same way as simple compound formulae. The functorused for an existential quanti�ed formula is ex/3 and for an universal quanti�ed formula all/3.

5.5. DATA STRUCTURES 69connective functor/arityv dis/3& con/3=> imp/3<= pmi/3<=> equi/3# reg/3- sneg/2~ wneg/2nabla nabla/2jt jt/2aff partaffirm/2ju ju/2jf jf/2Table 5.3: Three-valued connectives and associated functors.Example 5.9 Consider the following declaration:sort top.predicate p,q : top.variable x : top.The formula forall x (p(x) v q(x)) is represented by the Prolog termall(x:[top|], dis(atfma(p(x:[top|]),l1),atfma(q(x:[top|]),l2),l3),l4).The variable declaration for x is not necessary (cf. Section 3).The following list shows the access predicates for formulae.� mk formula/2This predicate constructs a formula from a list which consists of an operator and one ortwo subformulae and a label.� get op of formula/2Determine the leading connective or quanti�er of the given formula.� get fma1 of formula/2Determine the left subformula of the given compound formula.� get fma2 of formula/2Determine the right subformula of the given compound formula.� get var of formula/2Return the variable list of the given quanti�ed formula.� get arity of formula/2Return the arity of the leading operator of the given formula. Please note that the arityof the Prolog functor is relevant here.� get label of formula/2Return the top level label of the given formula.

70 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES5.5.3 Representation of Signed FormulaeSigned formulae are represented as Prolog terms with the leading functor sformula/8. Thearguments of sformula are1. a usage counter for the number of rule applications to the formula,2. the branching factor of the formula if a rule is applied to it,3. the number of extensions a rule application will yield,4. the term representing the formula, cf. Section 5.5.2,5. the sign,6. an index which is used to access some indexing data structure,7. the name of the knowledge base it stems from,8. the list of variables with respect to which the formula is universal.Remark 5.10 Please note that the branching factor and the number of extensions may be un-instantiated. These arguments are instantiated when the formula is considered �rst for a ruleapplication. If an instantiation is necessary the values may be obtained by the rule/8 predicate,cf. Section 5.10.Signs are represented as Prolog atoms whose names end in \sign" (e.g., the sign for \false" isrepresented by fSign and that for \unknown or true" is written as utSign).The following predicates may be used to access the various parts of this data structure:� mk sformula/9This predicate builds a term consisting of the functor sformula/8 and the �rst eightarguments. The term is returned using the ninth argument.� get counter of sformula/2Return the counter of the given signed formula.� get branch number of sformula/2Return the branching factor of the given signed formula.� get successor number of sformula/2Return the number of extensions generated by a rule application to the given signed for-mula.� get sign of sformula/2Determine the sign of the given signed formula.� get fma of sformula/2Extract the term representing the formula from the given signed formula.� get kb of sformula/2Return the name of the formula's knowledge base.� get univ vars of sformula/2Return the list of variables with respect to which the given signed formula is universal.� increase counter of sformula/2Increase the counter associated with the given signed formula by one.

5.5. DATA STRUCTURES 715.5.4 Representation of ExtensionsAn extension is represented as a Prolog list of signed formulae. The predicates below may beused to construct or access extensions:� mk empty extension/1Return an empty extension, i.e. an extension containing no formulae.� get sformula of extension/3Returns the �rst formula from the extension and removes that formula from the extension.� add sformula to extension/3Adds the given signed formula to the extension. The result is the updated extension.5.5.5 Representation of ConclusionsA conclusion is a collection of extensions. It is represented as a Prolog list of extensions, i.e. asa list of lists of signed formulae. Use the following predicates to build or access conclusions:� mk empty conclusion/1Return an empty conclusion, i.e. a conclusion containing no extensions.� is empty conclusion/1This predicate succeeds if and only if the conclusion is empty.� get extension of conclusion/3Extract the �rst extension from the conclusion and remove it from that conclusion.� add extension to conclusion/3Adds the given extension to the given conclusion.5.5.6 Representation of BranchesIn this section the representation of branches is explained. Not the whole tableau is constructedexplicitly. Only the branch in focus is held in a special data structure which is described below.The information on the remaining structure of the tableau constructed so far is representedimplicitly by the choice points of the Prolog system.Branches are represented as Prolog terms with the principal functor branch/6. The argumentpositions of branch/6 are used as follows (arguments from left to right):1. The list of new4 signed formulae on the branch. This is a Prolog list of terms. Every termrepresents a signed formula as described in Section 5.5.3. No rule has been applied to anyof these formulae. The list does not contain any atomic formula.2. The list of used signed formulae on the branch. This list is similar to the one above, butthe formulae here have been used at least once for a rule application.3. The list of new atoms on the branch. This list is similar to the list in Section 1, but theformulae here are atomic. No atom of this list has been used for branch closure.4 That is, no rule has been applied yet to that formula, cf. Section 5.5.3.

72 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES4. The list of used atoms on the branch. The atoms in this list have been used for branchclosure at least once.5. The list of indices of formulae on the branch, cf. Section 5.5.3.6. The Dewey Number of the branch. The branch's Dewey Number is represented by a listof integers. An example is given below.The lists in the branch data structure are sorted w.r.t. lexicographic ordering. This means thatthese lists of signed formulae are ordered by increasing usage counters.Remark 5.11 There is a problem with the lexicographic ordering. \10" is less than \2". Thismeans if the
-limit maxcounter exceeds ten then the ordering is no longer by increasing usagecounters. In that case the get best sformula of branch/2 described below will not return the\best" formula. This is a known bug.If two formulae have equal usage counters they are ordered w.r.t. their branching factor since thebranching factor �lls slot two of the data structure for signed formulae. The problem describedabove does not occur here because 3TAP 's logics so far do not include rules with a branching factorgreater than ten. For equal branching factors the ordering is w.r.t. the number of extensions arule application to that formula will yield.To access branches the following predicates are used:� mk empty branch/1Return an empty branch, i.e. a branch without any formulae.� get new sformula of branch/2This predicate returns an unused signed formula from the given branch. Like in themember/2 predicate a di�erent formula is chosen after each fail. The predicate fails ifno formula is left.� get used sformula of branch/2Similar to the previous predicate, this one returns a formula from the branch which hasbeen used already.� get best sformula of branch/2This predicate will return the best signed formula on the branch w.r.t. the following heuri-stic. An unused formula is better than a used one. If there are no unused formulae on thebranch, the formula with the least usage counter is the best. This heuristic is implementedby fetching the �rst element of the list of new formulae (if any) or else the �rst element ofthe list of used formulae. There is a bug in this predicate, cf. Remark 5.11.� get new atom of branch/2Return an unused signed atomic formula from the branch. Like the member/2 predicate adi�erent atomic formula is chosen after each fail. The predicate fails if no new atom is left.� get used atom of branch/2Similar to the previous predicate, this one returns an atom from the branch which has beenused already.� get index list of branch/2Return the list of indices of formulae on the branch. Cf. item 5 in the above enumerationof the arguments.

5.5. DATA STRUCTURES 73� add index to index list/3Add an index to the index list of the branch. The result is the branch with the extendedindex list.� get path/2Return the Dewey Number of the branch.� add sformula to branch/3The predicate adds a signed formula (which may be atomic) to a branch. I.e. the formulais inserted in the appropriate list.� add extension to branch/4This predicate adds an extension to the given branch. The result is the updated branchwhich contains the signed formulae from the extension. The branch's Dewey Number isextended by the extension's number which is passed as an argument to this predicate5.� update branch/4This predicate is called with a branch and a signed formula as arguments. The result is anupdated version of the branch. There are three cases depending on the type of the formula,say �:1. If � is a
-formula and its usage counter is equal to the
-limit (maxcounter), it isremoved. Otherwise �'s counter is increased and � is possibly (if the counter was 0)moved from the list of unused formulae to the list of used formulae.2. If � is an atomic formula its counter is increased. If � is an element of the list ofunused atoms it is moved from that list to the list of used atoms.3. Otherwise � is a non atomic non-
 formula. Formulae of that type may be used onlyonce. Therefore, � is removed from the branch.� remove sformula from branch/3Remove the given signed formula from the branch. The result is the updated branchwithout that formula. The formula may be used or new.The following example shows how the Dewey Numbers are attached to the branches of a tableau.Example 5.12 A node of the tableau in �gure 5.1 is marked with the Dewey Numbers of thebranch which has that node as leaf. The Dewey Numbers are written as a list in Prolog syntax.5.5.7 Data Structures for Equality HandlingThere are several data structures de�ned in datastructures that are solely used by the modulescomplete and equality: constraint, cterm, possibility, sterm, inequality, disjunction,equality, inst and add inf. In the following we describe only the predicatesfacc;getg part of datastructure(+Datastructure,-Value)that allow to access the value of the various parts of the data structures, or, if a part is anuninstantiated Prolog variable, to instantiate that variable. Although not mentioned, for mostof these predicates their counterpart set part of datastructure/3 is de�ned as well, which allowsto assign a new value to a part of a data structure, even if that part has been instantiated before.5 It is assumed that the extension is part of a larger conclusion. Each extension of the conclusion will result ina di�erent subbranch. The extensions in the conclusion are numbered from left to right. The number whichhas to be passed to add extension to branch/4 is simply the position of the extension in the conclusion.

74 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES[1][1,1,][1,1,1][1,1,1,1]��� @@@[1,1,1,2]���� QQQQ[1,1,2][1,1,2,1]Figure 5.1: Dewey Numbers in a tableau.5.5.7.1 Representation of ConstraintsThe data structure constraint represents a constraint (Def. 2.34), that can be attached to termsand reduction rules.The predicates giving access to the parts of the data structure constraint are:� get subst of constraintThe substitution � that is part of a constraint c = h�;Oi.� get oc of constraintThe order condition that is part of a constraint c = h�;Oi.5.5.7.2 Representation of Constrained TermsThe data structure cterm represents a constrained term or reduction rule (Def. 2.36).The predicates giving access to the parts of the data structure cterm are:� get prec of ctermThe precedence according to which lists of cterms are ordered.� get term of ctermThe term (without constraint).� get constraint of ctermThe constraint.� get univ vars of ctermThe list of variables w.r.t. which the constrained term is universally quanti�ed.� get derived from of ctermThe number of the term or rule the cterm has been derived from.� get number of ctermThe number of the cterm.

5.5. DATA STRUCTURES 75� get type of ctermThe type (rule or term) of the cterm.� get weight of ctermThe weight of the cterm (see Section 5.13.5).5.5.7.3 Representation of a Possible Rule ApplicationThe data structure possibility represents a possibility to apply a constrained reduction ruleto a constrained term (which might be a rule too); see Section 5.13.3 and De�nition 2.39.The predicates giving access to the parts of the data structure possibility are:� get prec of possibilityThe precedence of the possibility (see Section 5.13.4).� get rule of possibilityThe rule r that is to be applied.� get cterm of possibilityThe constrained term t the rule r is to be applied to.� get position of possibilityThe position l in t at which r is to be applied.� get type of possibilityThe type of the possible application (critical pair, composition, simplification,term simplification, or non simplification).� get unifier of possibilityThe uni�er � that has to be applied.� get new cterms of possibilityThe list of new constrained terms that are the result of the rule application.5.5.7.4 Representation of Terms with an Attached SubstitutionThe data structure sterm represents a term with a substitution attached to it.6 The parts ofthe data structure sterm and the predicates giving access to them are:� acc term of sterm/2The term s.� acc inst of sterm/2The substitution �.� acc univ vars of sterm/2The set of variables w.r.t. which s can be seen to be universal.6 In this version of 3TAP some of the parts of the data structure sterm have become obsolete and are not describedhere (see the footnote on Page 94).

76 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES5.5.7.5 Representation of Uni�cation Problems (Inequalities)The main parts of the data structure inequality are the sets of normal forms for the two sides ofan inequality (resp. uni�cation problem) computed so far, and a list of the substitutions alreadyfound that allow to solve the problem.The predicates giving access to the parts of the data structure inequality are:� acc left side of inequality, acc right side of inequalityThe sets of normal forms for the left hand side and the right hand side of the inequality.The sets are implemented as Prolog lists.� acc closings of inequalityThe set of substitutions computed so far that allow to close the inequality (implementedas a list).� acc number of inequalityThe number of the inequality. Actually this is a pair of numbers that includes the numberof the disjunction (simultaneous problem) the inequality belongs to.� acc left counter of inequality, acc right counter of inequalityThe number of terms that have already been added to left side and right side. Thesecounters are needed to generate unambiguous numbers for new terms.5.5.7.6 Representation of Simultaneous Uni�cation ProblemsThe data structure disjunction represents a disjunction of inequalities (a simultaneous E-uni�cation problem). The parts of disjunction and the predicates giving access to them are:� acc expdbl ineq of disjunctionThe list of inequalities (single uni�cation problems) in the disjunction that are expandable,i.e., that contain a term that an equality can be applied to.� acc inexpdbl ineq of disjunctionThe list of inequalities in the disjunction that are not expandable.� acc number of disjunctionThe disjunction's number.5.5.7.7 Representation of Equalities and DemodulatorsThe data structure equality represents equalities and demodulators. If a demodulator is repre-sented, it is oriented from left to right.The parts of equality and the predicates giving access to them are:� acc left side of equalityThe term on the left hand side of the equality or the demodulator.� acc right side of equalityThe term on the right hand side of the equality or the demodulator.� acc universal vars of equalityThe list of variables with respect to which the equality or the demodulator is universal.� acc number of equalityThe number of the equality or the demodulator.

5.5. DATA STRUCTURES 775.5.7.8 Representation of SubstitutionsThe data structure inst represents variable instantiations. It is represented as a Prolog term ofthe form variable = term, e.g. X=f(a). A substitution is represented by a list of such instantia-tions.The predicates acc_term_of_inst and acc_var_of_inst give access to the parts of an instan-tiation. In addition, the predicate make_inst can be used to build a new instantiation.5.5.7.9 Representation of Additional InformationThe data structure add inf represents information that has to be available in many of thepredicates of the module equality, and that does not change while a branch is closed. Thereis only one instantiation of this data structure called Ai that is a parameter of most of thepredicates. In a way this data structure is an implementation of global variables (relative toequality).The parts of the data structure add inf and the predicates giving access to them are:� acc_debug_level_of_add_infThe value of the 3TAP parameter eqdebuglevel.� acc_equalities_of_add_infThe list of all equalities on the current branch.� acc_demodulators_of_add_infThe list of all demodulators on the current branch.� acc_univ_vars_of_add_infThe list of all variables with respect to which one of the atoms on the branch is universal.� acc_branch_symbol_of_add_infAn atom identifying the branch. These atoms are of the form bn, where n is increased byone whenever a new branch is to be closed.5.5.8 Data Structures for Achieving FairnessThere are a few predicates gathering information needed for fairness. Here they are:� get label from conclusion/2Returns a list of pairs of all the labels at the top level of the formulae with the correspondingsigns in the given conclusion. No labels of subformulae of these formulae appear in the list.� get labels from extension/3Does the same for an extension (the additional argument is used as accumulator).� get counters from labels/2As described in Section 5.7 a counter is attached to every pair of label and sign. Thispredicate returns the list of counters corresponding to the list of pairs of labels and signs.� get extension according to labels/4Returns the extension which has to be expanded �rst w.r.t. to the fairness strategy andthe remaining conclusion. The decision is based on the list of counters corresponding tothe signed formulae in the conclusion.

78 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES5.6 SysdepThe main purpose of the sysdep module is to hide system dependent features from the 3TAPmodules. For example, the append/3 predicate is a built-in in some Prolog implementations,while in others it is a library predicate. Table 5.4 gives an overview of the system dependentpredicates handled by the sysdep module. These predicates are exported by sysdep, their namesbeing pre�xed with the string sysdep . For the semantics of these predicates look at the sourceof the sysdep module or your Prolog documentation.append/3 ask file/3 change path arg/4contains term/2 copy term/2 concat atom/2contains var/2 correspond/4 delete/3delete file/1 file exists/1 flush output/1free of var/2 genarg/3 gensym/2is endfile/1 is set/1 last/2list to ord set/2 member/2 merge/4midstring/4 nth1/3 ord add element/3ord intersect/2 ord subset/2 ord union/3path arg/3 pwd/1 remove dups/2rev/2 select/3 setof/3unify/2 union/3 yesno/1Table 5.4: System dependent predicates.Other tasks of the sysdep module are:� Importing necessary libraries and exporting the library predicates.� De�nition of the interface predicates to the C foreign language interface and the initializa-tion of the foreign language modules. Cf. your Prolog manual for details.� Implementation of some low-level predicates, e.g. reset/0 which resets the prover.� Implementation of some predicates to access the UNIX environment. Examples are cp/2or ls/0 which simulate their UNIX counterparts.5.7 Global Variable ManagementThe modules globalvars.c, globalvars quintus.c and globalvars sicstus.c are implemen-ted using the C programming language. globalvars.c contains functions to manipulate globalcounters,
ags, switches and other global data structures which would be too expensive to imple-ment in Prolog (via assert and retract). Its functions are being called through the interfacepredicates de�ned in the sysdep module. It can be made suitable for di�erent Prolog versionsby de�ning the system dependent constants. globalvars quintus.c includes globalvars.cand de�nes the constants which make the globalvars.c module suitable for all of the QuintusProlog Versions 3.x. globalvars sicstus.c includes globalvars.c and de�nes the constantswhich make the globalvars.c module suitable for the SICStus Prolog Versions 2.1.In the case of a
ag, a switch or a counter there is one global variable de�ned at the beginning ofglobalvars.c and some functions to read, set or manipulate that variable are implemented. For

5.8. UNIFICATION 79example, a global variable named maxcounter is de�ned and the functions set maxcounter()and get maxcounter() are supplied to access that variable. For some counters there are addi-tional functions to increment or reset the counter, etc. The implementation of these functions isstraightforward, look at the source code of globalvars.c for details.For fairness a counter for each pair of a formula and a sign is needed. globalvars.c implementsthe data structure for these counters. Every subformula may be identi�ed by a unique label, cf.Section 5.5.2.1. These labels are of the form lxxx where xxx is a positive integer. This integeris used as the �rst index into an array of dimension 2 which contains the counters. The secondindex is the sign, the function signstring2index() maps the string representation of the signonto the index range, [0; : : : ; s� 1] where s is the number of signs used in the logic. The size ofthe array is extended automatically if an access to a not existing label happens. The countersmay be read, set or incremented. If the array is extended during a read access the counter isinitialized to 0, if the extension takes place during an increment operation the counter is set to 1,otherwise it is set to the value supplied by the appropriate argument of the set label counter()function.Remark 5.13 As a matter of fact the index range of the array's second dimension is0; : : : ; 2(s� 1)because there are two counters for each pair of formula and sign. The second counter is used toachieve fairness in the dissolution module.5.8 Uni�cationThere are two uni�cation predicates implemented in the 3TAP system. One is for unsorteduni�cation the other for sorted uni�cation. The former predicate, unify terms/3, is implementedin the sysdep module the latter, sorted unify/2, in the unification module. Of course, bothpredicates implement a sound uni�cation with occur check.5.8.1 Unsorted Uni�cationThe unify terms/3 predicate in sysdep tries to unify copies of its �rst two arguments. If this ispossible the third argument is bound to the unifying substitution. Otherwise, the predicate fails.Uni�cation is done by sysdep unify/2 which in the Quintus Prolog version uses the QuintusProlog library predicate unify/2 for sound uni�cation. In the SICStus Prolog version a copy ofthe Quintus Prolog library predicate unify/2 is used.5.8.2 Sorted Uni�cationThe predicate sorted unify/2 may be used to unify two sorted terms. The additional predicatessorted unify check/3 and sorted unify check/4 may be used to check for sorted uni�ability.With the latter predicate it is possible to specify an ambiguity
ag which|if set to yes|saysthat the sort hierarchy is a tree or|if set to no|says that the sort hierarchy is a directedacyclic graph. If the sort hierarchy is known to be a tree the test for subsorts is easier, Prologuni�cation of the sorts in the representation described in Section 5.5.1 su�ces. Otherwise a moreelaborated|but simple|test for sort compatibility has to be done, cf. the source of unificationfor details.

80 CHAPTER 5. SYSTEM DESCRIPTION BY MODULESExample 5.14 Consider the following sort hierarchy:a���������� ��>>>>>>>>b ��======== c����������dAlbeit a and b are not subsorts of one another they are compatible because there is a commonsubsort, namely d.Except for the subsort test sorted uni�cation is implemented in much the same way as the librarypredicate, which is a straightforward implementation of Robinson's algorithm with occur check.5.8.3 Special Treatment of Universal FormulaeSome special care must be taken when terms are to be uni�ed that contain \universal variables"(see Section 2.5. The terms f(x) and f(g(x)), that are both universal with respect to x, areuni�able albeit the occur check fails. This is true, because any of the terms may be regeneratedwith di�erent variables, say y, and f(y) and f(g(x)) or f(x) and f(g(y)) unify.5.9 DeclarationsThe main purpose of the declarations module is the declaration of the logic's signature. Inthis module the representation of signs and connectives is speci�ed. Also, the signs' seman-tics is de�ned here by declaring which signs are complementary and which is the axiom andquery (theorem) sign. Likewise, some declarative aspects of the rules module are handled bydeclarations. These are the de�nition of the pairs of connectives and sign which are self-contradictory, i.e. where no rules are de�ned. Finally, some internal declarations, e.g. whichsymbol should be used for the equality sign and initializations are implemented in this module.5.9.1 Declaration of the Signature Used in a Logic5.9.1.1 Connectives and Quanti�ersSome facts and predicates in declarations specify the internal and the external representationof the logic's connectives and quanti�ers. The symbols used for the external representation ofconnectives are supplied by the get ext op list/1 fact. The argument position is �lled by a listof these; e.g., get_ext_op_list([v,&,-,=>,<=>,all,ex,<=]) de�nes the external symbols forthe two-valued version of 3TAP , cf. Table 3.2. The list of the corresponding internal representationof the connectives is given by get int op list/1. For the above example declarations containsget int op list([dis,con,sneg,imp,equi,all,ex,pmi]), cf. Table 5.2.Remark 5.15 The correspondence between the internal and the external representation of theconnectives is given by the position of the symbols in the lists. I.e. the �rst symbol in the externalconnectives list is internally represented by the �rst symbol in the internal connectives list andso on.The predicate get corresponding operator/2 implements this correspondence.

5.9. DECLARATIONS 81Remark 5.16 Please note that the external symbol for the universal and existential quanti�eris de�ned as all, ex resp., although the syntax de�nition in Chapter 3 says that they are writtenas forall, exists resp. This is no error!The type of the connective is identi�ed by the following predicates.� get ops with a left fma/1This predicate speci�es that the connective has a left subformula. In the above exampledeclarations will contain get ops with a let fma([dis,con,sneg,imp,equi,pmi]).No quanti�ers are listed here!� get ops with two fmas/1The connectives which have a right subformula are in this list, too. Again, no quanti�er isallowed here.� get unary ops/1De�ne the unary connectives. The symbol atfma is included here, see Section 5.5.2.2. Thetwo-valued declarations contain get unary ops([atfma,sneg]).� get int quantor list/1This predicate de�nes which internal symbols are quanti�ers.� get ext quantor list/1This predicate de�nes which external symbols are quanti�ers.5.9.1.2 SigningThe list of signs used by 3TAP is de�ned by the get int sign list/1 predicate. Its argumentis the list of signs used by 3TAP . For example, the two-valued version of declarations containsthe fact get int sign list([tSign,fSign]).5.9.2 Declaration of Complementary SignsThere are a couple of facts in declarations which de�ne complementary signs. There is onefact of the is complementary sign/2 predicate for each ordered pair of signs.Remark 5.17 The predicate has to be explicitly de�ned as symmetric by including two clau-ses for each unordered pair of signs!There are just two clauses for the two-valued version of 3TAP :is complementary sign(tSign,fSign) and is complementary sign(fSign,tSign).The predicate is linking sign/2 succeeds if and only if any two complementary atoms withthese signs imply a link. For the classical two-valued logic and the three-valued logic used in thethree-valued version of 3TAP this predicate is identical to is complementary sign/2.The signing of axioms and the theorem is de�ned by get signing/2. The �rst argument speci�esthe axiom sign and the second argument is the query sign, i.e. the sign of the theorem whichhas to be proved (e.g. get signing(tSign,fSign) for the two-valued 3TAP). If the set of truthvalues is partitioned into the set of designated and non-designated truth values, i.e. if therearen't any truth values which are neither designated nor non-designated, then the axiom signis the sign representing the union of all designated signs and the query sign is the union of allnon-designated signs which is the complement of the former set.

82 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES5.9.3 No Rule de�nedThe predicate no rule defined/2 succeeds only for pairs of connectives and signs which are self-contradictory. The module rules exports a dummy-rule for those cases, see below. For example,the range of the weak negation7 of the logic implemented in the three-valued version of 3TAPdoes not include the truth value corresponding to uSign, hence no rule defined(wneg,uSign) :- !. is included into the declarations module for that logic. As with any rule, see below,a cut is added to the clause to ensure determinism and to eliminate unnecessary choice points.5.9.4
-Formulaeis gamma formula/2 de�nes which formulae are to be treated as
-formulae. For example, thetwo-valued version of declarations contains the following clauses:is_gamma_formula(tSign,all).is_gamma_formula(fSign,ex).In the many-valued case all quanti�er rules that generate a free variable in some extension haveto be classi�ed as
-formulae, since they must be applied an inde�nite number of times in orderto guarantee completeness.5.9.5 Output-Utility SupportThere are two predicates in the declarations module for support of the 3TAP utility whichtranslates a proof protocol into LaTEX syntax.� get LaTeX op list/1The only argument position is �lled by the list of LaTEX symbols which should be usedwhen a connective is translated. For exampleget_LaTeX_op_list([vee,wedge,-,supset,leftrightarrow,forall,exists,subset]).speci�es that the symbol \supset" (�) should be used to translate imp. The correspondenceis by position.� get LaTeX sign list/1Speci�es the translation of the signs.5.9.6 Internal Declarations� get sort op(':')de�nes the colon to be the sort operator, i.e. the symbol separating a term from its sort,cf. Section 5.5.1 for details.� get equals(=)de�nes the equality sign to be the symbol for the equality predicate.� get demodulates('==')de�nes the symbol == to be the name of the demodulator predicate.7 The connective is seen here as a mapping from the set of truth values into itself.

5.10. RULES 835.9.7 InitializationThe predicates initialize prover/3 and initialize variables/0 may be used to reset 3TAP .The global counters are reset here and the variables and switches are set to their default values.5.10 RulesThe rules module de�nes the semantics of the logic it carries out proofs in. The most importantpredicate implemented in this module is rules/8. There is a clause for each pair of operator� (logical connective or quanti�er) and sign � specifying the rule which may be applied if aformula p � q is encountered with sign �. The remaining parts of rules are concerned withthe substitution mechanism and support of lemma generation. The auxiliary predicates are notdiscussed in detail. Their straightforward implementation is documented in the source of therules module.5.10.1 The Rules PredicateThe arguments of rules/8 are as follows:1. The internal representation of the operator (connective or quanti�er), e.g. con.2. The sign of the formula. I.e. tSign or fSign in the classical two-valued case or any othersign declared in Declarations.3. The branching factor of the rule. The branching factor is the number of subbranches whichare generated by an application of that rule, i.e. the number of extensions in the conclusion.4. The total number of formulae generated by an application of the rule.5. The formula to apply the rule to. The only purpose of this argument is to identify thesubformulae. In the example from Item 1 this argument would be con(Fma1,Fma2,).Now the extension can refer to the left subformula as Fma1 and to the right subformula asFma2, see below.6. The list of variables with respect to which the formula is universal (before rule application).7. The list of variables with respect to which the formula is universal after rule application.For non-branching rules these lists are generally equal. For branching rules the former listis anonymous in most cases while the latter is empty.
-rules are exceptions to that.8. The conclusion of the rule. As usual the conclusion is represented as a list of extensions,cf. Section 5.5.5. The extension is a list of pairs consisting of a sign and a formula. Thepair is implemented as a list of two elements. See Examples 5.18, 5.19 for details.The rules have to be deterministic, i.e. there is only one rule de�ned for each pair of sign andformula and every clause of rules/8 is terminated by a cut. To achieve better readability of therules each extension is in an extra line. It is a good idea to adopt this style when editing therules module.The following examples are taken from the conjunctive rules of the two-valued version of the3TAP system.

84 CHAPTER 5. SYSTEM DESCRIPTION BY MODULESExample 5.18 The rule is of type �, i.e. branching. There are two extensions (2nd argument)with one formula each, which results in a total of two formulae (3rd argument). The rule destroysany \universal variables" (7th argument is []).rule(con,fSign,2,2,con(Fma1,Fma2,), ,[],[[[fSign,Fma1]],[[fSign,Fma2]]]) :- !.Example 5.19 The rule is of type �, i.e. non-branching. There is one extension (2nd argument)with two formulae (3rd argument). The set of \universal variables" for the formula remainsunchanged (6th and 7th argument).rule(con,tSign,1,2,con(Fma1,Fma2,),Univ vars,Univ vars,[[[tSign,Fma1],[tSign,Fma2]]]) :- !.5.10.1.1 Dummy RulesIn many-valued logics8 it is possible that no rule is de�ned for an operator � and a sign � becausev(a � b) = v� or v(�a) = v� does not occur where v� is the truth value corresponding to � and vis a valuation. Such signed formulae are self-contradictory and there is no rule de�ned for those.Nevertheless, the rules/8 predicate needs a dummy rule for them.Example 5.20 The truth-value corresponding to uSign is not in the range of the ju operator 9(partial a�rmation, ju in 3TAP notation). Therefore no rule is de�ned for fUgjua. The dummyrule in the rules module of the three-valued version of 3TAP looks like this:rule(ju,uSign,0,0,ju(,),[]) :- !.5.10.1.2 Quanti�er RulesThe quanti�er rules are of two types:
- or �-rules. In the case of an application of a
-rule toa formula � the quanti�ed object variable is replaced by a Prolog variable. A �-rule applicationyields a formula where the former quanti�ed object variable is substituted by a Skolem function.In the two-valued version the liberalized �-rule from (Beckert et al., 1993) is used. Instead ofgenerating a new Skolem function symbol for each �-rule application, 3TAP uses function symbolssko n, where n is the label of the �-formula to be Skolemized. The
-type formulae may beidenti�ed by the is gamma formula/2 predicate in the declarations module.Example 5.21 The signed formula fTg8x� is of type
. The rules module contains the fol-lowing clauses:rule(all,tSign,1,1,all(VarList,Fma,),Univ vars,New univ vars,Conclusion) :-nonvar(Fma),do gamma(VarList,tSign,Fma,Add univ vars,Extension),Conclusion = [Extension],sysdep append(Add univ vars,Univ vars,New univ vars),!.rule(all,tSign,1,1, , , ,) :- !.The substitution is performed by the do gamma/5 predicate where Varlist is the list of objectvariables bound by the universal quanti�er. The sign (2nd argument to do gamma/5) is used tosign the formula in the resulting extension.8 If 0-ary operators are present this may already happen in two-valued logic.9 ju is seen here as a mapping from the set of truth values into itself.

5.11. DISSOLUTION 85An example for a �-rule is similar and may be obtained from the source code of the rules module.The above distinction between
- and �-type formulae is not unique. There are formulae whichare as well of type
 as of type �. Quanti�ed uSigned formulae in the three-valued logic usedby 3TAP are examples. There is a variant of the do delta/4 and do gamma/4 predicate forthose, do delta u/6, which combines the actions taken by the former predicates. do delta u/6generates a two-element extension.Remark 5.22 The signed formulae of this hybrid type must be declared as
-type formulae bythe is gamma formula/2 predicate in the declarations module, cf. Section 5.9.4.Remark 5.23 In the many-valued versions of 3TAP the mechanism of universal formulae is notused. The rules/8 predicate is only an interface to rules/6 in the many-valued Rules modulesand do gamma or do delta are of arity four.5.10.2 Supporting Lemma GenerationThe predicate get lemmata/6 is used to decide which formulae may be added to an extension aslemmata. The usage of that predicate is discussed using the following example.get lemmata(con,uSign,con(,Fma2,),[1],2,[[tSign,Fma2]]) :- !.The meaning of the clause is: If we are expanding the tableau using the rule for uSign, conand the �rst extension has been closed already ([1] at the 4th argument position) the lemma[[tSign,Fma2]] may be added to the second extension (2 in the 5th argument position). Casesnot considered by the get lemmata/6 clauses are covered by the dummy lemma predicateget lemmata(, , , , ,[]) which is always included.To remove lemmata causing a branching of the tableau the predicates get lemmata alpha/6 andremove branching lemmata/2 are supplied. Cf. the source of rules for details.5.11 DissolutionThe module dissolve is an implementation of the dissolution rule for restricted to tableau-based theorem-proving (Murray & Rosenthal, 1990b). The general dissolution rule is describedin Section 2.2 and, in greater detail, in (Murray & Rosenthal, 1990a). See also the followingsection.The module dissolve exports the following two predicates:1. treat_dissolution_partwhich is called by close branch. It calls in turn the predicate dissolve_branch which controlsthe whole dissolution module, and afterwards distinguishes di�erent cases depending on the resultof dissolution application (and non-dissolution application respectively). The second predicate2. check_dissolution_resultis called by close_branch in order to shorten the module main and is relatively unimportant.

86 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES5.11.1 The Dissolution RuleIn (Murray & Rosenthal, 1990a; Murray & Rosenthal, 1993) Murray & Rosenthal stated aspecialized dissolution rule suitable for the method of analytic tableaux. This rule10 (shownbelow) is implemented in 3TAP , but only usable in the two-valued version because it is onlyde�ned for classical logic.11Â _ WU W A^ ^j �! �A W U^ _ S ^�A R S^ _ SRA and �A are literals, U , W , R and S are subformulae of arbitrary type. During dissolutionapplication the two formulae on the left, which are to be thought on the same branch, arereplaced by the dissolvent on the right.One can easily see that dissolution takes place in the two outermost (syntactic) levels of a formula.There are several special cases of this dissolution rule:1. If W (or S, by symmetry) is the empty formula (i.e. does not exist), then the subformulaon the right containing W (S) vanishes (this will be called simple dissolution rule).2. If both, W and S are empty formulae, dissolution will close the current branch.3. If A and �A are literals within the same formula (note that they must occur in the twooutermost levels to be detectable), a modi�cation of the above rule is applied. Very often,application of this special rule leads to a closure of the current branch.5.11.2 PassesThe module dissolve is divided into six passes in order to facilitate its understanding and togive it structure.Pass 0 converts the 3TAP data structure sformula (cf. Section 5.5.3) into list representation.This conversion only takes place in the outer two levels sformula, because dissolution doesnot need to look at more deeply nested formulae (see Section 5.11.1).Pass 1 tries to split all sformulae into the form(A ^ U) _ WPass 2 computes all possible links (see Section 5.11.3).Pass 3 additional uni�cation check for preservation of �rst-order soundness. (see Section 5.11.3)Pass 4 treats dissolution fairness handling (see Section 5.11.4).Pass 5 selects the \best" link according to the implemented heuristics (see Section 5.11.6) andapplies dissolution rule on it.10 We mean that rule when speaking of the dissolution rule from now on.11 A generalization to many-valued logics is possible along the lines sketched in (H�ahnle, 1992c).

5.11. DISSOLUTION 875.11.3 Computation of LinksThis part, containing Passes 1 and 2 as described above, is relatively expensive and one of themain reasons for the slowness of 3TAP with dissolution. It is controlled by the following twopredicates:get_all_candidates_for_dissolutionget_all_linksThe �rst one contains Pass 1 and is the only part of the whole dissolution module using back-tracking, i.e., there exists one predicate check_lformula that always fails in order to initiatebacktracking. The resulting splitted sformulae are stored in a dynamic list.The second predicate tries to \combine" every link candidate with each other using a doublerecursion. It is important to note that in this pass all possible literals A and �A are checked foruni�ability but this is only a weak uni�cation check due to the internal Prolog dynamic datastructure handling. It is theoretically possible that in this pass links (A ; �A) are found wherebyA and �A are weakly but not strongly uni�able. Such unsound links are removed in Pass 3 (stronguni�cation check).5.11.4 Fairness HandlingSome �rst-order proofs, as for example that of Pelletier's 38th and 46th problem, demand fair-ness considerations within the dissolution module. Two predicates were implemented to handlefairness:5.11.4.1 Choice of the \Fairest" LinkIf the analysis part in the dissolution module found several candidates for dissolution (i.e. morethan one possible link) those link must be chosen which is the fairest one, that is, whose literalshave least been dissolved upon.This is a heuristic problem because up to this point every literal of a link (A ; �A) may have beendissolved with several others. To solve this problem every atom is provided with a special label(these are managed in a global hash table implemented in C) which refers to a counter that canbe incremented during a tableau proof.In particular for longer proofs the combination of the following two heuristics proved to yieldgood results (short runtimes due to fair selection):1. add to each label counter of A and �A two and multiply the results. The fairest candidatesare those with the lowest product.2. when dissolving upon a link (A ; �A) increment only the smaller label counter of A and �A.5.11.4.2 Consideration of Dissolved LinksKeeping track of the already dissolved upon links on the current branch is very important forpreservation of strict �rst-order completeness. To achieve this a special list Dissolved_links ismaintained in the predicate close_branch (module main). The module dissolve receives thislist as a parameter when called by close_branch. If dissolve performs at least one dissolutionstep, say upon a link (A ; �A) , two possible modi�cations can be made on Dissolved_links:

88 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES1. the link (A ; �A) has not been dissolved upon, yet. Then it is added to Dissolved_linksand a counter associated with it is set to one.2. the link (A ; �A) already exists in Dissolved_links. Then its counter is increased by one.Now these old links are used as follows: Before performing a dissolution step all links whosecounter is equal to the global variable dissbound are removed. That means on the current branchevery link can only be dissolved upon a certain number of times. This is important for linksstemming from former
-formulae. Hence, dissbound is relatively mighty and its analogy to theglobal variable maxcounter is easy to see (cf. Appendix B).5.11.5 Facilitation of UnderstandingDue to the synthetic nature of the dissolution rule12 the utility moreTab has di�culties in dealingwith it (see also Section 6.4).Therefore, a support predicate mark_sformula is implemented in dissolve that shows the atomsA and �A of the currently dissolved link marked with ** and ##, respectively. This can be seenwhen setting the global variable dissdebuglevel to a value of greater than three.Then both literals of the dissolved link are shown with their marks, as well as the two signedformulae where they come from and the new, synthesized formula. With the help of these marksthe dissolution step can more easily be recognized. The marks are only added for output andwill not appear in the internal representation of formulae later on in the proof.When the global switch disscomplexity is set to on (see Section 5.11.7.1) and a dissolution pairhas been cycled the reasons and the result are nice to see in the marked formulae.5.11.6 Dissolution HeuristicsAs described in Section 5.11.1 there are some special cases of the dissolution rule. If the analysispart of dissolve found several possibilities to dissolve upon there must be chosen one of them.It is selected according to the following priority among the implemented rules in order to closeand reduce the actual branch more quickly:1. Try closing the current branch by dissolution.2. Apply dissolution within the same sformula.3. Look for a \simple" (W or S empty) dissolution.4. Apply the \full" dissolution rule.5.11.7 OptimizationsAt this point two further optimizations of dissolution shall be presented and discussed. Both areswitched, i.e. one can choose between a proof using one (or both) of these optimizations or noneof them. Thereby, the in
uence of either on any proofs can easily be seen.12 The formula resulting in its application is in general not a subformula of the problem to be proved.

5.12. INDEX, MAKEKBX, PREPROC 895.11.7.1 Complexity CheckAs can be seen in Section 5.11.1 the dissolution rule is asymmetric, i.e.,
ipping the input formulaeto apply dissolution upon in general leads to a di�erent dissolved formula. The subformula Wappears in the new dissolved formula two times while S is included only once.If disscomplexity is activated, dissolve will check the selected pair and|if necessary|cyclethem in order to get the simplest possible new synthesized formula. Hence, the two subformulae(above called) W and S are tested for complexity wrt \normal" tableau rules, that is, the size oftheir tableau expansion to the atomic level is measured. In �rst-order logic there is the possibilityto produce
-formulae, i.e., here the complexity can only be guessed. For a complexity checkhere it is assumed that every
-formula is applied at once.The complexity check is only useful for long formulae, i.e., formulae which are given in one longexpression instead of a theorem with several (short) axioms. Especially during proofs of hardpropositional formulae such as pigeon3 or phi4 (cf. Murray & Rosenthal) this check yields anoticeable speed-up.5.11.7.2 Rule PriorityA rather awkward side e�ect of the \full" dissolution rule is the fact that the resulting dissolvedformula is of �-type, i.e., splitting this formula by \normal" tableau rules will yield two extensions(notice: dissolution only works in classical two-valued logic). On the other hand, performing a\simple" dissolution step ends in a formula of �-type.In order to deal with this problem one can change the priorities of the dissolution and the�-rule by setting the switch disspriority from diss to alpha. If it is set to diss, 3TAP willapply the dissolution rule as soon and as often as possible (and legal by fairness handling,see Section 5.11.4). Otherwise, the �-rule is given the higher priority and dissolution will|ifapplicable|only take place if no �-rule is present on the current branch.5.12 Index, Makekbx, Preproc5.12.1 Generating a Compiled Knowledge BaseThe modules index and makekbx contain the predicates for generating and handling knowledgebases. makekbx exports the predicate makekbx, that builds a compiled knowledge base �le.kbxfrom the compiler's output �le.kb; it also exports the predicate readkbx for reading compiledknowledge bases into the workspace.The command compkbx13 �rst calls the compiler (see Section 5.15), that generates the internalrepresentation of the formulae in a knowledge base. Its output is written to the temporary �le�le.kb.compkbx then calls the predicate makekbx, that generates the compiled knowledge base �le.kbx,i.e., it1. reads all axioms, theorems and sort declarations from �le.kb;2. adds the \axiom sign" to the axioms and the \denial sign" to the theorems (the signingstrategy is de�ned in the module declarations);3. sorts the axioms according to a heuristic de�ned in the module heuristics;13 And, therefore, as well the command usekbx, which is a combination of compkbx and readkbx.

90 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES4. computes the index and the link information;5. writes the completed knowledge base to �le.kbx.Finally, compkbx deletes the temporary �le �le.kb.To carry out the �rst three of its tasks, i.e., reading the formulae and sort declarations, addingthe signs, and sorting the axioms, makekbx calls the predicate readtcplus.The axioms are sorted by the alphabetical order of the pre�xes that are computed for each axiomby the predicate heuristics:get_fma_sort_prefix.These pre�xes are of the form branch number-succ number (0-0 for atoms). Based in that, thefollowing heuristic is implemented: Prefer axioms that have1. a smaller branching factor;2. a smaller number of successor formulae.readtcplus uses the predicate internal_set to write the sorted axioms and theorems and thesort information to the workspace.After that the predicate genindices is called by makekbx to compute the index and the linkinformation and to add it to the workspace (cf. Section 5.12.3).Then the computed knowledge base, consisting of all axioms, theorems, the index and the linkinformation, and the list of formulae that contain the equality predicate, is written to �le.kbxby the predicate savekbx. Finally, the knowledge base is deleted from the workspace.5.12.2 Reading Compiled Knowledge BasesThe predicate makekbx:readkbx is the implementation of the command readkbx.First, an older version of the knowledge base to be loaded that might be in the workspace isremoved. Then, the �le �le.kbx is opened, and the predicate readkbx_loop is called to read theknowledge base into the workspace.readkbx_loop reads a line from �le.kbx, and, unless the end of the �le is reached, calls itselfrecursively. Since each line contains only one entry whose type is denoted by its leading functionsymbol, the entries can easily be recognized and then be written to the workspace using thepredicate sysdep:internal_set.When the knowledge base has been read, the predicate assert_sort_ambiguity is called tocheck the sort declarations for ambiguity.145.12.3 Computing the Link Information5.12.3.1 Theoretical Aspects of Using LinksObviously, it would be of great advantage, if it were possible, to realize that certain formulae ona branch are of no use for closing the branch, and therefore can be deleted. Fortunately, at leastsome such formulae can be recognized, namely those that are neither linked to another formulaon the branch, nor to a formula in the knowledge base, that might be put on the branch lateron, nor contain the equality predicate. They can never participate in the closure of a branch.14 If the sort declarations are not ambiguous, i.e., if from each sort there is only one path to the sort top, asimpler|and faster|uni�cation algorithm can be used.

5.12. INDEX, MAKEKBX, PREPROC 91De�nition 5.24 A signed formula S0�0 is called an immediate descendant of a signed formulaS� if it can be derived from S� by a single application of a tableau rule|including lemmageneration.S0�0 is called a descendant of S� if there are signed formulaeS0�0 = S0�0; S1�1; : : : ; Sn�n = S�; (n � 0)such that Si�i is an immediate descendant of Si+1�i+1 (0 � i � n� 1).Remark 5.25 The \is descendant of" relation is the re
exive and transitive closure of the \isimmediate descendant of" relation.De�nition 5.26 Two signed formulae S1�1 and S2�2 are linked if there are atomic formulaeS01p(t) and S02p(s) that are descendants of S1�1 and S2�2 respectively and that have the samepredicate symbols and complementary signs (i.e., S01 \ S02 = ;).To check, whether a knowledge base has a link, all atoms have to be computed that can begenerated by the application of tableau rules to it. The information about links can be pre-compiled, thus, it has only to be done once, whereas, if information about links is not present,tableau rules may be applied to a useless formula on every branch on which it occurs, and thisis much more expensive.5.12.3.2 The Index and the Link InformationThere are two di�erent ways of taking advantage of the knowledge about links between formulae:1. impose a restriction on the formulae that are put onto a branch;2. remove unlinked formulae from a branch.3TAP always employs Method 1. To use it, only the relation \is descendant of" between formulaein the knowledge base, i.e., axioms and theorems, and their atomic descendants must be known.This \partial" link information, called index, is included in every compiled knowledge base.Since, for large knowledge bases, it may take very long to compute the complete link informationthat is necessary to employ Method 2, it is only pre-compiled if removeunlinked is switched on.Then, a list of all existing links between all the descendants of all formulae in the knowledgebase is computed and included in the compiled knowledge base. Since formulae containing anequality or the demodulator predicate must not be deleted if equality is switched on, a list of allsuch formulae is computed as well.5.12.3.3 ImplementationThe predicate genindices computes the index and, if removeunlinked is on, the complete linkinformation.To do this, �rst, the predicate datastructures:get_all_indices is called, that returns a listof the names of all axioms and theorems in the knowledge base. This list is handed to genidx.genidx recursively computes all descendants of all axioms and theorems by applying the tableaurules de�ned in the module rules. While doing this it computes

92 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES1. a complete list of all occurring \is immediate descendant of" relations;2. all index entries, i.e., the \is descendant of" relation between axioms and theorems andtheir atomic descendants.genidx cannot generate the complete link information, because at each level of the recursiononly the immediate parent formula and the name of the initial signed formula (i.e., the axiom ortheorem that was the starting point of the recursion) are known. The former is used to generatea \is immediate descendant of" entry, the latter to generate an index entry whenever the atomiclevel is reached.Since the tableau rules as well as the lemma generation rules are analytical, i.e., only yield newformulae that are subformulae of formulae already on the branch15, and since subformulae aremarked with a label, all occurring \is immediate descendant of" relations can be represented bytwo label/sign pairs.genidx keeps a list of all label/sign pairs (and hence, implicitly of all subformulae) that a tableaurule has already been applied to. This list is updated and passed on when genidx calls itselfrecursively. It is used to avoid processing a label/sign pair more than once that occurs multiplyin a conclusion of a tableau rule. Therefore, the complexity of the computation depends on thesize of the tree representing the structure of the processed formula and not on the size of thetree that is generated by applying to each subformula once the corresponding tableau rule.16Nevertheless, index entries can be generated multiply, since a formula might contain identicalsubformulae in di�erent places (with di�erent labels). Therefore, the lists of index and \isimmediate descendant of" entries are treated as sets, i.e., duplicates are not included.The complete lists are written to the workspace with predicates assert_idx, assert_subform.Then, the predicate assert_links_and_cont_eq is called to compute the complete link informa-tion and a list of all occurring formulae that contain the equality or the demodulator predicatesign.17The implementation of assert_links_and_cont_eq is based on the enumeration predicatesassert_all_links and assert_all_cont_eq, that always fail. They use Prolog's backtrackingto assert a list of all links and all formulae containing the equality predicate to the workspace.Starting from the links between atomic formulae (that can be found using the index entrieswritten to the workspace by genidx) and the formulae at hand from which a given formula canbe derived (these have been written to the workspace by genidx, too), all links can be e�cientlycomputed.In a similar way, all formulae containing the equality or the demodulator predicate symbol canbe computed starting from the atomic formulae that are equalities or demodulators.Remark 5.27 The dissolution rule is not analytical. It can generate completely new formulae.Information about links of such new formulae is not computed and not included into a compi-led knowledge base. These new formulae are, therefore, never deleted from a branch, even ifremoveunlinked is switched on.15 Of course, there is no restriction on the truth value signs of new formulae.16 In classical two-valued logic, both are of the same size; but in certain multiple-valued logics, the latter cangrow exponentially in the length of the formula.17 This additional information is only computed when removeunlinked is switched on.

5.13. COMPLETE, EQUALITY 935.12.4 Syntax of Compiled Knowledge BasesEach line of a compiled knowledge base �le.kbx contains one entry consisting of a single Prologterm, whose leading function symbol denotes its type:sf(name,sign,formula) A \signed formula", i.e., an axiom or a theorem. name is the name,sign the truth value sign, and formula the formula itself (in internal representation).th(theorems) A list of the names of those \signed formulae" that are theorems.i(atom,sign,name) An index entry with the meaning: the atom atom with sign sign is a de-scendant of the \signed formula" name.s(sortpath) sortpath is a list of sorts representing a sort path.link(label 1,sign 1,label 2,sign 2) A link entry with the meaning: the formula labelled label 1with sign sign 1 is linked to the formula labelled label 2 with sign sign 2.cont eq(label) This entry means that the formula labelled label contains the equality or thedemodulator predicate symbol.In addition, a compiled knowledge base contains comment lines starting with %.The temporary �les �le.kb generated by the compiler have a similar syntax. However, theycontain no link information and the formulae are not signed. There are three di�erent entrytypes:a(name,formula) The axiom named name; formula is its internal representation.t(name,formula) The theorem named name; formula is its internal representation.s(sortpath) sortpath is a list of sorts representing a sort path.5.12.5 Pre-processing FormulaeThe module preproc exports predicates for pre-processing formulae; it uses a method based onremoving \anti-links" (Beckert et al., 1994). In Version 3.0 of 3TAP this is an \undocumentedfeature"; it is only prototypically implemented, and only experienced users should set the switches
attenformulas and removeantilinks to on, that control pre-processing.If, despite this warning, you want to use the module preproc, please consult the comments inthe source code for a description.5.13 Complete, Equality5.13.1 Overall Structure of Equality HandlingThe module complete is an implementation of the method for handling equality in tableauxdescribed in Section 2.6, based on the completion-based algorithm from Section 2.6.6 for solvingmixed E-Uni�cation problems.18 It exports the main predicateclose_branch_with_completion(+Branch)18 The module complete can be used stand-alone for solving mixed E-uni�cation problems; see Section C.7.

94 CHAPTER 5. SYSTEM DESCRIPTION BY MODULESthat is called by close branch if a branch is exhausted and could not be closed yet (providedequality is switched on).The module equality provides additional predicates which are called by the module complete,in particular those for extracting equalities and uni�cation problems from a branch.If complete succeeds to close the branch using equality, the necessary free variable substitutionsare applied. When backtracking occurs, further substitutions are searched for that allow to closethe branch.After the predicate close_branch_with_completion has been called with a branch B, �rstthe set E(B) of equalities and the set P(B) of uni�cation problems are extracted from B (seeSection 5.13.2).After that, the predicate try_to_close_at_once_else_eq_appl_for_closing is called. Thispredicate contains a choice point. It uses all closing substitutions to close the branch B thatcan be found without equality applications. Such substitutions � exist if there are inequali-ties F (t � s) on the branch such that � is an MGU of t and s.If no (or, after backtracking, no further) such immediately closing substitutions exist, the mainloop of complete is started; it computes the completion of E(B) and normalizes the termsin P(B) (see Section 5.13.3). The completion process and the normalization process are combined(see Section 2.6.6.4). The two processes can be separated by switching on complete �rst; in thatcase, �rst a complete set of reduction rules is computed, and after that the complete set is appliedto compute normal forms.If none of the computed uni�ers in the ground-completeset Sat(C(hE; s; ti)) (Theorem 2.55), canbe used to close the tableau, the orientation of rules in the completion R1 for E is changed, andthe inversion is applied to the uni�ers computed to far. However, additional solutions are onlycomputed, provided the switch compute additional solutions is on (default: o�).The search for solutions is limited by several parameters; see Section 5.13.6.5.13.2 Extracting Equalities and Uni�cation ProblemsThe sets E(B) (Def. 2.25) and P(B) (Def. 2.26) are extracted from the branch B by the predicateextract_disjunctions_and_equalities(+Branch,-Disjunctions,-Closing_inst,-Ai)in module equality.First, the predicateextract_pos_neg_eq_univ_vars_from_branchis called, that extracts a lists of all positive atoms (that are no equalities or demodulators),negative atoms (that are no inequalities), equalities, demodulators and inequalities from thebranch, and, in addition, a list of all variables with respect to which one of these atoms isuniversal. All sort information is removed at this point.Then, the predicates build_equalities, which computes E(B), and build_disjunctions arecalled. For historical reasons, �rst the data structure \disjunctions of inequalities" consisting ofstermss is used to represent the uni�cation problems.19 The predicate problems_to_cterm_probis used to transform them into cterms.19 In the earlier versions of 3TAP a method based on computing equivalence classes was used to solve E-uni�cationproblems. This method represented terms by sterm. Therefore, sterm is still used by the part of moduleequality, that extracts equalities and uni�cation problems, and that has not been changed.

5.13. COMPLETE, EQUALITY 95For each equality T (t � s) on a branch B that is universal with respect to variables x1; : : : ; xn,both (8x1) : : : (8xn)(t � s) and (8x1) : : : (8xn)(s � t) are added to E(B).extract_disjunctions_and_equalities returns, in addition to E(B) and P(B), a list of thosesubstitutions that allow to close the branch without any equality applications (for examplefx ag if the branch contains the inequality F (f(x) � f(a))).5.13.3 Complete's Main LoopThe predicatecycle(+System,+Possibilities,+Problems,+Solutions_so_far)implements complete's main loop. It executes one completion or normalization step and thencalls itself recursively.For e�ciency it is very important which (fair) completion and normalization procedure is used tosolve E-uni�cation problems. 3TAP uses a heuristic that compares all possible rule applications(both completion and normalization steps). The possible applications of the critical pair rule, thededuction rule, the composition rule, and the simpli�cations rules (Sections 2.6.6.3 and 2.6.6.4)kept in a list Possibilities sorted according to their precedence (see the next section). Thereis only one list for all completion and normalization sequences computed to solve the di�erentE-uni�cation problems derived from a tableau branch.System is the set of reduction rules computed so far; Problems contains the normal forms of theterms in the uni�cation problems that have been computed; Solutions_so_far is a list of theclosing substitutions already found.If no rule application is possible, or if the best possibility exceeds a limit (see Section 5.13.6),generate_further_solutions is called to apply the inversion of the system of reduction rulesto Solutions_so_far.Else, the best possibility is chosen, and according to its type the new rules or terms are computed.After that,1. the constraints of the new terms or rules are transformed into normal form, such that theyonly contain simple order conditions (see Section 5.13.10);2. if possible, i.e., if the rule application is a simpli�cation, the old rule or term is removed;3. subsumed terms and rules and those with an inconsistent constraint are removed;4. the new possibilities to apply a completion or normalization rule are computed, their pre-cedence is determined, and they are added to the list of possible applications;5. possibilities that ceased to exist, because one of the involved terms or rules has beenremoved, are deleted from the list.5.13.4 Precedence of Possible Rule ApplicationsThe precedence of possible rule applications is computed by the predicatecompute_precedence_of_possibility

96 CHAPTER 5. SYSTEM DESCRIPTION BY MODULESSuppose Mi (i = 1; 2) is the possibility to apply the rule ri to the term ti (which might be arule as well), and, thus, to derive the new terms t1i ; : : : ; tki (that are already in normal form).G(t) is the weight of the term t (see Section 5.13.5); Index(t) is the index of a term or rule, i.e., ifIndex(t) = n, then t is the nth term added to the completion or normalization sequence. Usingthis notation, the implemented heuristic can be formulated in the following way: the possibilityM1 ist better than M2 if201. max(Index(r1); Index(t1)) �max(Index(r2); Index(t2)) > d.2. M1 is a simpli�cation or composition, whereas M2 is an application of the critical pair orthe deduction rule.3. max(G(t11); : : : ; G(tk1)) < max(G(t12); : : : ; G(tk2)).4. max(G(r1); G(t1)) < max(G(r2); G(t2)).5. min(G(r1); G(t1)) < min(G(r2); G(t2)).6. max(Index(r1); Index(t1)) < max(Index(r2); Index(t2)).7. min(Index(r1); Index(t1)) < min(Index(r2); Index(t2)).The �rst criterion assures fairness of the procedure (Def. 2.47 and 2.50) for all computed comple-tion and normalization sequences. The value of d is chosen high enough, such that the criterionapplies only very rarely in practice (by default: d = 300).The second criterion keeps the number of rules and terms small, because after simpli�cationsand compositions, the old term (resp. rule) is removed.It is essential to take the term weight into concern in some way or the other. However, manyexperiments were necessary to develop Criteria 3 to 5.5.13.5 Term WeightBy default, the weight of a constrainted term t is the number of function symbols, constantsymbols, variables, and logical operators occurring in t (including its constraint).If the switch weight left only is on (default: o�), the weight of a constrained rule does not includeits right side, i.e., only the symbols in the left side and in the constraint of the rule are counted.A di�erent term weight can be de�ned by changing the predicate weight in module complete.5.13.6 Parameters Limiting Completion and NormalizationThere are four parameters that limit the completion and normalization process and thus thesearch for solutions of E-uni�cation problems:max solutions per branchThe maximal number of closing substitutions that are computed for a branch using equality(default: 10).max rule cr numberThe maximal number of applications of the critical pair rule per branch (default: 10000).20 The criteria are listed according to their importance. Only if a criterion does not distinguish two possibilities,the next one is taken into concern.

5.13. COMPLETE, EQUALITY 97max rule simp numberThe maximal number of applications of the composition and the simpli�cation rule perbranch (default: 10000).max term numberThe maximal number of new constrained terms that are derived during the computationfor closing a single branch (default: 10000).These parameters have similar e�ects as the parameters maxcounter and maxbranchlength, thatlimit the expansion of tableaux. On the one hand, their value has to be su�ciently high to provetheorems; on the other other hand, lower values reduce the size of the search space.5.13.7 The Lexicographic Path Ordering UsedModule complete uses a lexicographic path ordering on terms, that is induced by the ordering >Fon function and constant symbols (resp. its transitive closure). By default, >F is de�ned by:g >F f i�1. the arity21 of g is greater than that of f , or2. g and f have the same arity, and g is behind f in the alphabetical order.This ordering turned out to be suitable for most problems. But, since there are exceptions, theuser can change the ordering on function symbols by adding Prolog facts such asprecedence(f,g).to the module complete. Symbols that are not comparable in the transitive closure of the orderde�ned by precedence remain ordered according to the default ordering de�ned above.5.13.8 Computing Additional SolutionsIf no further solutions to the E-uni�cation problems extracted from a tableau branch can befound, or if one of the limits max rule cr number, max rule simp number, or max term number(see Section 5.13.6) is reached, the predicategenerate_further_solutions(+Reduction_system,+Solutions)is invoked, to compute additional solutions.This is done by changing the orientation of the rules in Reduction_system and applying themto the uni�ers in Solutions. Each new solution is used to close the branch. If no (additional)solution can be found or max solutions per branch is reached, generate_further_solutionsfails.In theory, computing additional solutions is necessary for completeness of the method (see Sec-tion 2.6.6.6). Fortunately, in practice generate_further_solutions has to be called only veryrarely to prove a theorem. Therefore, this is only done if compute additional solutions is on.21 Here, constants are treated as functions of arity 0.

98 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES5.13.9 Handling Substitutions5.13.9.1 Canonical RepresentationTwo uni�able terms s and s0 always have an MGU � that is canonical, i.e., that meets thefollowing condition:De�nition 5.28 (Canonical Substitution) A substitution� = fx1 t1; : : : ; xn tng;is called canonical, if the variables xi do not occur in any of the terms tj (1 � i; j � n).Since all substitutions that occur during equality applications are either the MGU of two termsor are a specialization of an MGU, it is possible to impose the general restriction on substitutionsthat they have to be canonical. As a result, simpler and faster algorithms can be used for handlingsubstitutions.The predicate test_unify_and_give_subst is used to compute a canonical MGU. It is basedon the predicate unify_terms exported by the module unification. Even if this predicategenerates an MGU in an incorrect form, such as [X=Y,f(a)=Y], test_unify_and_give_substcomputes the correct canonical equivalent [X=f(a),Y=f(a)]. To do this it uses the predicatescondense_substitution and orientate_substitution.5.13.9.2 Combining SubstitutionsThe predicate combine_instantiations computes for two given substitutions � and �0 theircombination, i.e., a substitution � such that1. � and �0 are both more general than � ,2. � is more general than all substitutions having Property 1.If no such substitution � exists, combine_instantiations fails. A predicate combine_inst_2is used, that implements the recursive algorithm shown in Figure 5.2 using an accumulator �to iteratively compute the substitution � . The substitutions � and �0 have to be canonical(De�nition 5.28).Remark 5.29 The notation fx1 t1; : : : ; xn tng�, i.e., the application of one substitutionto another, is de�ned as fx1 t1�; : : : ; xn tn�g.5.13.10 Checking Consistency of ConstraintsTo implement the completion based method from Section 2.6.6.3, the algorithm for checking con-sistency of constraints could be used, that has been described in (Comon, 1990). This algorithm,however, is quite complex, which is no surprise because the problem is NP-hard. The reason is,that inconsistencies have to be taken into concern that, for example, stem from the fact that theorder condition (b � x) ^ (x � a) is only satis�able, provided there is a constant symbol betweena and b (w.r.t. to LPO used).Since consistency of constraints has to be tested very often, in particular for all subsumptionchecks, Comon's algorithm is too ine�cient for implementation.

5.13. COMPLETE, EQUALITY 99combination(�; �0):� := ;WHILE �0 6= idIF � = ;THEN Choose x such that �0 = fx tg [�0Rest�0 := �0 n fx tg� := fx tg [�fx tgELSE Choose x such that � = fx tg [�RestIF �0 = fx t0g [�0RestTHEN IF t and t0 are uni�able with MGU � andcombination(�; (�0 n fx t0g)) existsTHEN �0 := combination(�; �0 n fx t0g)� := � n fx tg� := fx t�g [�ELSE FAIL: Combination does not existELSE �0 := �0fx tg� := � n fx tg� := � [fx tgOutput: � [�Figure 5.2: The algorithm for computing the combination of two substitutions.The following pragmatic approach is more suitable. It is based on the assumption, that addingnew constant symbols to the signature does not do any harm. The advantage of an expansion ofthe signature is, that a new symbol can|for example|be de�ned to be between a and b. Insteadof really adding new symbols, one can instead ignore inconsistencies such as (b � x) ^ (x � a),and check order conditions only for \weak" consistency.It is comparatively easy to decide, whether an order condition O or, based upon that, a con-straint h�;Oi is weakly consistent, i.e., consistent if the signature is expanded appropriately.Example 5.30 Supposed, a and b are the only constant symbols, and b �LPO a; f is a minimalfunction symbol w.r.t. �LPO. Then the order conditions(b � x) ^ (x � a); (f(a) � x) ^ (x � b); (a � x)are weakly consistent, but not consistent. The conditionsx � x; (x � y) ^ (y � z) ^ (z � x); x � f(x)are neither weakly consistent nor consistent.De�nition 5.31 (Simple Order Condition) An order condition O is simple, if it is identicalto true or false, or of the form(s1 � t1) ^ : : :^ (sn � tn) (n � 1) ;and for all (s � t) 2 O (where O is treated as an implicitly conjunctive set):1. s � t is neither true nor false.2. s or t is a variable.

100 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES3. There is no (s � u) 2 O, such t is a subterm of u.4. There is no (u � t) 2 O, such that u is a subterm of s.5. If (u � v[s]) 2 O, then (u � v[t]) 2 O.A simple order condition is|provided it is not identical to true or false|consistent on theatomic level (Condition 1); at least one side is a variable (Condition 2); it does not containany inconsistencies induced by the monotonicity of � w.r.t. to the term structure (Conditions 3and 4); and it is (in a certain sense) transitively closed (Condition 5).To check whether an order condition is weakly consistent, it is su�cient, to transform it into anequivalent simple order condition (or a set of disjunctively connected simple order conditions,see Lemma 5.32). The reason is that a simple order condition is weakly consistent if and only ifit is not identical to false.In addition, simple order conditions are easier to handle; in particular it is easy to compute thenegation and conjunction of simple order conditions.Lemma 5.32 For each constraint c there is a setC = fh�1; O1i; : : : ; h�m; Omig (m � 0)of constraints, such that Sat(C) = Sat(c) ;and the order conditions Oi (1 � i � m) are simple.The following algorithm can be used to compute a set C of simple order conditions equivalentto a given order condition c = h�;Oi:1. First, the order condition O is transformed into disjunctive normal form (DNF) by logicaltransformations, i.e., into the form(O1;1 ^ : : :^O1;l1) _ : : :_ (Ok;1 ^ : : :^Ok;lk) (k; l1; : : : ; lk � 1) ;where the Oij are atomic order conditions.2. Then, the set C 0 = fc01; : : : ; c0kg= fh�; (O1;1 ^ : : :^O1;l1)i; : : : ; h�; (Ok;1 ^ : : :^Ok;lk)ithat is equivalent to c is generated.3. The constraints c0i (1 � i � k) that only contain the logical operator ^, can be transformedinto simple order conditions by applying Condition 5 in the de�nition of simple orderconditions (Def. 5.31) and Conditions 1 to 3 in the de�nition of lexicographic path orderings(Def. 2.29) as transformation rules. The transformation terminates, if either a simple ordercondition is generated, or an obvious inconsistency is found, i.e., an inconsistent atomiccondition or a violation of Conditions 1 to 4 in the de�nition of simple order conditions.All occurring constraints are immediately transformed in this way. Therefore, at no time thereare order conditions that are more complex than those that are negations, conjunctions, orinstances of simple order conditions.

5.14. OUTPUT, MSG TAP 1015.13.11 Applying Demodulators to a TermThe predicate demodulate_term applies the demodulators present on the current branch todemodulate a term. If the demodulators form an equality theory that is not noetherian, thealgorithm may fail to terminate.The demodulators are applied in the order they occur on the branch. A demodulator is preferablyapplied to the whole term; only if that is not possible, it is applied to the term's subterms. If theterm has been changed by a demodulator application, the process is started all over and the �rstdemodulator is tried again. This goes on until no further demodulator applications are possible.A demodulator is not applied if that requires the instantiation of a free variable with respect towhich the demodulator is not universal.5.14 Output, Msg tapThe module output exports the predicates x_write and x_nl, that are used by all other modulesfor writing information to the current output stream, predicates for writing most of 3TAP 's datastructures, and for displaying error messages. The data structures are stripped of all irrelevantinformation and typeset in such a way that they can be easily read and understood.In msg tap 3TAP 's error messages are de�ned. It is, actually, not a module, but a �le includedby means of the consult predicate.Mainly, output's predicates are used by the other modules to display debug information.22 Fordebugging the modules completion and equality, predicates are de�ned that|depending onthe value of eqdebuglevel|are called at certain points, provided eqdebuglevel is set to a valuegreater than 0.In addition, output contains the predicates for generating a protocol �le that can be read bythe programs moreTab and tabTEX. These predicates do|in contrary to all other predicates inoutput|not use the predicate x_write, but write directly to the protocol �le denoted by theparameter tableauout�le. They are called at certain points of a proof provided tableau outputis switched on, e.g. the predicate write_branch_closed is called whenever a branch has beenclosed and writes the path of the closed branch to the protocol �le. The structure of the protocolinformation and its syntax is described in Sections 6.3 and 6.6.Some of the predicates in output, such as the predicate proof that displays the message \prooffound", are called by other modules even if debuglevel is set to 0.x_readchar(-Char) is the only input predicate in output. It prompts the user for a singlecharacter; the character is read from the current input stream.5.14.1 The Predicates X write and X nlThe predicate x_write/2 is used for displaying all material that is supposed to be written to thestandard output23 (with the exception of error messages, cf. Section 5.14.3). This feature makesit possible to easily redirect 3TAP 's output in whole or in part.x_write's �rst argument is the text to be displayed. It is either a single atom or a list of atoms.These atoms are displayed separated by blanks and followed by a newline. The second argumentis one of the atoms listed in Table 5.5; it denotes the type of information that is to be displayed.22 Debug information is displayed if the parameterdebuglevel (resp. dissdebuglevel and eqdebuglevel) is set to avalue greater than 0, cf. Appendix B.23 I.e., all output that is not written to proveall's statistic �le or the protocol �le used by moreTab and tabTEX.

102 CHAPTER 5. SYSTEM DESCRIPTION BY MODULESType Displayed Material of that Typeresult The message that a proof has been or couldn't be found, and thestatistical information provided with that message.lookup The information that is being displayed by the predicates lookup,writekb, writekbx, writeidx and writesort.debug All debug information displayed if one of the parameters debugle-vel, eqdebuglevel or dissdebuglevel is set to a value di�erent from 0.help The help pages displayed by the info command.info Miscellaneous messages (e.g. \Generating index for KB").Table 5.5: The di�erent types of information displayed by x write.If 3TAP is running under IBM's LILOG{KR user interface24, x_write uses the predicate w_writelexported by LILOG{KR's module iw inout to write the text to the appropriate LILOG{KR win-dow. Otherwise, if 3TAP is running standalone, x_write uses the predicate subst_w_writel towrite the text to the current output stream.If protmode is switched on, x_write writes all output to the �le denoted by output�le.x_nl(Where) displays an empty line. It is an abbreviation for x_write('', Where).5.14.2 Auxiliary Output PredicatesThe following list contains the predicates in the module output that are merely auxiliary toother output predicates, or that are not for the output of certain data structures.write list Writes an arbitrary Prolog list; a newline is inserted after each item.write clist Writes an arbitrary Prolog list.write remark Writes text marked as a comment by a leading %.5.14.3 Error Messagesoutput exports the predicate error_message/1,2. The �rst argument (and single argumentof error_message/1) is an atom denoting the message to be displayed. The second argumentis either a single or a list of up to three parameters, that are to be substituted for variablesoccurring in the de�nition of the error message.The messages are de�ned in tap msg in a LILOG{KR speci�c format (see the comments in tap msgfor a description of that format). Since the messages are not spread all over 3TAP 's modules, theycan easily be changed and new messages can be added.If 3TAP is running under LILOG{KR, error_message is implemented by display_message/1,2which is exported by one of the LILOG{KR modules, namely i displ; else error_message usesthe predicate subst_display_message/1,2 de�ned in module output for formatting the messageand displaying it.24 For testing, whether 3TAP is running under LILOG{KR or not, a fact is lilog version(yes) (respectively,is lilog version(no)) is asserted in boot.

5.14. OUTPUT, MSG TAP 1035.14.4 Predicates for Displaying Data StructuresPredicates exist for most of the data structures described in Section 5.5 to write them in asimpli�ed and more readable form to the output stream. For examples see the following sectionand Section 7.3.write branch Writes the used and unused formulae and atoms and the branch's path to theoutput stream.write extension Writes a list of the formulae in an extension to the output stream.write sformula Writes an sformula in the form(counter) . simpli�ed formula << indexto the output stream. simpli�ed formula is the result of applying the the predicatesimplify_sorted_sformula, that substitutes sort paths by the corresponding speci�csorts. counter is the number of
-rule applications to the formula.write conclusion Writes a list of all the extensions in a conclusion to the output stream.write new sterm list Writes a list of sterms.write equality list Writes a list of equalities or demodulators to the output stream. The nthequality (8u1) : : : (8uj)(t � s) is displayed in the formn: [_u1,: : :,_uj] t = swrite disjunction list Writes a list of disjunctions of inequalities to the output stream.write inequality list Writes a list of inequalities to the output stream.write constraint list Writes a list of constraints to the output stream.write cterm list Writes a list of constrained terms to the output stream.write possibility list Writes a list of possible completion and normalization rule applicati-ons to the output stream.5.14.5 Output of CompleteIf the parameter eqdebuglevel is di�erent from 0, complete displays informationon the completionand normalization (the higher the value of eqdebuglevel the more). The information is sent tothe current output stream.As an example, we describe the information displayed ifE(A) = f(8x)(8y)(p(x; y) � p(x; x))gP(A) = ffhp(c; a); p(c; b)igg :First, the set of equalities E(A) on the tableau branch and the set P(A) of E-uni�cation problemsto be solved are displayed. Quanti�cations such as (8x)(8y) are represented by [X,Y]. Thesymbol \= means that this is an uni�cation problem to be solved (only one in the example):

104 CHAPTER 5. SYSTEM DESCRIPTION BY MODULESBeginning search for closure with equality of branch b1Equalities extracted from Branch:1: [X,Y] p(X,Y) = p(X,X)2: [X,Y] p(X,X) = p(X,Y)Problems extracted from Branch:(1,1): p(c,a) \= p(c,b)The initial rule system is displayed. Rules with inconsistent constraints have already beenremoved:Initial System:1: [X,Y] p(X,Y)=>p(X,X) << <[] and [gr(Y,X)]>2: [X,Y] p(X,X)=>p(X,Y) << <[] and [gr(X,Y)]>Now, the completion and normalization starts. \0 left" means that there is only one possiblerules application (which is chosen); no other possibilities are left.Chosen possibility (0 left):critical_pair:2: [X,Y] p(X,X)=>p(X,Y) << <[] and [gr(X,Y)]>--- 2: [X,Y] p(X,X)=>p(X,Y) << <[] and [gr(X,Y)]> at [1] --->[X,Y,Z,U] p(Z,Y)=>p(Z,U) << <[] and [gr(Z,U),gr(Z,Y)]>The above output means that the ruler2 = (8x)(8y)(p(x; x)! p(x; y)� hid; x � yi)can b applied to itself at position h1i.Critical pair rule appliesNew Rules:3: [X,Y,Z] p(Y,X)=>p(Y,Z) << <[] and [gr(Y,Z),gr(Y,X),gr(X,Z)]>4: [X,Y,Z] p(Y,Z)=>p(Y,X) << <[] and [gr(Y,Z),gr(Y,X),gr(Z,X)]>The application of the critical pair rule results in to new rules, which are displayed. Theirconstraints have already been transformed into normal form.3: [X,Y,Z] p(Y,X)=>p(Y,Z) << <[] and [gr(Y,Z),gr(Y,X),gr(X,Z)]>subsumed by4: [X,Y,Z] p(Y,Z)=>p(Y,X) << <[] and [gr(Y,Z),gr(Y,X),gr(Z,X)]>The �rst of the new rules is subsumed by the second and therefore removed. Thus, the newreduction system is:System:1: [X,Y] p(X,Y)=>p(X,X) << <[] and [gr(Y,X)]>2: [X,Y] p(X,X)=>p(X,Y) << <[] and [gr(X,Y)]>4: [X,Y,Z] p(Y,Z)=>p(Y,X) << <[] and [gr(Y,Z),gr(Y,X),gr(Z,X)]>0 possibilities left

5.14. OUTPUT, MSG TAP 105\0 possibilities left" shows, that the completion terminates at this point.Next, a normalization step is executed. The new rule r4 is applied to the term p(c; a). A\non-simpli�cation rule" can either be the critical pair rule or the derivation rule (as in thiscase).Chosen possibility (2 left):non_simplification:[1,1,l,0]: [] p(c,a) << <[] and []>--- 4: [X,Y,Z] p(Y,Z)=>p(Y,X) <<<[] and [gr(Y,Z),gr(Y,X),gr(Z,X)]> at [] --->[X,Y,Z] p(c,X) << <[] and [gr(a,X),gr(c,X)]>Non-simplification rule appliesNew Terms:[1,1,l,1]: [X] p(c,X) << <[] and [gr(a,X),gr(c,X)]>Terms:[1,1,l,0]: [] p(c,a) << <[] and []>[1,1,l,1]: [X] p(c,X) << <[] and [gr(a,X),gr(c,X)]>2 possibilities leftThe label [1,1,l,1] of the new term (which is universal w.r.t. the variable x) means that thisis normal form No. 1 of the term which is the left side of the �rst part of the �rst simultaneousuni�cation problem.Chosen possibility (2 left):non_simplification:[1,1,r,0]: [] p(c,b) << <[] and []>--- 4: [X,Y,Z] p(Y,Z)=>p(Y,X) <<<[] and [gr(Y,Z),gr(Y,X),gr(Z,X)]> at [] --->[X,Y,Z] p(c,X) << <[] and [gr(b,X),gr(c,X)]>Non-simplification rule appliesNew Terms:[1,1,r,1]: [X] p(c,X) << <[] and [gr(b,X),gr(c,X)]>Terms:[1,1,r,0]: [] p(c,b) << <[] and []>[1,1,r,1]: [X] p(c,X) << <[] and [gr(b,X),gr(c,X)]>2 possibilities leftAfter a second derivation, the uni�cation problem can be solved, and the tableau branch can beclosed. The constraints hid; (a � x) ^ (b � x) ^ (c � x)i and � are found to de�ne solutions ofthe simultaneous E-uni�cation problem.[1,1] closed with constraint(s)<[] and [gr(a,X),gr(b,X),gr(c,X)]>by combination of the normal forms[1,1,r,1]: [X] p(c,X) << <[] and [gr(b,X),gr(c,X)]>

106 CHAPTER 5. SYSTEM DESCRIPTION BY MODULES[1,1,l,1]: [X] p(c,X) << <[] and [gr(a,X),gr(c,X)]>[1,1] closed with constraint(s)<[] and []>by combination of the normal forms[1,1,r,1]: [X] p(c,X) << <[] and [gr(b,X),gr(c,X)]>[1,1,l,0]: [] p(c,a) << <[] and []>The empty constraint � is a solution, because (8x)(p(c; x)� hid; (b � x) ^ (c � x)i) is universalw.r.t. x, and it is, thus, not necessary to instantiate x with a.The simpler constraint � and the empty substitution satisfying it are chosen to close the branch.Branch closed with instantiation []-------------------- PROOF --------------------5.15 The Compiler5.15.1 Calling the CompilerThe compiler is used for transforming knowledge bases from their external into their internalrepresentation25. It is called by the predicate parse which is part of the interface.pl module.parse succeeds if the compiler does not �nd any errors in the input �le. In that case the outputis written to the same directory where the input �le is read from. Error messages are written tothe standard error stream (usually the shell).The name of the output �le is composed from the name of the input �le and an extension. Thisextension is de�ned in the sysdep module within the predicate internal reset. To check, whichextension is pre-de�ned, use the predicate get tcplus extension/1.The name of the compiler directory must either be de�ned in module sysdep in the variablecompdir, or contained in the environment variable THREETAP COMPILER DIR. To read the nameof compiler directory, the predicate get compiler directory/1 can be used.5.15.2 Implementation LanguageThe compiler is implemented using the Unix tools Lex and Yacc (resp. Flex and Bison). Thename of the executable �le is parser. The additional functions necessary for checking the inputand generating the output are written in C.If you want to change the parts of the compiler concerning the operators of the input languageread Section 9.4.25 See Chapter 3 for the external representation and Chapter 5.5 for the internal representation of knowledgebases.

5.15. THE COMPILER 1075.15.3 Scanner.lThe �le scanner.l contains the main function of the parser �le. It is the lexicographical analyzerof the compiler. Part of it is written in the Lex (resp. Flex) input syntax, and part of it is writtenin C. scanner.l contains the scanning rules for recognizing keywords and keycharacters of thegrammar (see Table 3.1).If no errors are detected, the messageno errors detected - compiling knowledge baseis printed to the standard error stream and the program exits with status 0. Else the programexits with status 1 after calling the function yyerror.For changing the syntax of knowledge bases it might is useful to see what keywords and keycha-racters are recognized. For that, an executable �le debug can be generated. Use the shellcommanddebug < knowledgebaseto get a list of the recognized keywords and keycharacters.5.15.4 Grammar.ygrammar.y contains the parsing rules which are given in Table 3.1. They are written in the Yacc(resp. Bison) input syntax. For checking the input and composing the output some additionalC code is used. The more complex C functions have been put into the extra �le output.c.5.15.5 Output.c, Output.hIn output.c the functions which are necessary for checking the input and generating the outputare located. output.h is the header�le for output.c. The global datastructures of the compilerare de�ned here. In addition, the global functions of the output.c module are declared in theoutput.h header�le.

6 Utility Programs6.1 Visualizing ProofsAll the output utilities supplied with 3TAP operate on a special �le which is generated by 3TAPduring tableau construction if tableau output is switched on. By default it is switched o� fore�ciency. The command set tableau output(on).enables the tableau output mode. Its counterpartset tableau output(off).disables tableau output. Now let us assume tableau output mode is enabled and some theorem hasbeen proved using some of the prove/n predicates. You will �nd a new �le named tableau.outin the current directory|which is the directory you started 3TAP from or the one you changedto via cd/1. Although this �le is more readable than the protocol output it is not easy tounderstand for a human. To overcome this de�ciency two utilities are supplied: moreTab andtabTEX.Remark 6.1 Please note that all characters in the command names moreTab and tabTEX aretyped lower case!6.1.1 Navigate Through Tableaux Using moreTabmoreTab is similar to the UNIX more utility. You may navigate through your tableau in a similarway you move through any UNIX text �le. The tableau is indented, so you can see the branchingstructure of the proof.1 moreTab has several options to suppress useless information, e.g. thesort top, or to display additional information, e.g. Dewey numbers of the branches. To invokemoreTab to display the prove in the �le tableau.out simply typemoretab tableau.outin your shell. To get a list of available commands type the ?-key. moreTab's options are discussedbelow.6.1.2 Typesetting Tableaux Using tabTEXThe second utility, tabTEX, may be used to typeset the proofs found by 3TAP . As moreTab it readsthe tableau output �le generated by 3TAP , but tabTEX has to read one more �le, which is calleddeclarations.pl. It is placed in the directory where all the 3TAP sources live. There tabTEX1 Since dissolution e�ects a branch in a more complicated way than other tableau rules do, moreTab might failto display the results of a dissolution rule application properly.108

6.2. 3TAP 'S COMMANDS TO GENERATE TABLEAU OUTPUT 109�nds the TEX-symbols which are used to typeset the formulae in the tableau. Assume we are inthe directory problems, which is one level below the directory which contains the 3TAP sources(and, most important, the �le declarations.pl) and assume further, the �le tableau.out isalso placed here. Now type tabtex -s -d../declarations.plThis will produce a �le named tap.sty, a so called LaTEX style �le. If you want to includeany tableau generated by tabTEX in one of your LaTEX documents you have to add tap to yourdocument styles, e.g. \documentstyle[tap]farticleg. The style �le needs not to be generatedbefore typesetting every proof, you must reproduce it only when the operators had been changed.For details see below. -d../declarations.pl tells tabTEX to search for the declarations �le inthe parent directory. If not speci�ed otherwise tabTEX searches that �le in the current directory.tabtex tableau.out test.tex -d../declarations.plproduces the �le test.tex which may be included in your LaTEX document and which containsthe LaTEX-code of the tableau. As in moreTab the tableau is indented to visualize the structureof the proof tree. There are more options which will be described below.6.2 3TAP 's Commands to Generate Tableau OutputOnly few commands (predicates) are necessary to generate tableau output. Most of them havebeen introduced in the previous section. By default|for e�ciency reasons|no output is gene-rated by 3TAP . set tableau output(on) tells 3TAP to redirect the output of the prover to some�le. set tableau output(off) switches the tableau output o� again. If not speci�ed otherwisethe tableau output �le is located in the current directory and named tableau.out. You may usethe set tableauoutfile(�lename) predicate to specify a di�erent location or another �lename.The active setting may be obtained by get tableauoutfile(F), the name of the current output�le is returned in the Prolog-variable F. There is nothing else to do to achieve tableau outputfrom 3TAP .Remark 6.2 Please note that the tableau output �le will be overwritten if you do not specify anew �lename between two proofs.Online information concerning the output is available, typeinfo(output).Another way to look at the tableau output �lename is to call the lookup/0 predicate.6.3 The Overall Structure of the OutputThe output of moreTab or tabTEX is organized in so called nodes. A node consists of one ormore lines of text, e.g. the three linesThe following extension(s) have been added:ffgp(a)ftgp(b)constitute one node. There are a nine di�erent kind of nodes in the tableau displayed by moreTabor typeset by tabTEX. These are

110 CHAPTER 6. UTILITY PROGRAMSTableau for A headline for the proof. The only location for this kind of node is the beginningof the �le.Rule applied to This node indicates a rule application.Extension added The extension which has been generated by the above rule application iscontained in this node.Axiom added This node says that an axiom has been added to the tableau.Branching point The previous rule generated at least two extensions. Thus the tableau bran-ches here.New subbranch This node indicates the beginning of a new subbranch.Branch closed A subbranch is closed here.Branch closed with equality Dito, but the closure has been achieved using equality reaso-ning.Backtracking The current subbranch is exhausted and backtracking has been initiated.6.4 moreTabHere is a more detailed description of moreTab's features. In the �rst subsection the options(switches) are discussed. The second subsection deals with the available commands. An overviewis given by two tables, one for the options the other for the commands.6.4.1 OptionsYou may call moreTab from your shell bymoretab �lename optionswhere �lename is the name of the input �le, i.e. the name you speci�ed in 3TAP using the predicateset tableauoutfile(�lename) or the default �lename tableau.out. Options is a sequenceof some of the following available options:Output dimensions To set the output height use the -hn switch where n is the number ofoutput lines. In a similar way -wm sets the output width to m columns.indentation -in Sets the indentation factor to n characters. A subbranch is indented by ncharacters w.r.t. its parent branch.Dewey numbers Use +b to enable the output of the Dewey numbers, i.e. the paths to theformulae in the branches. -b disables this option. It is disabled by default.Top-sort +t causes moreTab to display the sort top. If -t is speci�ed this is suppressed. Thelatter is the default behaviour.Scroll portions By default the scroll portion is half a screenful of text. +s changes that to onescreenful. -s speci�es a scroll portion of half a screenful again.Marks By default ten marks are available. With -mn you may set the maximum number ofmarks to any other value.

6.4. MORETAB 111Version -v prints the version number of moreTab and the last changes to the program.Batch mode The -ofilename option switches moreTab in non interactive mode, i.e. the in-dented tableau is written to the speci�ed output �le instead to the standard output (yourterminal by default). The
ags and the indentation factor have their usual e�ects.Table 6.1 contains an overview of available options.switch action switch action-wn set output width to n columns -hn set output height to n lines-in set indentation factor to n -mn use n marks+b display the Dewey numbers -b don't display Dewey numbers+s scroll by one screenfuls -s scroll by half screenful+t print top sort info -t suppress top sort-v version number -o�le batch modeTable 6.1: moreTab options (n integer).A call of moreTab without any argument will print out a short description of the options andthe defaults.6.4.2 CommandsmoreTab knows �ve types of commands: commands for navigating through the tableau, com-mands associated with marks which may be used to remember special lines in the proof, com-mands to change
ags, commands to customize the output and miscellaneous commands.Navigation CommandsMoving up and down by linesType n to proceed one line (next line) and p to go back one line (previous line). Please notethat the lines are counted w.r.t. to the nodes which have been described in Section 6.3. I.e.the two lines of output Tableau forffg p(a)are counted as one (logical) line because they belong to the same node. Nodes are neversplit when displayed, therefore nothing will change if the above two lines of text are thelast visible lines and you type n, but the next n will show the next node.Moving up and down by pagesOne page is a screenful or half a screenful of lines (nodes) where a screenful is the numberof lines speci�ed with the -h option or the h command. Whether one resp. a half screenfulof text is scrolled is controlled by the +s resp. -s option or command as described inSection 6.4.1.To scroll forward use the f command or the space bar (as with UNIX more). To scrollback type b.Moving up and down in the proof treeThe last method of navigating through the tableau is tree oriented. The u command bringsyou up to the next branching point in the tableau which is above your current position.The d command moves you down to the next branching point below, i.e. the next leftmost

112 CHAPTER 6. UTILITY PROGRAMSbranching point of the tableau. l moves one branch to the left and r one branch to theright if possible, i.e. if there are any branches to the left or to the right.Remark: If your current position is near the end of your �le, moving up or left is relativelyexpensive on machines with poor performance.Jumping to special positionsThe percentage of text above the visible screenfull is displayed in the status line. It ispossible to jump to a position with p% of text above, simply type the number p and the%-sign.To move to the nth line type the number n directly followed by g.MarksmoreTab manages ten marks, which may be set to lines you want to remember. As described inSection 6.4.1 the maximum number of marks may be changed. By nm mark number n is set tothe �rst line in the display. Type n# to return to that position.FlagsThere are three
ags which may be set or cleared by the following commands.Dewey numbers +b activates the Dewey numbering and -b suppresses the display of Deweynumbers. By default Dewey numbers are not printed.top sort If you are working in a domain with a single sort|whose sort is usually called top in3TAP|it may be useful to get rid of the sort information which is attached to every term.This is the default. The -t switch prevents the display of the top sort information. With+t you will get the top sort back.Scroll portions The scroll commands scroll by one screenful of text or by half a screenful. The+s command tells moreTab to scroll by one screenful, this is the default behaviour. Use -sto scroll by half a screenful of text.Remark 6.3 Please note that numeric arguments have to appear before a command but behinda switch.Customize OutputmoreTab will probably assume wrong dimensions of your shell window. To correct this, use thenh and mw commands. The former sets the output height to n lines while the latter sets theoutput width to m columns2. A better method to achieve correct output dimensions would beto use the appropriate switches with the current window geometry in an alias command of yourshell. To adjust the indentation level of the proof subbranches to your personal style use theni command. The command sets the indentation factor to n characters, i.e. each subbranch isindented n characters more than it's parent branch.MiscellaneousThere are only two commands left. ? shows the help page which contains a short commandreference and q exits moreTab.Table 6.2 shows an overview of the available commands for moreTab.2 Assuming a non-proportional font.

6.5. TABTEX 113key action key actionn go to the next line p go to the previous linef scroll forward b scroll backwardspaced go down to u go up toleftmost next branching point previous branching pointl move one branch to the left r move one branch to the rightn% move to the n% position ng go to line nnm set mark n n# return to mark n+b display the Dewey numbers -b don't display Dewey numbers+s scroll by one screenfuls -s scroll by half screenful+t print top sort info -t suppress top sortnh set screen height to n lines nw set screen width to n columnsni set indentation factor to n charactersq exit moreTab ? Print the help pageA missing number is alway treated as 0.If a command is pre�xed by a number n it is executed n times.(Of course this does not work for a command like g which starts with a number anyway.)Table 6.2: moreTab commands (n integer).6.5 tabTEXIn this section tabTEX is described in detail. The �rst subsection deals with the available options.In the second subsection the format of the style �le is discussed and then an overview is givenof how to customize the symbols used by LaTEX for the logic's connectives.6.5.1 OptionsYou may call tabTEX from your shell bytabtex tableau �lename LaTeX �lename optionsor tabtex -s [style �lename] optionsThe second alternative will generate the style �le while the �rst one typesets your tableau.tableau-�lename is the name of the input �le, i.e. the name you speci�ed in 3TAP byset tableauoutfile(�lename)LaTeX-�lename is the name of the output �le generated by tabTEX. Options is a sequence ofsome of the following available options:Declarations By default tabTEX searches the current directory for the �le declarations.pl.It is not very likely that this �le is in your working directory since declarations.pl is apart of the 3TAP -source. The -d option tells tabTEX where to look for the declarations �le.The path speci�cation must directly follow -d.Remark: tabTEX needs the declarations �le to get the operators used by 3TAP and to readthe default symbols for use with LaTEX.

114 CHAPTER 6. UTILITY PROGRAMSStyle �le If you want to include a tableau constructed by 3TAP into one of your LaTEXdocumentsthen you must add the 3TAP style to your \documentstyleoptions list, an example is givenin Section 6.1. To generate the style �le use the -s option. The �lename is optional, ifspeci�ed it must directly follow the -s. If the �lename is missing the style �le is namedtap.sty.Remark: The extension of your �lename should be .sty to make LaTEX happy.Indentation As in moreTab, each subbranch of the tableau is indented. By default the inden-tation factor, i.e., the amount of space the subbranch is indented w.r.t. to it's parent, is10mm. You may set the indentation factor to any valid LaTEXmeasure by simply adding-imeasure, e.g. -15ex will set the indentation factor to 15ex3.Dewey numbers As with moreTab you may add the Dewey numbers to the branches of yourtableau. This is done by the -b option.Top-sort Again as with moreTab you may suppress the top sort information which may beuseless. Use the -t switch for that purpose.Symbols To get a list of available operators and their LaTEX equivalents call tabTEX with the-o option. This will print such a list to your standard output.If you call tabTEX without any argument a short usage information is printed. Table 6.3 containsan overview of the available options.switch action-dfilename set path to declarations �le-s generate style �le named tap.sty-sfilename generate style �le with the speci�ed name-imeasure set indentation factor to measure-b print Dewey numbers-t suppress the top sort-o print the operator symbols for 3TAP and LaTEXTable 6.3: tabTEX options (filename is any valid UNIX �lename).6.5.2 The Style FileThe style �le which must be included as a document style option contains de�nitions for se-veral macros and some length-registers. Here is the style �le generated by tabTEX using thedeclarations �le from the two-valued version of 3TAP :\typeout{Document Style 'tap'. Generated by tabtex.}\newcommand{\TAPOPdis }{\mbox{\vee}}\newcommand{\TAPOPcon }{\mbox{\wedge}}\newcommand{\TAPOPsneg }{\mbox{$-$}}\newcommand{\TAPOPimp }{\mbox{\supset}}\newcommand{\TAPOPequi }{\mbox{\leftrightarrow}}\newcommand{\TAPOPall }{\mbox{\forall}}\newcommand{\TAPOPex }{\mbox{\exists}}3 One ex is the height of the character x in the active font.

6.6. SYNTAX OF MORETAB'S OR TABTEX'S INPUT 115\newcommand{\TAPOPpmi }{\mbox{\subset}}\newlength{\TAPindent}\newlength{\TAPrest}\newlength{\TAPparbackskip}The �rst line is simply an identi�cation which is printed whenever your LaTEX �le is translated.The last three lines declare registers for lengths, these are used internally for the indentation ofsubbranches. The remaining lines of the style �le introduce macros. There is one macro for everyoperator of the logic. The macro's name is \TAPOP followed by the internal name of the operator,e.g. \TAPOPdis for the disjunction. The macro's body is a mbox containing a math environmentcontaining a backslash followed by the name speci�ed through the get LaTeX op list/1 predi-cate in the declarations module. In the above example this is \mbox{\vee}, where vee isthe name given by get LaTeX op list/1 which corresponds to dis.Using the above mechanism it is not possible to create operator names like _3 for the LaTEXoutput, since Prolog names must not contain the c�ar�et-sign `^'. Nevertheless such names arepossible. For the above example simply replace the vee in the get LaTeX op list/1 by my macroand add a de�nition like\newcommand{\my_macro }{\mbox{\vee^3}}to your LaTEX �le.6.6 Syntax of moreTab's or tabTEX's InputmoreTab and tabTEX make the following assumptions concerning the input �le's format:1. Every line starts with a keyword (see below) except lines containing parts of an extensionenclosed by `<' and `>'.2. There is never a newline-character `\n' in any formula.3. Every CLOSED-node is directly followed by a PROCEEDING-node or the end of �le.The syntax for the various kinds of nodes is given in Table 6.4. There, n is some integer, path isa list of integers separated by commata and enclosed in square brackets, e.g. [1,2,3], this is thenotation used for Dewey numbers. sign and formula are treated as text and simply echoed bymoreTab or tabTEX. Anything within square brackets is optional and (a)� says that a may berepeated any number of times. Texts in quotes stand for themselves.

116 CHAPTER 6. UTILITY PROGRAMS
`TABLEAU FOR' sign formula `\n'`RULE APPLICATION' sign formula `TO' branch `\n'`ADD EXTENSION < \n' (formula `\n')� formula `>\n'`PROCEEDING' branch `REMAINING SUBBRANCHES (incl.)' n `\n'`FORMULA(E)' sign formula [`AND' sign formula] `\n'`CLOSED' branch `\n'`EQUALITY CLOSURE BY AN INEQUALITY \n' path `\n'`EQUALITY CLOSURE WITH' sign formula [`AND' sign formula] `\n' path `\n'`BACKTRACKING \n'Table 6.4: moreTab's and tabTEX's input syntax

7 Getting Started |A Tutorial7.1 Preliminary RemarksThis chapter tries to introduce you to 3TAP via a sample session. All the important concepts of3TAP and the various settings and kinds of proofs will be mentioned.We suppose that you have a ready installed version of 3TAP including all sources and some sampleproblems (see Appendix C). In the next section we describe the directory structure recommendedfor the installation of 3TAP . Section 7.3 describes a typical session with 3TAP and introduces thevarious settings and features which are available. See also Section C.2.7.2 Directory StructureWe recommend the following directory structure on your station and refer during the followingto this structure.1. The main directory for the installation of 3TAP is called tap. There are several subdirecto-ries:2. A subdirectory Compiler which contains the newest version of the compiler and relatedmodules.3. A subdirectory 2version which contains the various modules of 3TAP .4. A subdirectory of =tap=2version called problems which contains the various problem �lesto be proven.7.3 A Sample SessionWe go to the tap=2version= directory and invoke Prolog. At the Prolog prompt we type in:| ?- compile(boot).Now it will take several minutes (depending on your machine) to compile the various modulesand the Prolog library predicates. After the compiling is �nished, an information page is shown.If you are interested in some topics, e.g. information about the possible unix commands, type| ?- info(unix).and the available information is shown. The available information pages are listed in Section 5.1.3.Now we want to prove a problem. We choose Pelletier's 24th problem, which looks as follows:117

118 CHAPTER 7. GETTING STARTEDaxiom 1: :(9x(s(x) ^ q(x)))axiom 2: (8x(p(x)! (q(x) _ r(x))))axiom 3: (�(9x(p(x)))! (9y(q(y))))axiom 4: (8x((q(x) _ r(x))! s(x)))theorem: (9x(p(x) ^ r(x)))We assume that we already have encoded it into the input syntax for the compiler and that it isstored in tap=2version=problems under the name pel24.The problem in the correct input syntax for the compiler looks as follows:sort top.predicate p : top.predicate q : top.predicate r : top.predicate s : top.axiom pel24_1; -(exists x:top (s(x) & q(x))).axiom pel24_2; (forall x:top (p(x) => (q(x) v r(x)))).axiom pel24_3; (-(exists x:top (p(x))) => (exists y:top (q(y)))).axiom pel24_4; (forall x:top ((q(x) v r(x)) => s(x))).theorem pel24; (exists x:top (p(x) & r(x))).Now we type at the Prolog prompt the following command:| ?- cd('problems').to change into the subdirectory problems.1We now want to make a knowledge base (KB) from our problem pel24 for the use with 3TAP .There are two possibilities:1. We create only the KB corresponding to our problem, this is done via| ?- compkbx(pel24).and read it afterwards into the workspace of Prolog via| ?- readkbx(pel24).As you probably noticed, you can use the same �le name both for your encoded problem and forthe generated KB. 3TAP recognizes the \correct" �le by the �le name extension.The output looks as follows:no errors detected - compiling knowledge baseReading compiler output : pel24.kb into pel24Asserting : pel24Generating indices for : pel24Writing knowledgebase : pel24 into pel24.kbx1 You can omit the quotes in the command above if the argument contains only letters and numbers and doesnot start with a number.

7.3. A SAMPLE SESSION 119Deleting knowledgebase : pel24Reading knowledgebase : pel24The following theorems are defined: [pel24]yes| ?-The straightforward of way of proving pel24 now is to type| ?- prove(pel24).and you will receive the following result:Evaluation took 0.3 sec.41 tableau rule applications0 equality applications.17 branches have been closed.Backtracking has been tried 0 times.-------------------- PROOF --------------------yes| ?-If you are interested in a detailed protocol of the proof, you can do the following:1. Select another output stream than screen| ?- set_tableau_output(on).2. If you do not want to send the output to the default output �le tableau.out, then typefor example| ?- set_tableauoutfile('pel24.out').3. Start the proof again:| ?- prove(pel24).4. Now you have a �le pel24.out which you can examine in peace, for example via themoretab utility program. See Chapter 6 for a detailed description of the possibility tovisualize proofs.To continue our sample session, type now| ?- set_tableau_output(off).to redirect the output stream to the screen.If you are interested in some details about the proof, but you do not want to create an extra �le,you can increase the numeric value of the global variable debuglevel to see more informationon the proof derivation. Type for example

120 CHAPTER 7. GETTING STARTED| ?- set_debuglevel(2).and start the proof again and look what happens. If this still does not satisfy your curiosity,you can choose a number between 1 and 5 for debuglevel to regain more and more extensiveinformation.Normally, the information which is shown when debuglevel is greater than 1 rushes so quicklyover the screen that we recommend to redirect the output stream rather than to get the infor-mation via the debuglevel. Another possibility is to start 3TAP in an Emacs window running theProlog shell.If you have played a bit around with debuglevel, type| ?- set_debuglevel(0).and look at further possibilities of 3TAP .Perhaps you have the feeling that you can achieve a more e�cient proof of the same problem, oryour own problem is even not provable with the default settings. Then you can use a di�erentprove predicate or you can change various settings of the prover, for a complete description seeSection 5.1.5 and Appendixes A and B.First we show a di�erent possibility to prove your problem. Instead of using the prove/1 predi-cate we can also use proveinc/1. Type| ?- proveinc(pel24).This tries to �nd a proof with a successively higher bound on the number of
 rule applicationsstarting with 1 (corresponding to set maxcounter(0)). It stops as soon as a proof has beenfound on some level. With our example, there is no di�erence between the two possibilities,but there are examples where you can get much faster proofs (because of avoiding extensivebacktracking) by using the proveinc/* predicates.From the various possibilities to change global variables, we will demonstrate here only one; type| ?- set_uselemmata(off).and afterwards| ?- prove(pel24).and you will receive the following result:Evaluation took 0.3 sec.51 tableau rule applications0 equality applications.22 branches have been closed.Backtracking has been tried 0 times.-------------------- PROOF --------------------yes| ?-

7.3. A SAMPLE SESSION 121As you can see, the number of closed branches is greater than before. Therefore, the value alpha(the default) for uselemmata is the better choice.If you type| ?- set_uselemmata(on).and afterwards| ?- prove(pel24).you will receive the same result as with uselemmata set to alpha. You have to play around withthese settings.If you are done with a special problem, you can either delete it from the workspace via| ?- delkb(pel24).or you can just load another problem, say pel41. Type| ?- usekbx(pel41).and play around with it in the same manner as with pel24.If you have not deleted pel24 from the workspace, you can again make it the current knowledgebase via| ?- readkbx(pel24).As you can see, it is possible to maintain several problems simultaneously in the workspace and
ip from one to another.2If you are not sure which the current knowledge base is or even which knowledge bases are inthe workspace, you can use the lookup/0 predicate to gain this information.Please remember that besides the additionally available 3TAP predicates you are working in astandard Prolog shell. In particular, it is possible to exit the 3TAP system, for instance, by typing| ?- halt.We hope that this tutorial will help you to get a quick access to the famous 3TAP system andthat you have as much fun with it as we did.
2 If you change something in your input �le, you must reload it in any case.

8 Evaluation8.1 Problem Sets for Testing 3TAP8.1.1 The Statistical InformationIn this section the problem sets are described, that have been used for testing and evaluating3TAP .1For each problem the statistical information includes� the name of the knowledge base containing the problem (column KB);� the name of the proved theorem2 (Theorem);� the time in seconds 3TAP needs to �nd a proof running on a SUN-4 SPARC SLC workstation (Time);� the number of tableau rule applications3 (RA);� the number of equality applications to terms4 (ERA);� the length of the longest branch3 (LBR);� the number of closed branches3 (CB);� the number of backtracking occurrences, i.e., of parts of the proof being dismissed, (BT);� the value of the parameter maxcounter used for the proof5 (MC);� the value of the parameter maxbranchlength used for the proof (MBR);� the commands used to assign the switches and parameters values di�ering from their defaultvalues (Settings).If no other settings are explicitly listed in the statistics, the switches and parameters have beenset to their default values6 (cf. Appendix B).1 These are the prede�ned problem sets that can be proved automatically using proveall (cf. Appendix A).The statistical information in this chapter has been generated by the command proveall(all,tex).2 none if the inconsistency of the set of axioms is proved.3 Including those that are not part of the proof found, because they have been dismissed when backtrackingoccurred.4 Including those that lead nowhere or that are not part of the proof found, because they have been dismissedwhen backtracking occurred.5 That is the smallest value of maxcounter for which a proof can be found, unless it has been assigned tomaxcounter by one of the commands listed in the column \Settings".6 However, equality is switched o�, unless the problem to be proved is formulated using equality.122

8.1. PROBLEM SETS FOR TESTING 3TAP 1238.1.2 Simple Test ProblemsThe problem set tests consists of simple problems that demonstrate the e�ect that some of3TAP 's features have on proofs: handling of equality, demodulators, removing unlinked formulae,and universal formulae. The problems as well as their proofs are easy to understand and shouldtherefore be consulted to get an idea of how these features work.For statistical information see Table 8.1. testsKB Theorem Time[s] RA ERA LBR CB BT MC MBR Settingseqtest t1 0.017 2 1 4 1 0 0 0 equality: oneqtest t2 0.083 2 31 3 1 0 0 0 equality: oneqtest t3 0.050 6 2 7 2 0 0 0 equality: oneqtest eq1 0.033 1 0 2 1 0 0 0 equality: oneqtest eq2 0.050 2 1 4 1 0 0 0 equality: oneqtest eq3 0.034 3 2 5 1 0 0 0 equality: ondemod demod 1 0.166 9 0 10 1 0 0 0 equality: ondemod demod 2 0.467 10 0 11 1 0 0 0 equality: ondemod demod 3 0.150 11 0 12 1 0 0 0 equality: onnested terms t1 0.383 12 0 10 16 11 1 0removetest t 0.033 6 0 6 2 0 0 0 removeunlinked:on,uselemmata: on,equality: onremovetest t 0.050 9 0 7 3 0 0 0 removeunlinked:o�,uselemmata: on,equality: onuniv t1 0.033 4 0 6 3 0 0 0 equality: onuniv t2 0.117 17 0 9 9 0 1 0 equality: onTable 8.1: Statistics for the problem set tests.8.1.3 D'Agostino's ProblemsThe problem class given by D'Agostino ((D'Agostino, 1990), page 69) is a sequence of unsatis-�able propositional formulae An (n � 1), where An is the conjunction of the 2n di�erent clausesin f(L1 _ : : :_ Ln) : Li = pi or Li = :pi; i = 1; : : : ; ng:The formulae An are of length k = O(n2n). D'Agostino claims that tableau proofs for the Anare of length O(2k).If the mechanism of lemma generation is used, the complexity of the proofs goes down toO((n� 1)2n) = O(k log k), because there is a closed tableau for An (n � 1) with 1 + (n � 1)2nclosed branches.If uselemmata is switched on, the proofs generated by 3TAP are of approximately twice the lengthof these shortest proofs. Without lemma generation only A2 and A3 can be proved (to prove A4about 30,000 branches would have to be closed).For statistical information see Table 8.2.

124 CHAPTER 8. EVALUATIONdagostinoKB Theorem Time[s] RA ERA LBR CB BT MC MBR Settingsdagostino2 none 0.050 9 0 7 5 0 0 0 uselemmata: ondagostino2 none 0.067 11 0 8 7 0 0 0 uselemmata: o�dagostino3 none 0.183 43 0 17 21 0 0 0 uselemmata: ondagostino3 none 0.867 149 0 23 101 0 0 0 uselemmata: o�dagostino4 none 0.666 148 0 37 73 0 0 0 uselemmata: ondagostino5 none 3.050 450 0 77 225 0 0 0 uselemmata: ondagostino6 none 13.416 1266 0 157 641 0 0 0 uselemmata: onTable 8.2: Statistics for the problem set dagostino.8.1.4 Murray & Rosenthal's ProblemsThe problems MRn (n � 1) proposed by Murray and Rosenthal (Murray & Rosenthal, 1987)are of the form (p11 _ : : :_ p1n) ^ : : :^ (pn1 _ : : :_ pnn)^((:p11 ^ : : :^ :p1n) _ : : :_ (:pn1 ^ : : :^ :pnn)):The problems are of length k = O(n2). Murray and Rosenthal claimed the complexity of tableauproofs for the unsatis�ability of the MRn (n � 1) to be exponential in n, but this result holdsonly for Murray and Rosenthal's de�nition of semantic tableaux, that di�ers from ours. In themeantime, they do no more use this particular class of formulae as a counter example.Using our de�nition for semantic tableaux one can �nd tableau proofs for MRn with n2 = O(k)closed branches. 3TAP �nds these short proofs if (and only if) grepall is switched o�.For statistical information see Table 8.3. mrKB Theorem Time[s] RA ERA LBR CB BT MC MBR Settingsmr2 mr2 0.100 10 0 8 4 0 0 0 grepall: o�mr3 mr3 0.100 24 0 12 9 0 0 0 grepall: o�mr4 mr4 0.150 44 0 16 16 0 0 0 grepall: o�mr5 mr5 0.250 70 0 20 25 0 0 0 grepall: o�Table 8.3: Statistics for the problem set mr.8.1.5 Cook & Reckhow's ProblemsThe problems CRn (n � 1) given by Cook and Reckhow (Cook & Reckhow, 1974) are conjunc-tions of the 2n clauses L1 _ L2i2 _ : : :_ Lnin ;where Ljij is either pjij or :pjij and the Index ij is the sequence of the signs of the L1; : : : ; Lj�1ij�1 .These conjunctions are to be proved to be unsatis�able.Cook and Reckhow's problems are in some way very similar to D'Agostino's. They, too, are oflength k = O(2n), the complexity of their tableau proofs is O(2k), and if lemma generation isused, much shorter tableau proofs with 1 + (n� 1)2n closed branches and complexity O(k log k)can be found.For statistical information see Table 8.4.

8.1. PROBLEM SETS FOR TESTING 3TAP 125crKB Theorem Time[s] RA ERA LBR CB BT MC MBR Settingscr2 none 0.067 10 0 7 5 0 0 0 uselemmata: oncr2 none 0.067 13 0 6 7 0 0 0 uselemmata: o�cr3 none 0.217 56 0 17 29 0 0 0 uselemmata: oncr3 none 0.800 247 0 18 121 0 0 0 uselemmata: o�cr4 none 3.567 601 0 37 302 0 0 0 uselemmata: onTable 8.4: Statistics for the problem set cr.8.1.6 Kalish & Montague's ProblemsThe problem set kalish consists of 22 problems taken from (Kalish & Montague, 1964). Theproblems have been numbered in the same way as in that book, e.g. kalish201 is problem T201in (Kalish & Montague, 1964).All of the kalish problems consist of a single theorem and have no axioms. Most of them arevery easy to prove|except for kalish265, which cannot be proved by 3TAP . kalish317 usesequality and can only be proved with maxcounter set to 1.For statistical information see Table 8.5. kalishKB Theorem Time[s] RA ERA LBR CB BT MC MBR Settingskalish201 kalish201 0.116 6 0 8 2 0 0 0kalish202 kalish202 0.100 6 0 8 2 0 0 0kalish203 kalish203 0.100 9 0 6 2 0 0 0kalish204 kalish204 0.133 9 0 6 2 0 0 0kalish215 kalish215 0.116 9 0 7 4 0 0 0kalish223 kalish223 0.117 7 0 6 4 0 0 0kalish227 kalish227 0.084 3 0 3 2 0 0 0kalish229 kalish229 0.083 3 0 4 1 0 0 0kalish230 kalish230 0.100 3 0 4 1 0 0 0kalish234 kalish234 0.083 6 0 8 3 0 0 0kalish238 kalish238 0.100 3 0 4 1 0 0 0kalish239 kalish239 0.100 6 0 8 2 0 0 0kalish240 kalish240 0.100 8 0 10 3 0 0 0kalish241 kalish241 0.100 9 0 11 4 0 0 0kalish244 kalish244 0.100 5 0 7 1 0 0 0kalish246 kalish246 0.134 9 0 7 3 0 0 0kalish249 kalish249 0.100 5 0 6 1 0 0 0kalish250 kalish250 0.117 17 0 10 2 0 0 0kalish255 kalish255 0.100 6 0 6 2 0 0 0kalish256 kalish256 0.184 17 0 11 7 4 0 0kalish317 kalish317 0.433 51 5 26 20 0 1 0 equality: on,maxcounter: 1Table 8.5: Statistics for the problem set kalish.8.1.7 Problems Constructed according to MorganThese four problems are constructed by means of Morgan's method (Morgan, 1976) of encodingproblems from propositional logic in predicate logic. By encoding very simple tautologies from

126 CHAPTER 8. EVALUATIONpropositional logic, �rst-order problems have been generated that are very di�cult to prove.For statistical information see Table 8.6. meta plKB Theorem Time[s] RA ERA LBR CB BT MC MBR Settingsmeta pl t1 4.317 24 0 23 28 19 3 0 maxcounter: 3,equality: onTable 8.6: Statistics for the problem set meta pl.8.1.8 The \Pigeonhole" ProblemsThe pigeonhole problems are propositional theorems de�ned for each n � 1. In English:There are n+ 1 pigeons and n pigeonholes. Each pigeon is in one hole. Therefore, itis not possible, that in each hole there is exactly one pigeon.There are two di�erent formulations of this problem in propositional logic. The �rst one (problemset pigeon) is the conjunction of the n+ 1 disjunctionspi1 _ : : :_ pin; 1 � i � n+ 1implies the disjunction of the 12 (n3 + n2) conjunctionspik ^ pjk; 1 � i < j � n + 1; 1 � k � n:The second formulation (problem set pig alt) is that the conjunction of the 12(n3 + n2) clausespik � :pjk; 1 � i < j � n+ 1; 1 � k � n:and the n+ 1 clauses pi1 _ : : :_ pin; 1 � i � n+ 1which has to be unsatis�able.The second formulation is much more suitable for proving the \pigeonhole" problems using 3TAP .The reason is, yet, unknown.Both formulations are of length k = O(n3). In theory the length of the tableau proofs growsexponentially in k. Probably, the complexity cannot be reduced by using lemma generation.This assumption is enforced by the statistics, although there is no proof yet.For statistical information see Tables 8.7 and 8.8.pigeonKB Theorem Time[s] RA ERA LBR CB BT MC MBR Settingspigeon2 pig2 0.333 47 0 19 40 0 0 0 uselemmata: onpigeon2 pig2 1.000 175 0 18 168 0 0 0 uselemmata: o�pigeon3 pig3 9.500 749 0 49 714 0 0 0 uselemmata: onpigeon3 pig3 76.300 629 0 70 102 0 0 0 uselemmata: on,dissolution: onTable 8.7: Statistics for the problem set pigeon.

8.1. PROBLEM SETS FOR TESTING 3TAP 127pig altKB Theorem Time[s] RA ERA LBR CB BT MC MBR Settingspig alt2 none 0.183 21 0 11 14 0 0 0 uselemmata: onpig alt2 none 0.150 20 0 9 14 0 0 0 uselemmata: o�pig alt3 none 1.183 162 0 27 90 0 0 0 uselemmata: onpig alt3 none 1.350 166 0 22 106 0 0 0 uselemmata: o�pig alt4 none 9.717 949 0 48 536 0 0 0 uselemmata: onpig alt4 none 7.800 1088 0 37 692 0 0 0 uselemmata: o�pig alt5 none 92.683 5697 0 73 3266 0 0 0 uselemmata: onpig alt5 none 67.117 7370 0 56 4730 0 0 0 uselemmata: o�Table 8.8: Statistics for the problem set pig alt.8.1.9 Problems from Group TheoryThe following two problems from group theory are mainly for testing the handling of equality.The tableau proofs for both of them consist of one branch. All formulae are universal withrespect to all free variables.The �rst problem gr1 is to prove that from the axioms(8x)(e � x � x)(8x)(x � x�1 � e)(8x)(x�1 � x � e)(8x)(8y)(8z)(x � (y � z) � (x � y) � z)the additional axiom (8x)(x � e � x)can be derived. The second problem gr2 is to prove, now using the additional axiom as well,that (8x)(8y)(8z)(x � y � z � y � x � z)is a theorem from group theory.For statistical information see Table 8.9. groupsKB Theorem Time[s] RA ERA LBR CB BT MC MBR Settingsgr1 gr1 2.933 5 124 6 1 0 0 0 equality: ongr2 gr2 146.034 7 1281 9 1 0 0 0 equality: onTable 8.9: Statistics for the problems set groups.8.1.10 Pelletier's ProblemsIn (Pelletier, 1986) Pelletier gives a collection of a lot of di�erent problems for testing automatictheorem provers. This is the problem set most often used for testing 3TAP . It has been dividedinto three subsets: problems from propositional logic (pel prop), problems from predicate logic(pel pred), and problems formulated with equality (pel eq).Pelletier used a scale from 1 (easiest) to 10 (most di�cult) points to denote the di�culty of theproblems (from his point of view). His judgement has been included in the statistics (Tables 8.10,8.12 and 8.11).Pelletier's 47th (Schubert's Steamroller) and 51st{54th problem could, yet, not be proved.

128 CHAPTER 8. EVALUATIONpel propKB Theorem Diff. Time[s] RA ERA LBR CB BT MC MBR Settingspel1 pel1 2 0.083 9 0 7 4 0 0 0pel2 pel2 2 0.083 5 0 4 2 0 0 0pel3 pel3 1 0.067 4 0 6 1 0 0 0pel4 pel4 2 0.083 9 0 6 4 0 0 0pel5 pel5 4 0.100 6 0 7 3 0 0 0pel6 pel6 2 0.083 2 0 3 1 0 0 0pel7 pel7 3 0.083 4 0 5 1 0 0 0pel8 pel8 5 0.083 3 0 5 2 0 0 0pel9 pel9 6 0.134 14 0 12 6 0 0 0pel9 pel9 6 0.366 7 0 9 1 0 0 0 dissolution: onpel10 pel10 4 0.150 15 0 7 14 0 0 0pel11 pel11 1 0.083 1 0 3 2 0 0 0pel12 pel12 7 0.217 23 0 7 24 0 0 0pel13 pel13 5 0.150 14 0 8 9 0 0 0pel14 pel14 6 0.150 18 0 9 10 0 0 0pel15 pel15 5 0.100 7 0 6 4 0 0 0pel16 pel16 4 0.067 3 0 5 1 0 0 0pel17 pel17 6 0.167 28 0 14 12 0 0 0pel17 pel17 6 0.617 22 0 13 4 0 0 0 dissolution: onTable 8.10: Statistics for the problem set pel prop.pel eqKB Theorem Diff. Time[s] RA ERA LBR CB BT MC MBR Settingspel48 pel48 3 0.167 4 24 5 4 0 0 0 equality: onpel49 pel49 5 0.367 21 92 11 10 2 2 0 equality: on,uselemmata: o�,maxcounter: 2pel50 pel50 4 0.117 6 0 7 2 0 0 0 equality: onpel56 pel56 4 0.134 13 2 9 5 0 0 0 equality: onpel57 pel57 2 0.117 3 0 5 3 0 1 0 equality: on,maxcounter: 1pel58 pel58 3 0.100 2 2 3 1 0 0 0 equality: onpel59 pel59 3 0.200 17 0 12 8 2 1 0 equality: onpel60 pel60 4 0.116 10 0 8 4 0 0 0 equality: onpel61 pel61 6 0.150 2 4 3 1 0 0 0 equality: onpel62 pel62 5 0.150 17 0 13 6 0 0 0 equality: onTable 8.11: Statistics for the problem set pel eq.8.1.11 Other Two-Valued ProblemsThe set ps is a class of very hard challenge problems proposed by P. H. Schmitt. The formulaePSn are corollaries of the well known fact that an injective function f : M !M that operateson a �nite set M has to be surjective.(8x)(x 6� a1 ^ : : :^ x 6� an � f(x) � x)(8x)(8y)(f(x) � f(y) � x � y)(8x)(9y)(x � f(y))The problems PSn can be seen as a formulation of the \pigeonhole" problems using equality (if

8.1. PROBLEM SETS FOR TESTING 3TAP 129pel predKB Theorem Diff. Time[s] RA ERA LBR CB BT MC MBR Settingspel18 pel18 1 0.100 3 0 5 1 0 0 0pel19 pel19 3 0.116 6 0 8 2 0 0 0pel20 pel20 4 0.133 14 0 15 3 0 0 0pel21 pel21 5 0.134 10 0 10 7 0 1 0pel22 pel22 3 0.100 7 0 6 4 0 0 0pel23 pel23 4 0.116 9 0 7 4 0 0 0pel24 pel24 6 0.267 41 0 17 17 0 0 0pel24 pel24 6 0.850 38 0 18 5 0 0 0 dissolution: onpel25 pel25 7 0.167 18 0 16 7 0 0 0pel26 pel26 7 0.233 40 0 15 12 0 0 0pel27 pel27 6 0.350 57 0 15 22 7 0 0 uselemmata: o�pel28 pel28 8 0.167 20 0 14 5 0 0 0pel29 pel29 7 0.333 50 0 20 19 0 1 0 maxcounter: 1pel30 pel30 6 0.117 10 0 9 3 0 0 0pel31 pel31 5 0.117 11 0 13 4 0 0 0pel32 pel32 6 0.166 16 0 14 9 0 0 0pel33 pel33 4 0.184 26 0 13 9 0 0 0pel34 pel34 10 1.233 219 0 22 76 0 1 0 maxcounter: 1pel35 pel35 2 0.117 5 0 6 1 0 0 0pel36 pel36 3 0.133 13 0 11 3 0 0 0 uselemmata: o�pel37 pel37 3 0.183 23 0 19 5 0 0 0pel38 pel38 4 67.900 1343 0 46 1671 1011 1 0 uselemmata: o�pel39 pel39 3 0.133 6 0 6 2 0 0 0pel40 pel40 5 0.133 13 0 11 5 1 0 0pel41 pel41 6 0.150 14 0 10 6 3 0 0pel42 pel42 6 0.133 15 0 14 5 0 2 0 maxcounter: 2pel43 pel43 5 1.833 165 0 31 135 38 1 0 uselemmata: o�,maxcounter: 1pel44 pel44 3 0.150 15 0 16 5 1 0 0 uselemmata: o�pel45 pel45 5 0.300 46 0 38 15 0 1 0 uselemmata: o�,maxcounter: 1pel45 pel45 5 0.817 33 0 23 4 0 1 0 uselemmata: o�,dissolution: on,maxcounter: 1pel46 pel46 6 0.200 26 0 20 10 0 4 0 uselemmata: o�,maxcounter: 4Table 8.12: Statistics for the problem set pel pred.one assumes f to be the function that assigns each pigeon a pigeonhole). 3TAP can only provethem for n = 1. For statistical information see Table 8.13.psKB Theorem Time[s] RA ERA LBR CB BT MC MBR Settingsps1 ps1 0.633 64 51 16 17 1 1 0 uselemmata: o�,maxcounter: 1,equality: onTable 8.13: Statistics for the problem set ps.The formula �4 (problem set phi) from (Murray & Rosenthal, 1993) is constructed in such a

130 CHAPTER 8. EVALUATIONway that it demonstrates the advantages of dissolution (Table 8.14).phiKB Theorem Time[s] RA ERA LBR CB BT MC MBR Settingsphi4 phi4 21.333 6021 0 28 1024 0 0 0phi4 phi4 10.267 121 0 29 18 0 0 0 dissolution: onphi4 phi4 3.800 27 0 22 4 0 0 0 dissolution: on,disscomplexity: onTable 8.14: Statistics for the problem set phi.8.1.12 Problems from Three-Valued LogicThe three-valued problems are taken from (Gerberding, 1991), where an axiomatization fornatural interval arithmetic7 using a three-valued logic which assembles parts of the Lukasiewiczlogic L3 and the three-valued G�odel system G3.The problems are as follows:8eq4 eq4 states the symmetry of the three-valued equality predicate for intervals. It directlyfollows from fig5 14 and fig5 17 (see below). Although the axioms and the theorem ofeq4 are �rst-order formulae, the problem is of the formj1a$ j1bj 12 a$ j 12 ba$ b3TAP is able to prove eq4 from the axioms given in (Gerberding, 1991), without usingfig5 14 and fig5 17 as lemmata.l5 9 This theorem says that the two-valued equality of intervals, i.e., their set-theoretic equality,may be stated using the three-valued equality predicate eq.�g5 14 fig5 14 states that the above equality predicate is symmetrical w.r.t. the truth value12 , i.e., j 12 eq(a; b)$ j 12 eq(b; a)for any two intervals a; b.�g5 17 fig5 17 is similar to fig5 14. It states the symmetry of eq wrt the truth value 1, i.e.,j1eq(a; b)$ j1eq(b; a)for any two intervals a; b.l5 1 This problem states the antisymmetry of the order relation de�ned in (Gerberding, 1991)wrt the truth value 12 .th5 3 This is the antisymmetry of the above ordering.For statistical information see Table 8.15. A more detailed discussion concerning the problemsof proving these theorems with an automated theorem prover may be found in Chapter 7 of(Gerberding, 1991). More three-valued problems may be found there, too.7 This is the arithmetic of intervals with positive integer bounds. It is some kind of generalization of the Peanoarithmetic for naturals.8 Names starting with l are lemmata from (Gerberding, 1991), e.g. l5 1 is Lemma 5.1, names starting with thare theorems and names starting with fig are formulae whose proof may be found in a �gure in (Gerberding,1991). eq4 is axiom MVEQ4.

8.2. SHORTCOMINGS AND STRENGTHS 131three valuedKB Theorem Time[s] RA ERA LBR CB BT MC MBR Settingseq4 eq4 0.583 94 0 23 28 0 0 0fig5 14 fig5 14 8.117 566 0 55 371 128 4 0 maxcounter: 4fig5 17 fig5 17 0.250 58 0 25 8 0 1 0 grepall: o�l5 1 l5 1 0.250 46 0 17 25 0 0 0th5 3 th5 3 0.850 216 0 24 65 0 0 0Table 8.15: Statistics for the problems set three valued.8.2 Shortcomings and StrengthsAmong the major merits of using tableaux as a logical basis for mechanical theorem provingare, �rst, that they do not commit one to the usage of normal forms; second, that, therefore,the proofs generated are relatively easy to understand; and, third, that they can be extended tocover many of the nonclassical logics. All these advantages apply to 3TAP :+ No normal form is required.+ In contrary to other automated theorem provers (in particular resolution-based theoremprovers) 3TAP generates proofs that are relatively easy to examine (using the tools moreTaband tabTEX).+ An equality theory that may be part of a problem does not have to be speci�ed explicitly.Equalities may occur arbitrarily nested in formulae.+ 3TAP can handle every multiple-valued logic that can be de�ned by means of truth-tables.To adopt a new logic one has only to describe the operators and tableau rules of that logic.3TAP 's proof procedure does not have to be changed.The main disadvantage of 3TAP in comparison to state-of-the-art resolution-based theorem proversfor predicate logic is its� lower performance.The reason is mainly that 3TAP is implemented in Prolog. If one compares the number of inferencesteps, 3TAP can compete with state-of-the-art theorem provers. The fact that resolution-basedtheorem provers are in a better proof complexity class is in practice not harmful|due to lemmageneration and other sophisticated tableau proving techniques 3TAP makes use of.+ 3TAP is able to prove problems from propositional logic in a rather short time. It takesonly between 0.04s and 0.27s9 to prove the propositional problems given in (Pelletier,1986). Propositional challenge problems (e.g. the Pigeonhole Problems) can be proved inrelatively short time, too.+ Certain problems can be proved very fast because no normal form has to be generated, e.g.Andrew's Challenge (Pelletier's 34th problem) can be proved in 2.4s9.� As long as no bracktracking occurs problems from predicate logic can as well be proved inrather short time. Most of Pelletier's problems from predicate logic can be proved in lessthan one second9. Di�culties arise if extensive backtracking is necessary, i.e., if there are9 On a SUN-4 SPARC SLC work station.

132 CHAPTER 8. EVALUATIONoften several possibilities to close a branch leading to di�erent free variable instantiations.This is the reason why, for example, Schubert's Steamroller (Pelletier's 47th problem)cannot be proved.� Although performance cannot compete with completion based theorem provers or resolu-tion systems using paramodulation, 3TAP 's performance in proving problems with equalityis approximately the same as in proving problems from predicate logic without equality.However, if too many equality applications are necessary to prove two terms to be equal,and if these applications are di�cult to �nd because there are a lot of di�erent equalitiesthat can be applied to each term, 3TAP may fail to �nd a proof. 3TAP will, for example,only succeed in proving a theorem from group theory, if not more than about �ve equalityapplications are necessary to show two terms to be equal.The advantages and disadvantages of 3TAP 's user interface (especially of using the Prolog shell)are:+ The user can quickly write his own predicates to accomplish specialized tasks (e.g., abbre-viations for certain command sequences).� Since the user interface is command line oriented, learning to use ist is not as easy as, forexample, a window-based system.+ It is very easy to include 3TAP in any existing system via its interface predicates.+ Several knowledge bases can be loaded into the work space at the same time, and it ispossible to switch between these knowledge bases.+ 3TAP provides various switches and parameters having an in
uence on the prove procedure.Though it might sometimes be di�cult to �nd the best settings for the switches, the defaultsettings work very well in most cases.8.3 Settings of Switches and ParametersIn this section we give some hints on how to use 3TAP 's various switches and parameters. Someof these are easy to explain, others are merely empirical results.8.3.1 Settings of Switches that Might Help if No Proof is FoundThe following list contains settings of switches and parameters you should try if 3TAP fails to �nda proof.� Increase maxcounter or use the command proveinc if 3TAP fails to �nd a proof for a problemfrom predicate logic (maxcounter has no in
uence on propositional logic proofs).� Set maxbranchlength to a higher value or to 0, or us the command proveinc.� Set maxcounter to a very high value (e.g. 1000), such that no backtracking occurs, if youthink too much backtracking is the reason why 3TAP doesn't �nd a proof.� Set max solutions per branch to a smaller value if backtracking occurs and the problemcontains equalities.

8.3. SETTINGS OF SWITCHES AND PARAMETERS 133� Switch
ipconclusion on if the problem consists of asymmetric formulae, especially if itcontains implications.� Switch grepall o� if the knowledge base contains a relatively large number of axioms (be-cause it might be not necessary to put all axioms on all branches).� Switch uselemmata o� (that works for some problems from predicate logic).8.3.2 Settings of Switches that Might Shorten the Proof FoundOf course, the settings given in the previous section may not only help to �nd a proof at all, butmay also shorten the proof found. There are some other settings that usually lead to a shorterproof, though they might increase the time 3TAP needs to �nd it,� Try to set maxcounter to s amaller value. Even if that means that backtracking occurs,the proof found will be shorter.� Switch removeunlinked on.� Use dissolution. To further decrease the proof length switch disscomplexity on.

9 Using Di�erent Logics9.1 3TAP 's LogicsThe logic used by 3TAP is de�ned in the modules declarations and rules. In most cases itis su�cient to change these to add a new logic or change an old one. declarations has to beadjusted to the signature of the logic, and rules represents the logic's semantics1. Only to addnew operators, or to change their names, arity, or priority, some �les of the compiler have to beedited, in addition.The standard distribution of 3TAP comes with the following pre-de�ned logics:� The classical two-valued predicate logic (de�ned in the directory 2version).� The three-valued Lukasiewicz logic L3 (de�ned in 3version/declarations_std.pl and3version/rules_std.pl).� The three-valued logic introduced in (Gerberding, 1991); it assembles parts of the Luka-siewicz logic L3 and the G�odel system G3. Besides the de�nition in declarations_sg.pland rules_sg.pl, the directory 3version contains the Carnielli version of this logic(declarations_sg_car.pl and rules_sg_car.pl), where signs represent only a singletruth value, and a version (declarations_sg_as.pl and rules_sg_as.pl), that uses allpossible combinations of truth values signs2.� The seven-valued logic introduced in (Kernig, 1992) (de�ned in the directory 7version).To switch between the di�erent three-valued logics, copy the declarations and rules modulesde�ning the logic you want to use to 3version/declarations.pl resp. 3version/rules.pl.Then re-compile the prover (see Appendix C).9.2 Changes to the Declarations ModuleThe following predicates have to be adjusted to the signature of your logic:� get int op list� get ext op list� get LaTeX op list (only necessary if the tabTEX utility is going to be used)� get ops with two fmas� get unary ops1 Some aspects of the semantics are represented in declarations, e.g. for any self-contradictory combination ofa connective and a sign there is an appropriate fact in declarations.2 Note, that 3TAP is not complete for this versions of the logic.134

9.3. CHANGES TO THE RULES MODULE 135� get int quantor� get ext quantorYou cannot use arbitrary internal and external names for the connectives, but only those knownto the compiler.If a rule must be applied more than once to a signed formula in order to achieve completeness(cf. Sections 2.7, 5.9.4) then the formula is of type
 and a clause of the is gamma formula/2predicate has to be added for that formula, see Section 5.9.4.If a sign � does not appear in the truth table of a connective c then any signed formula� c(� � �) is self-contradictory and there is no rule de�ned for that combination. Hence, the factno rule defined(�,c) must be present in declarations. See Section 5.9.3 for details.For every pair of complementary signs a clause of the is complementary sign/2 predicate hasto be created. See Section 5.9.2 for details.9.3 Changes to the Rules ModuleAfter the tableau rules have been extracted from a connective's truth table it is quite easy tochange the rules module. For every connective and for every sign a clause of the rules/8predicate must be supplied. The format of these clauses is described in Section 5.10. If no ruleis de�ned for a pair of sign and operator a dummy rule has to be added, see Section 5.10.1.1.If the universal formula mechanism (Section 2.5) is not to be used you should use a rules/6predicate instead of rules/8 and the following interface clause:rule(A,B,C,D,E,_,[],F) :- rule(A,B,C,D,E,F).The rules module of the many-valued versions of 3TAP are written in that way, since they donot make use of the universal formula mechanism.3To use the lemma generation mechanism some clauses must be created for the get lemmata/6or get lemmata alpha/6 predicates. Their format is discussed in Section 5.10.2. Additionalinformation, may be gathered form the source of the rules module. For the many-valued caseit is not easy, although well possible, to compute the required lemmata. See (H�ahnle, 1992c) forsome hints.9.4 Changes to the Compiler9.4.1 De�ning New OperatorsFor adding operators there are three things to think about: The external and the internalrepresentation, the priority and the arity of the new operator. Whether you only have to changethe representation or whether you even have to change the priority or the arity depends onhow your new operator di�ers from the so far given. The priority of the pre-de�ned operatorsfor two-valued and three-valued logics is listed in Table 9.1 (all of these operators are unary orbinary). There are several markers in the modules of the compiler which indicate the locationsthat must be edited. The next sections describe in detail how these locations must be modi�ed.3 There is no principal reason speaking against it. However, in the many-valued case few rules have singletonconclusions and, therefore, universal formulae are not so frequent.

136 CHAPTER 9. USING DIFFERENT LOGICS<=> EQUI#>, < >, < BINOP->, <->, <-=>, <=v DIS OR V& CON-, UNOPaff, jf, ju, jt, nabla max. priority��min. priorityTable 9.1: Priority classes of the operators.9.4.2 External and Internal RepresentationThe �rst step is to decide on the external and internal representation of a new operator. Makesure that the external representation is not a single letter, a single number, or the character '_',and of course none of the keywords or keycharacters which are already used in the grammar (seeTable 3.1).The internal representation must be unique, too. See Tables 5.2 and 5.3 for what internalrepresentations are already used.If the new operator does not belong to one of the given priority classes (except the DIS OR Vclass), see Table 9.1, or if it is neither unary nor binary, then you have to add a new priorityclass (see section 9.4.3).To add the new operator, you have to edit the �le scanner.l. At the position marked byCHANGE_REPRESENTATION_HERE you will �nd the scanning rules for operators. Every line in themarked block contains the data for one operator. For example, the line"=>" { yylval="imp"; return token(BINOP); }de�nes the implication operator: => is the entry for the external representation, yylval="imp";links the external to the internal representation imp, and return token(BINOP); de�nes thepriority class of the implication operator.Insert a line with the data for your new operator. If you have added a new priority class, youalso have to change some locations concerning the priority of operators (see Section 9.4.3).9.4.3 PriorityThere are three locations in concerning the priority of operators. These locations are indicatedby the marker CHANGE PRIORITY HERE.One of these locations is in the �le scanner.l at the list of scanning rules, where each operatoris linked to a priority class (as already mentioned in Section 9.4.2). In Table 9.1 you can see thepriority classes of the prede�ned operators.To change the priorities, you also have to edit the �le grammar.y (at the positions marked byCHANGE PRIORITY HERE marker). Here, you will �nd the de�nition of tokens for the operators

9.4. CHANGES TO THE COMPILER 137in order of decreasing priority. All priority classes used in the �le scanner.l must appear here.The order of the entries in the list de�nes the priority of the priority classes. Entries in the sameline have the same priority.The second location at which you �nd the CHANGE PRIORITY HERE marker in grammar.y are theparsing rules for operators. For a new priority class you have to add a new parsing rule. Ifthe new operator is not unary or binary you have to add a function make n-ary formula. SeeSection 9.4.4 for further explanations.For example, the parsing rule for the BINOP priority class is:| FORMULA BINOP FORMULA{ strings = make_binary_formula($2,$1,$3,strings);$$=(YYSTYPE)(*strings).entry; }`| FORMULA BINOP FORMULA' is the grammar rule for the BINOP priority class. The C-functionmake binary formula generates the output syntax and stores it in the list strings. $1,$2,$3refer to the �rst, the second and the third word of the grammar rule (i.e. $1 means FORMULA).$$=(YYSTYPE)(*strings).entry; must appear in the parsing rule of every priority class.To compose a parsing rule for an n-ary priority class you need the grammar rule and the C-function make n-ary formula. The grammar rule consists of the token for the priority class,n appearances of FORMULA and, if necessary, brackets. The �rst argument of make n-ary formulamust be the $-symbol which refers to the token for the priority class. The last argument mustbe strings. The other arguments are the $-symbols which refer to the appearances of FORMULA.9.4.4 ArityThe locations concerning the arity of operators are indicated by the marker CHANGE ARITY HERE.As already mentioned in Section 9.4.3 one occurrence is in the �le grammar.y. Here every parsingrule for an n-ary operator calls a C-function make n-ary formula.You also �nd the CHANGE ARITY HERE marker in the �le output.c in the functions for composingformulae from the operators and subformulae. The functions di�er in their number of argumentsand in the linesstr = (char *)malloc(: : :);and sprintf(: : :);A function make n-ary formula looks like this:struct string_list *make_binary_formula(op,fma_1,...,fma_n,strings)char *op;char *fma_1;...char *fma_n;struct string_list *strings;{ char *str;

138 CHAPTER 9. USING DIFFERENT LOGICSstr = (char *)malloc(5 + strlen(op) +strlen(fma_1) + ... + strlen(fma_n) + 10);sprintf(str,"%s(%s,...,%s,l%d)",op,fma_1,...,fma_n,get_label());strings = insert_in_string_list(str,strings);free(str);return(strings);}Finally, you have to edit the header�le output.h, �nd the CHANGE ARITY HERE marker, and addthe lineextern struct string_list *make_n-ary_formula();

A Commands ReferenceManualThis appendix describes brie
y all 3TAP commands. More technical descriptions can be found inSection 5.1. Additional references are given when appropriate in the \Description" parts below.The syntax of commands is indicated in a form such as:prove [(theorem [, KB])].Everything in a typewriter font represents those parts of commands that appear in the inputexactly as shown. The italicized parts represent parts that vary; the command's descriptionexplains their function. Arguments enclosed in square brackets [] are optional; they may beomitted, so the command prove can also have the form \prove(theorem)." or, when all argu-ments are omitted, \prove.".For all optional arguments their default values are given.As usual, parameters that contain characters such as / or .., e.g. path names, have to be enclosedin single quotation marks ' '.cdSyntax cd [(directory)].Purpose Changes the working directory.Argument(s) directory: The new directory (default: the login directory).compallSyntax compall(what to prove).Purpose Compiles prede�ned problem sets.Argument(s) what to prove: The problem set(s) to be compiled.Description This command proves either one prede�ned problem set or even all prede�nedproblem sets.The command compkbx is used for compiling.The prede�ned problem sets are listed in Table A.3 (they are described in detailin Chapter 8).Valid instantiations of the argument what to prove are:� the name of a problem set (e.g. tests),� the atom all as an abbreviation for the list of all prede�ned problem sets.See also compkbxExample compall(all).Compiles all problem sets. 139

140 APPENDIX A. COMMANDS REFERENCE MANUALcompkbxSyntax compkbx(�le).Purpose Compiles a knowledge base.Argument(s) �le: The name of the �le containing the knowledge base to be compiled.Description The compiler is invoked to parse the formulae in �le. The partial and (if theswitch remove unlinked is on the complete) information about links is computed(cf. Section 5.12).The compiled knowledge base is written to the �le �le.kbx. The commandreadkbx can then be used to load it into the workspace.If �le does not contain a valid knowledge base (cf. Chapter 3), the compiler failsto parse it and an error message is displayed.Note that it might take very long to compute the complete information aboutlinks for complex knowledge bases.See also readkbx, usekbxExample compkbx('problems/pel23').Compiles the knowledge base in the �le problems/pel23 and writes the resultto the �le problems/pel23.kbx.cpSyntax cp(old�le,new�le).Purpose Copies a �le.Argument(s) old�le: The source �le.new�le: The target �le.Description cp copies the contents of old�le to new�le.See also mvdateSyntax date.Purpose Displays the date.See also timedelkbSyntax delkb [(KB)].Purpose Deletes a knowledge base from the workspace.Argument(s) KB: The knowledge base to be deleted (default: the current knowledge base).See also delkbsExample delkb(pel23).Deletes the knowledge base pel23 from the workspace.delkbs

141Syntax delkbs.Purpose Deletes all knowledge bases from the workspace.See also delkbeditSyntax edit(�le).Purpose Calls the editor.Argument(s) �le: The �le to be edited.Description The editor speci�ed by the parameter editor is called to edit the �le �le.See also edopenedopenSyntax edit(�le).Purpose Opens a new window, starts the editor in this window.Argument(s) �le: The �le to be edited.Description First the UNIX command open is used to open a new window, then the editorspeci�ed by the parameter editor is started in this window to edit the �le �le.Note that the open command is not available on all systems.See also editget varnameSyntax get varname(variable).Purpose Returns the current value of one of 3TAP 's switches and parameters.Argument(s) varname: The name of the switch of parameter to be read (this is not an argu-ment in the strict sense since it is part of the command's name).variable: A Prolog variable that is to be instantiated with the value of the switchor parameter.Description These commands can be used to read the value of one of 3TAP 's switches orparameters (Table A); but, in most cases, it might be easier to use the commandlookup.variable has to be an uninstantiated Prolog variable.See also set varname, lookupExample get maxcounter(MC).Instantiates the Prolog variable MC with the current value of the parameter max-counter.inconsistentSyntax inconsistent [(KB)].1 equality is by default switched on in the two-valued version and switched o� in the many-valued versions.

142 APPENDIX A. COMMANDS REFERENCE MANUALSwitch/Parameter Type Range Defaultcomplete �rst atomic on, o� o�compute additional solutions atomic on, o� o�current kb alphanumeric loaded knowledge bases nonedebuglevel numeric 0; 1; : : : ; 6 0dissbound numeric 0; 1; 2; : : : 3disscomplexity atomic on, o� o�dissdebuglevel numeric 0; 1; : : : ; 6 0dissolution atomic on, o� o�disspriority atomic diss, alpha disseditor alphanumeric vi, emacs, : : : vieqdebuglevel numeric 0; 1; : : : ; 6 0equality atomic on, o� on/o�1
attenformulas atomic on, o� o�
ipconclusion atomic on, o� o�grepall atomic on, o� oninc limit mbr numeric 0; 1; 2; : : : 2inc limit mc numeric 0; 1; 2; : : : 2kbx extension alphanumeric valid extensions kbxmaxbranchlength numeric 0; 1; 2; : : : 20maxcounter numeric 0; 1; 2; : : : 2max rule cr number numeric 0; 1; 2; : : : 10000max rule simp number numeric 0; 1; 2; : : : 10000max solutions per branch numeric 0; 1; 2; : : : 10max term number numeric 0; 1; 2; : : : 10000output�le alphanumeric valid paths userprotmode atomic on, o� o�stepmode atomic on, o� o�tableau output atomic on, o� o�tableauout�le alphanumeric valid paths tableau.outtcplus extension alphanumeric valid extensions kbremoveantilinks atomic on, o� o�removeunlinked atomic on, o� o�uselemmata atomic alpha, on, o� alphaweight left only atomic on, o� o�Table A.1: 3TAP 's switches and parameters, their ranges and default values.Purpose Tries to prove the inconsistency of a set of axioms.Argument(s) KB: The knowledge base containing the axiom set (default: the current know-ledge base).Description The command inconsistent has the same e�ect as the command prove if notheorem is speci�ed, i.e., it tries to prove the inconsistency of the axiom set.

143See Section 5.2 for a detailed description of the proof procedure. The in
u-ence of 3TAP 's various switches and parameters on the proof is summarized inAppendix B.See also prove, protprove, proveinc, proveallinfoSyntax info [(topic)].Purpose Provides online information.Argument(s) topic: The topic about which information is to be displayed (default: informationabout the info command).Description info provides information on the topics listed in Table A. The argument topicmay be chosen from one of these topics; or the atom all may be used to get allavailable information.info uses the current output stream to display the information.See also lookupExample info(equality).Provides information about the handling of equality.Topic Information aboutcompiler The compiler and the commands for compiling knowledge bases.diss The dissolution rule.equality The equality predicate.info The available information.maintain Commands for workspace maintenance.output Tableau output for moreTab and tabTEX.prover Commands for proving theorems (resp. inconsistency of an axiomset).unix UNIX-like commands.variables Switches and parameters.Table A.2: The topics info provides information about.initSyntax init.Purpose Initializes the prover.Description The prover is reset to its initial state, i.e., all switches and parameters are setto their default values (Appendix B), and all knowledge bases are removed fromthe workspace.See also initialize variablesinitialize variables

144 APPENDIX A. COMMANDS REFERENCE MANUALSyntax initialize variables.Purpose Resets all switches and parameters to their default values.Description All of 3TAP 's switches and parameters are reset to their default values (cf. Ap-pendix B).See also initlookupSyntax lookup.Purpose Displays the current values of 3TAP 's switches and parameters.Description This command shows the current values of 3TAP 's switches and parameters (Ap-pendix B). In addition, the names of all loaded knowledge bases are listed.lookup sends its output to the current stream.See also infolsSyntax ls [(directory)].Purpose Lists the contents of a directory.Argument(s) directory: The directory to be listed (default: the current working directory).mvSyntax mv(oldpath,newpath).Purpose Moves or renames a �le.Argument(s) oldpath: The old path of the �le to be moved.newpath: The path the �le is to be moved to.See also cpprotproveSyntax protprove [(theorem [, KB])].Purpose Tries to prove a speci�ed theorem or the inconsistency of a set of axioms; redi-rects all output to the �le speci�ed by output�le.Argument(s) theorem: The name of the theorem to be proved (default: prove the inconsistencyof the axiom set).KB: The knowledge base containing theorem and the axiom set to be used (de-fault: the current knowledge base).Description protprove tries to �nd a prove in exactly the same way as the command prove.The di�erence is that protprove writes all output to the �le speci�ed by theparameter output�le, whereas prove uses the current output stream.Before any output is sent to the �le, it is initialized and all information it maycontain is lost. Therefore, the old �le has to be saved, or another �lename mustbe taken by changing the parameter output�le before protprove is called again.To redirect the output of the commands proveinc or inconsistent one mayuse the analogue to the sequence of commands

145set protmode(on), prove([theorem],[KB]), set protmode(off).of which the command protprove is an abbreviation.See Section 5.2 for a detailed description of the proof procedure. The in
u-ence of 3TAP 's various switches and parameters on the proof is summarized inAppendix B.See also proveinc, prove, inconsistent, proveallproveSyntax prove [(theorem [, KB])].Purpose Tries to prove a speci�ed theorem or the inconsistency of a set of axioms.Argument(s) theorem: The name of the theorem to be proved (default: prove the inconsistencyof the axiom set).KB: The knowledge base containing theorem and the axiom set to be used (de-fault: the current knowledge base).Description This command starts the proof procedure. If no theorem is speci�ed, 3TAP triesto prove the axiom set of the current knowledge base to be inconsistent.See Section 5.2 for a detailed description of the prove procedure. The in
u-ence of 3TAP 's various switches and parameters on the proof is summarized inAppendix B.See also proveinc, protprove, inconsistent, proveallExample prove(pel23).Tries to prove the theorem pel23 (using the axiom set of the current knowledgebase).proveallSyntax proveall(what to prove [, parameter] [, format]).Purpose Proves prede�ned problem sets; generates a �le containing proof statistics.Argument(s) what to prove: The problem set(s) to be proved.parameter: The parameter to be increased (either maxcounter or maxbranch-length); the abbreviations mc and mbr can be used (default: maxcounter).format: The format of the statistics �le (default: ascii).Description This command is quite useful for testing 3TAP . Prede�ned problem sets areproved automatically; the user neither has to load the knowledge bases, nor setthe switches and parameters, nor start the proofs.The command proveinc is used for proving.The prede�ned problem sets are listed in Table A.3 (they are described in detailin Chapter 8).Valid instantiations of the argument what to prove are:� the name of a problem set (e.g. tests),� a list of problem sets (e.g. [pel prop,pel pred]),� the atom pelletier as an abbreviation for [pel prop,pel pred,pel eq],� the atom all as an abbreviation for the list of all prede�ned problem sets.

146 APPENDIX A. COMMANDS REFERENCE MANUALThe statistical information is written to the �le statistics in the current di-rectory. Before any output is sent to this �le, it is initialized and all informationit may contain is lost. Therefore it has to be copied before proveall is calledagain.The format of the statistics �le is denoted by the argument format. Two formatsare available:ascii: No special format, easy to read.tex: A LaTEX-like format that can easily be included into LaTEX documents.Unless the switch removeunlinked is on, the knowledge bases are read usingthe command readkbx (else using usekbx). The compiled versions, i.e., the�les *.kbx, have therefore to be existent (in the directory de�ned in moduleproveall).The problem sets and the settings for the switches and parameters are de�ned inthe module proveall. See Section 5.1 for a description of how to change thesede�nitions and examples for the usage of proveall.See also prove, proveincExample proveall(all,mbr,tex).Proves all problem sets incrementing maxbranchlength and generates a statistics�le in LaTEX format.Nametests Simple problems for testing some of 3TAP 's features.dagostino The problem class given by D'Agostino (D'Agostino, 1990, p. 69).mr The problem class given by Murray and Rosenthal (Murray &Rosenthal, 1987).cr The problem class given by Cook and Reckhow (Cook & Reckhow,1974).kalish Problems from (Kalish & Montague, 1964).meta pl Four problems constructed by means of Morgan's method (Mor-gan, 1976) of encoding problems from propositional logic in pre-dicate logic.pigeon The \pigeonhole" problems.pig alt An alternate formulation of the \pigeonhole" problems.groups Two problems from group theory formulated with equality.pel prop The problems from propositional logic given by Pelletier (Pelletier,1986).pel pred The problems from predicate logic given by Pelletier (Pelletier,1986).pel eq The problems with equality given by Pelletier (Pelletier, 1986).ps A class of problems proposed by P. Schmitt.phi A formula given by Murray & Rosenthal (Murray & Rosenthal,1993) demonstrating the advantages of dissolution.Table A.3: The prede�ned problem sets for the commands proveall and compall.proveinc

147Syntax proveinc(theorem [, KB] [, parameter [, init]]).proveinc [(parameter [, init])].Purpose Tries to prove a speci�ed theorem or the inconsistency of a set of axioms byincrementing the speci�ed parameter after each try. The parameter can beeither maxcounter or maxbranchlength.Argument(s) theorem: The name of the theorem to be proved (default: prove the inconsistencyof the axiom set).KB: The knowledge base containing theorem and the axiom set to be used (de-fault: the current knowledge base).parameter: The name of the parameter to be increased (either maxcounter ormaxbranchlength; the abbreviations mc and mbr can be used (default: maxcoun-ter.init: The initial value for the speci�ed parameter (default: 0 if the parameter ismaxcounter, 1 if the parameter is maxbranchlength).Description 3TAP 's proof procedure is not complete in the strict sense. It might fail to provea valid theorem if one of the parameters maxcounter and maxbranchlength is toolow. This problem can be overcome by using the command proveinc.proveinc �rst sets maxcounter (resp. maxbranchlength) to the initial value initand then iteratively tries to prove the theorem (resp. the inconsistency of theaxiom set). After each futile try maxcounter or maxbranchlength is increased byone.This process goes on until either a proof is found, maxcounter or exceeds thevalue of inc limit mc, or maxbranchlength exceeds inc limit mbr.proveinc should not be used to increment maxcounter if all formulae in theknowledge base are solely propositional, since maxcounter has no e�ect on pro-positional logic proofs.See also prove, protprove, inconsistent, proveallExample proveinc(pel23,pel23,maxcounter,1).Tries to prove the theorem pel23 using the axiom set of the knowledge basepel23, starting with maxcounter = 1.pwdSyntax pwd.Purpose Displays the pathname of the current working directory.readkbxSyntax readkbx(�le).Purpose Loads a knowledge base into the workspace.Argument(s) �le: The name of the �le containing the knowledge base to be loaded.Description The compiled knowledge base in the �le �le.kbx is read into the workspace.The names of the theorems the knowledge base contains are displayed.See also compkbx, usekbxExample readkbx(pel23).Loads the knowledge base contained in pel23.kbx into the workspace.

148 APPENDIX A. COMMANDS REFERENCE MANUALrmSyntax rm(�le).Purpose Removes a �le from the �le system.Argument(s) �le: The �le to be removed.set varnameSyntax set varname(value).Purpose Assigns a new value to one of 3TAP 's switches or parameters.Argument(s) varname: The name of the switch or parameter to be set (this is not an argumentin the strict sense since it is part of the command's name).value: The value to be assigned to the switch or parameter.Description The value value is assigned to the switch or parameter varname. Table A con-tains a list of all switches and parameters, their ranges and their default values.Consult Appendix B for a detailed description.See also get varnameExample set maxcounter(2).Assigns the value 2 to the parameter maxcounter.timeSyntax time.Purpose Displays the time.See also dateusekbxSyntax usekbx(�le).Purpose Compiles a knowledge base and loads it into the workspace.Argument(s) �le: The name of the �le containing the knowledge base to be compiled andloaded.Description The command usekbx is a combination of the commands compkbx and readkbx,i.e., it �rst compiles a knowledge base and then loads it into the workspace (forfurther information consult the descriptions of compkbx and readkbx).See also compkbx, readkbxExample usekbx(test).Compiles the knowledge base contained in the �le test, writes it to the �letest.kbx, and loads it into the workspace.writeidxSyntax writeidx [(KB)].Purpose Writes all index entries of a knowledge base to the current output stream.

149Argument(s) KB: A knowledge base (default: the current knowledge base).Description The index entries, i.e., the partial link information (cf. Section 5.12), of thespeci�ed knowledge base is sent to the current output stream.See also writekb, writekbx, writesortwritekbSyntax writekb [(KB)].Purpose Writes all formulae of a knowledge base to the current output stream.Argument(s) KB: A knowledge base (default: the current knowledge base).Description A list of all formulae of the speci�ed knowledge base is sent to the current outputstream (in their internal representation, cf. Section 5.5.2).See also writeidx, writekbx, writesortwritekbxSyntax writekbx [(KB)].Purpose Writes all formulae, index entries and sort declarations of a knowledge base tothe current output stream.Argument(s) KB: A knowledge base (default: the current knowledge base).Description writekbx is a combination of the commands writekb, writeidx, writesort. Itsends a list of all formulae, all index entries, i.e., the partial link information, andsort declarations of the speci�ed knowledge base to the current output stream.See also writekb, writeidx, writesortwritesortSyntax writesort [(KB)].Purpose Writes all sort entries of a knowledge base to the current output stream.Argument(s) KB: A knowledge base (default: the current knowledge base).Description A list of all sorts declared in the speci�ed knowledge base (cf. Section 3.2) issent to the current output stream.See also writekb, writekbx, writeidx

B Switches and ParametersIn this appendix all of 3TAP 's switches and parameters are summarized. More technical descrip-tions can be found in Chapter 5.compiler directoryPurpose The name of the directory the compiler is located in. This parameter is readonly.Type alphanumericRange valid nameDefault Compilercomplete �rstPurpose If on, the completion of reduction rules and the normalization of terms are notcombined.Description If complete �rst is o�, the completion of a reduction system and the norma-lization of terms are combined (Section 2.6.6.4). In most cases, this is moree�cient, then �rst computing a complete reduction system and then using thiscompletion to compute normal forms.This switch is meaningful only if the switch equality is on, i.e. E-uni�cationproblems are solved to close branches.Type atomicRange on, o�Default o�See also equalitycompute additional solutionsPurpose If on, the rules in a complete reduction system are reversed to compute additionalsolutions to E-uni�cation problems.Description If compute additional solutions is on, and if none of the computed uni�ers in theground-complete set Sat(C(hE; s; ti)) (Theorem 2.55), can be used to close thetableau, the orientation of rules in the completion R1 for E is changed, and theinversion is applied to the uni�ers computed so far.This switch is meaningful only if the switch equality is on, i.e. E-uni�cationproblems are solved to close branches.Type atomic 150

151Range on, o�Default o�See also equality, max rule cr number, max rule simp number,max solutions per branch, max term numbercurrent kbPurpose The knowledge base used as default for all commands.Description The current knowledge base is used by default for all commands that have aknowledge base as an optional argument if this argument is omitted (prove,protprove, proveinc, inconsistent, delkb, writekb, writesort, writeidxand writekbx).If current kb is set by set current kb to a knowledge base not in the workspace,these commands will either fail or have no e�ect.current kb is set by readkbx and usekbx to the name of the last knowledge baseloaded into the workspace.Type alphanumericRange loaded knowledge basesDefault nonedebuglevelPurpose Controls the amount of debug information displayed during proofs.Description This parameter is for debugging 3TAP . If it is set to a value di�erent from 0,debug information is displayed (the higher the value of debuglevel the more).The information is sent to the current output stream.In addition, if stepmode is on and debuglevel is greater than 0, 3TAP will inter-rupt the proof when a branch has been closed and prompt the user to continuethe proof, abort the proof, or change certain parameters (for details see thedescription of stepmode).Debug information is not displayed for parts of a proof that are handled by themodules dissolution and equality. To get information about dissolution orthe closure of branches with the help of equality the parameters dissdebugleveland eqdebuglevel, respectively, have to be set to a value di�erent from 0.Since the displayed material is mostly in internal format, the user might preferusing the program moreTab to take a closer look at 3TAP 's proofs.Type numericRange 0; 1; : : : ; 6Default 0See also dissdebuglevel, eqdebuglevel, stepmodedissboundPurpose The maximal number of dissolution rule applications on each branch that arebased on the same link with respect to their signs.

152 APPENDIX B. SWITCHES AND PARAMETERSDescription dissbound solves the problem of unfair rule application sequences containing atleast one dissolution and one
-rule application. dissbound is a very mightyswitch. Its meaning to the module dissolve is nearly the same as that ofmaxcounter to the other modules.Type numericalRange 0; 1; 2; : : :Default 3See also disscomplexity, dissolution, disspriority, maxcounterdisscomplexityPurpose If on, it is checked which of the two mirror image versions of the dissolution ruleyields a less complex new formula.Description Since the dissolution rule is asymmetrical, two versions exist that are mirrorimages of each other. Their application can result in di�erent new formulaewith di�erent complexities (cf. Section 5.11.7.1).If complexity is on, it is checked which of these two version will probably yieldthe less complex formula before the dissolution rule is applied (in �rst-order logicthe complexity can only be estimated due to multiple
-rule applications).Proof times tend to be much longer when this switch is on even if the proofsactually found are short, since the check is quite expensive.Type atomicRange on, o�Default o�See also dissolution, dissbound, dissprioritydissdebuglevelPurpose Controls the amount of debug information displayed by dissolution.Description dissdebuglevel provides the possibility to debug the application of the dissolutionrule separately. It controls the amount of debug information displayed about theapplication of the dissolution rule.If dissdebuglevel is set to a value di�erent from 0, debug information is displayed(the higher the value of dissdebuglevel the more). The information is sent to thecurrent output stream.Type numericRange 0; 1; : : : ; 6Default 0See also debuglevel, eqdebugleveldissolutionPurpose If on, the dissolution rule is available during the proof.

153Description If dissolution is switched on, the dissolution rule can be applied to expand or, ifpossible, close the current branch (cf. Section 5.11.1).As the dissolution rule is only de�ned for the classical two-valued logic, it canonly be used in the two-valued version. In addition, it has only been proved tobe complete for propositional logic. Therefore, 3TAP might fail to prove theoremsfrom predicate logic if dissolution is switched on.Since the dissolution rule is not analytical, and links of totally new formulaeare not pre-computed, formulae that have been generated by the application ofthe dissolution rule are, when removeunlinked is switched on, though they mighthave no link, never removed from the branch.In general, if the dissolution rule is applied, much shorter proofs are generated,however, it takes relatively long to test, whether the dissolution rule can beapplied due to sformula data structure conversion, so it usually does take longerto �nd a proof if dissolution is switched on.Type atomicRange on, o�Default o�See also disscomplexity, dissbound, dissprioritydisspriorityPurpose Controls the priority of dissolution and �-rule application.Description If the switch disspriority is set to diss, the dissolution rule is applied, wheneverlegal. If disspriority is set to alpha, �-rules are applied �rst.Type atomicRange diss, alphaDefault dissSee also disscomplexity, dissolution, dissboundeditorPurpose The editor invoked by the edit command.Type alphanumericRange vi, emacs, : : :Default vieqdebuglevelPurpose Controls the amount of debug information displayed by the modules completeand equality.Description eqdebuglevel provides the possibility to debug the handling of equality separa-tely. It controls the amount of debug information displayed about the closure ofbranches using equality.If eqdebuglevel is set to a value di�erent from 0, debug information is displayed(the higher the value of eqdebuglevel the more). The information is sent to thecurrent output stream.

154 APPENDIX B. SWITCHES AND PARAMETERSType numericRange 0; 1; : : : ; 6Default 0See also debuglevel, dissdebuglevelequalityPurpose If on, equality is used to close branches.Description If equality is switched on, the complete module is invoked if a branch is exhau-sted and cannot be closed without equality applications.In that case the equality predicate = is interpreted as the identity relation. The-refore, if a proof is found, one can conclude that the proved theorem is valid inall normal models (not necessarily in all models).Demodulators, i.e., formulae of the form t == s, that are present on a branch,are applied from left to right to all terms they can be applied to. It is left to theuser to de�ne demodulators in such a way that completeness is preserved.If equality is switched o�, the predicates = and == are treated as ordinary binarypredicates.The switch equality in
uences the handling of links (cf. the description of theparameter removeunlinked).Since the semantics of a multiple-valued equality predicate is not clear, equalityis by default switched o� in the many-valued versions.The modules complete and equality ignore all sort information. Therefore,equality should be switches o� if more than one sort is de�ned; otherwise, incor-rect proofs may be generated.Type atomicRange on, o�Default on (two-valued version), o� (many-valued versions)
attenformulasPurpose Controls pre-processing of formulae.Description Only experienced users should switch
attenformulas on; see Section 5.12.5.Type atomicRange on, o�Default o�See also removeantilinks
ipconclusionPurpose If on, the processing order of newly generated subbranches is reversed.Description If
ipconclusion is switched o�, branches are closed in the order that is de�nedby the tableau rules in the module rules, i.e., the branches of the tableau builtusing these rules are closed from left to right.If
ipconclusion is switched on, the branches are closed in to reverse order, i.e.,from right to left.

155
ipconclusion can have an in
uence on the tableau built as well as on the timeneeded to �nd a proof. The reason is that backtracking can be avoided if thosebranches that are more di�cult to close are closed �rst.Type atomicRange on, o�Default o�grepallPurpose If on, all formulae that are linked to the negation of the theorem to be provedare put on the initial tableau.Description If grepall is on and a theorem is to be proved, not only the negated theoremis put on the initial tableau but in addition all formulae in the knowledge basethat are linked to the negated theorem.Type atomicRange on, o�Default oninc limit mbrPurpose The maximal value that is used by the command proveinc for the parametermaxbranchlength.Description The command proveinc iteratively tries to �nd a proof and increases eithermaxcounter or maxbranchlength by one after each futile try until either a proof isfound or maxbranchlength exceeds the limit inc limit mbr (or maxcounter exceedsinc limit mc).See Appendix A for a description of the command proveinc.Type numericRange 0; 1; : : :Default 20See also maxbranchlength, inc limit mcinc limit mcPurpose The maximal value that is used by the command proveinc for the parametermaxcounter.Description The command proveinc iteratively tries to �nd a proof and increases eithermaxcounter or maxbranchlength by one after each futile try until either a proof isfound or maxcounter exceeds the limit inc limit mc (or maxbranchlength exceedsinc limit mbr).See Appendix A for a description of the command proveinc.Type numericRange 0; 1; : : :Default 2See also maxcounter, inc limit mbr

156 APPENDIX B. SWITCHES AND PARAMETERSkbx extensionPurpose The �le name extension used for compiled knowledge bases.Description This extension is used by the commands compkbx and usekbx for �les containingcompiled knowledge bases.Type alphanumericRange valid extensionsDefault kbxmax rule cr numberPurpose The maximal number of applications of the critical pair rule per branch.Description This parameter is meaningful only if the switch equality is on, i.e. E-uni�cationproblems are solved to close branches (see Section 5.13.6).Type numericRange 0; 1; : : :Default 10000See also equality, max rule simp number, max solutions per branch, max term numbermax rule simp numberPurpose The maximal number of applications of the composition and the simpli�cationrule per branch.Description This parameter is meaningful only if the switch equality is on, i.e. E-uni�cationproblems are solved to close branches (see Section 5.13.6).Type numericRange 0; 1; : : :Default 10000See also equality, max rule cr number, max solutions per branch, max term numbermax solutions per branchPurpose The maximal number of closing substitutions that are computed for a branchusing equality.Description This switch is meaningful only if the switch equality is on, i.e. E-uni�cationproblems are solved to close branches (see Section 5.13.6).Type numericRange 0; 1; : : :Default 10See also equality, max rule cr number, max rule simp number, max term numbermax term number

157Purpose The maximal number of new constrained terms that are derived during thecomputation for closing a single branch.Description This switch is meaningful only if the switch equality is on, i.e. E-uni�cationproblems are solved to close branches (see Section 5.13.6).Type numericRange 0; 1; : : :Default 10000See also equality, max rule cr number, max rule simp number,max solutions per branchmaxbranchlengthPurpose maxbranchlength restricts the maximal length of the branches. If maxbranch-length is set to 0, there is no restriction.Description maxbranchlength restricts the length of the branches. Branches that are longerthan maxbranchlength are not further expanded.maxbranchlength = 0 means that the restriction is switched o�.If the length of branches is restricted, 3TAP 's proof procedure is not completein the strict sense. It might fail to prove a valid theorem if the parametermaxbranchlength is too low. To overcome this problem, the command proveincmay be used.The length of branches might slightly exceed maxbranchlength. In fact, themaximal length of branches ismaxbranchlength + maximal length of extensions � 1 :1Type numericRange 0; 1; : : :Default 0See also maxcounter, inc limit mbrmaxcounterPurpose The maximal number of
-rule applications to a
-formula minus one.Description maxcounter is the maximal number minus one of
-rule applications to a
-formula on each branch it occurs on, i.e., if maxcounter is set to 0, the corre-sponding
-rule is applied exactly once to each
-formula on each branch.Because of this restriction 3TAP 's prove procedure is not complete in the strictsense. It might fail to prove a valid theorem if the parameter maxcounter istoo low. To overcome this problem the command proveinc may be used (cf.Appendix A).Keep in mind that maxcounter is probably 3TAP 's most important parameter. Inmost cases, the length of predicate logic proofs as well as the time 3TAP needs to�nd them decreases drastically if maxcounter is set to a smaller value (provideda proof exists for that smaller value); in particular, if backtracking occurs or1 That is maxbranchlength + 1 in two-valued logic.

158 APPENDIX B. SWITCHES AND PARAMETERSequality is involved, there is usually a considerable e�ect on the time needed to�nd a proof.One should, therefore, try smaller values for maxcounter �rst (this can be doneautomatically by using the command proveinc).maxcounter has no e�ect on propositional logic proofs.Type numericRange 0; 1; : : :Default 2See also maxbranchlength, inc limit mcoutput�lePurpose The name of the �le 3TAP 's output is redirected to if protmode is on.Description If protmode is switched on all output that is usually sent to the current outputstream is redirected to the �le speci�ed by output�le.The �le is initialized and any information it may contain is lost when protmodeis switched on; it is closed by switching protmode o�.This �le is also used by the command protprove, that automatically switchesprotmode on and o�.Note that output�le is di�erent from tableauout�le (the proof protocol that canbe used as an input for the utility programs moreTab and tabTEX).Type alphanumericRange valid pathsDefault userSee also protmode, tableau output, tableauout�leprotmodePurpose If on, 3TAP 's output is redirected to the �le speci�ed by output�le.Description If protmode is switched on all output that is usually sent to the current outputstream is redirected to the �le speci�ed by output�le.The �le is initialized and any information it may contain is lost when protmodeis switched on; it is closed by switching protmode o�.protmode is automatically switched on and o� by the command protprove.Note that protmode is di�erent from tableau output (a proof protocol that canbe used as an input for the utility programs moreTab and tabTEX is generatedif tableau output is on).Type atomicRange on, o�Default o�See also output�le, tableau output, tableauout�leremoveantilinksPurpose Controls pre-processing of formulae.

159Description Only experienced users should switch removeantilinks on; see Section 5.12.5.Type atomicRange on, o�Default o�See also
attenformulasremoveunlinkedPurpose If on, formulae on a branch that do not have a link are removed.Description If the switch removeunlinked is on, formulae F are removed that are not poten-tially involved in the closure of the current branch, i.e., that do neither� have a link to a formula on the current branch (including the formula Fitself), nor� have a link to a formula in the knowledge base that, up to that point, hasnot been put on the branch, nor� contain the equality predicate or the demodulator predicate (this last pointis only taken into concern if the switch equality is on).Formulae are actually not checked for links and, if possible, removed when theyare put on a branch, but, what is more e�ective, when they have been chosenfor rule application (cf. Section 5.4).The information about links is pre-compiled, i.e., if (and only if) removeunlinkedis on, a complete list of all existing links is generated when the knowledge baseis compiled by compkbx or usekbx. This list is included in the generated .kbx�le (cf. Section 5.12).Since it may take very long to generate the complete list of links for more com-plex knowledge bases, this is only done if removeunlinked is on. Therefore, aknowledge base that has been compiled with removeunlinked switched o� has tobe recompiled using usekbx before a proof with removeunlinked switched on isstarted.In general switching removeunlinked on shortens proofs but, since it is quiteexpensive to check formulae for links, it then usually takes longer to �nd aproof.Since the dissolution rule is not analytical, and links of totally new formulaeare not pre-computed, formulae that have been generated by the application ofthe dissolution rule are, when removeunlinked is switched on, though they mighthave no link, never removed from the branch.See Section 5.12.3.1 for a discussion of the theoretical aspects of using links.Type atomicRange on, o�Default o�stepmodePurpose If on and debuglevel is greater than 0, proofs are interrupted at certain points.Description If stepmode is on and debuglevel is greater than 0, 3TAP will interrupt a proofwhen a branch has been closed, and, if debuglevel is greater than 2, when aformula has been chosen for rule application.The user is then prompted for an input. The following commands are available:

160 APPENDIX B. SWITCHES AND PARAMETERSc Continue Continue the proof.a Abort Abort the proof.h Help List the available commands.l Leap Switch stepmode o�.o Dissolution o� Switch dissolution o�.d Debugging o� Set debuglevel to 0.e Equality debugging o� Set eqdebuglevel to 0.n Dissolution debugging o� Set dissdebuglevel to 0.Type atomicRange on, o�Default o�See also debugleveltableauout�lePurpose The name of the �le a proof protocol is written to if tableau output is on.Description If tableauout�le is switched on, a proof protocol is written to the �le speci�edby tableauout�le. This �le can be used as an input �le for the utility programsmoreTab and tabTEX (cf. Chapter 6).The �le is initialized (and all information the �le may contain is lost), whentableau output is switched on and every time a new proof is started.The �le is closed when a proof is found. If the search for a proof has beeninterrupted by the user, the proof protocol might be incorrect.Note that tableauout�le is di�erent from output�le (the output usually sent tothe current stream is redirected to the �le speci�ed by output�le if protmode ison).Type alphanumericRange valid pathsDefault tableau.outSee also tableau output, output�le, protmodetableau outputPurpose If on, a proof protocol is written to the �le speci�ed by tableauout�le that canbe used as an input for moreTab and tabTEX.Description If tableau output is switched on, a proof protocol is written to the �le speci�edby tableauout�le. This protocol �le can be used as an input �le for the utilityprograms moreTab and tabTEX (cf. Chapter 6).The �le is initialized (and all information the �le may contain is lost), whentableau output is switched on and every time a new proof is started.The �le is closed when a proof is found. If the search for a proof has beeninterrupted by the user, the proof protocol might be incorrect.Note that tableau output is di�erent from protmode (the output usually sent tothe current stream is redirected to the �le speci�ed by output�le if protmode ison).Type atomicRange on, o�

161Default o�See also tableauout�le, protmode, output�letcplus extensionPurpose The �le name extension used by the compiler for temporary �les.Type alphanumericRange valid extensionsDefault kbuselemmataPurpose Controls the generation of lemmata.Description If an extension B0 of a branch B has been closed and is thus not satis�able,one can take advantage of that knowledge by generating lemmata and addingthose lemmata to other extensions B00 of B. For a discussion of the theoreticalbackground of lemma generation see Section 2.4.The lemmata to be added to a branch are de�ned by the predicate get lemmatain the module rules (cf. Section 5.10).The three possible values alpha, on and o� have the following meanings:alpha: Only those lemmata are added to a branch that do not immediatelyresult in several subbranches if a tableau rule is applied to them, e.g. in thetwo-valued version lemmata are added that are not a �-formula.on: All lemmata de�ned by get lemmata are added.o�: No lemmata are added.In most cases the value alpha brings the best results. To set uselemmata to on orto o� will only rarely lead to shorter proofs. Despite of that, some problems frompredicate logic can only be proved with uselemmata switched o� (e.g. Pelletier's46th problem, cf. Section 8.1.10).Also in some of the currently available many-valued versions of the rules modulelemma generating information is present.Type atomicRange alpha, on, o�Default alphaweight left onlyPurpose If on, the weight of a constrained rule does not include the weight of its rightside.Description The weight of a constrainted term is the number of function symbols, constantsymbols, variables, and logical operators occurring in it (including its constraint).If weight left only is on, only the symbols in the left side and in the constraintof a rule are counted. See Section 5.13.5 on how to change the de�nition of theterm weight.This switch is meaningful only if the switch equality is on, i.e. E-uni�cationproblems are solved to close branches.

162 APPENDIX B. SWITCHES AND PARAMETERSType atomicRange on, o�Default o�See also equality

C InstallationC.1 3TAP 's Main Parts3TAP consists of the following main parts that have to be installed separately (there is a makefilethat allows to install alls parts automatically, see Section C.3):� The prover itself (Section C.4),� the compiler (Section C.5),� utilities for visualizing proofs (Section C.6),� prede�ned problem sets.This chapter supplies a guide for installing the 3TAP system as a stand-alone system1 in a QuintusProlog or SICStus Prolog environment on a supported machine and operating system2 and givessome hints to port 3TAP to other machines and/or di�erent Prolog environments.C.2 3TAP 's Various FilesNo special directory structure is assumed by the 3TAP system. The only constraint is that allthe 3TAP sources are placed in the same directory and that all the compiler sources are in onedirectory, too. They need not be located in the same directory. But if you want work with 3TAPon various logics it is better to place these parts of the system in di�erent locations since thecompiler may be used for all your logics and thus some disk space is saved.Table C.1 shows the default directory structure for a 3TAP system that is used for classical two-valued logic (subdirectory 2version), for three-valued logics (subdirectory 3version), and for aseven-valued logic (subdirectory 7version). The problems subdirectories may be used to holdthe problems in 3TAP 's input syntax.Table C.2 lists the necessary �les which would have been placed in threetap/2version and withsome modi�cations in declarations and rules concerning the logic in threetap/3version andthreetap/7version.3 The �les in the compiler directory are shown in Table C.3. The sources�les for the utilities moreTab and tabTEX are listed in Tables C.4 and C.5.The location of the compiler has to be made known to the prover; there are two possibilities forthis (no modi�cations are necessary if the default directory structure is used):1 If 3TAP is to be installed as a part of LILOG{KR, the only change to be made is that boot tcg has to be usedfor compiling 3TAP from Prolog, instead of boot. Please refer to the LILOG{KR manuals for the proper placeof calling boot tcg.2 These are currently: Quintus Prolog 3.0, Quintus Prolog 3.1 and SICStus Prolog 2.1 on SUN Sparc underSunOS 4.1.x.3 In addition, the directory 2version contains the �les eqinterf.pl and comset.pl, which are necessary forusing the equality handling method stand-alone (see Section C.7).163

164 APPENDIX C. INSTALLATIONthreetapxxpppppppppppsshhhhhhhhhhhhhhhhhhhhh �� ''NNNNNNNNNNN ��================= // Compiler2version�� 3version�� 7version�� Moretabproblems problems problems TabtexTable C.1: The default directory structure of the 3TAP system.boot.pl boot tcg.pl choice.plclosure.pl complete.pl datastructures.pldeclarations.pl dissolve.pl equality.plglobalvars.c globalvars quintus.c globalvars sicstus.cheuristics.pl index.pl inference.plinformation.pl interface.pl main.plmakekbx.pl msg tap.pl output.plpreproc.pl proveall.pl rules.plsysdep.pl uni�cation.plTable C.2: 3TAP sources (contents of 2version, 3version etc.).grammar.y output.c output.hscanner.lTable C.3: Source �les in the compiler directory.moretab.c moretab.x token.hTable C.4: moreTab sources.tabtex.c tabtex.h tabtex.xTable C.5: tabTEX sources.

C.3. INSTALLING 3TAP USING THE MAKEFILE 165� Setting the variable compdir in the module globalvars.c accordingly (its pre-de�nedvalue is ../Compiler; it is, however, better to use an absolute �lename).� Making the compiler directory part of the Unix shell's search path.C.3 Installing 3TAP Using the Make�leA makefile is provided for compiling and installing all parts of 3TAP automatically. Themakefile should be (and usually is) placed in the parent directory threetap of the directo-ries 2version, 3version, Compiler, etc. (see Table C.1).You probably will have to edit the makefile before using it, in particular, if you are not usingSICStus Prolog (which is the default) but Quintus Prolog. The following macros have to bede�ned according to the installation of your local Prolog system:PROLOG TYPE has to be set to either QUINTUS or SICSTUS.PROLOG CMD has to be set to the command for calling the Prolog compiler (usually sicstus forSICStus and prolog for Quintus Prolog).PROLOG NAME has to be set to either quintus or sicstus.HEADER FILE PATH has to be set to the name of the path containing the header�le quintus.h(resp. sicstus.h). These header �les are part of the Quintus Prolog and SICStus Prologdistributions, respectively.If you are not using the default directory structure (Table C.1), you have to change the de�nitionsof the macros TWODIR, THREEDIR, SEVENDIR, COMPDIR, MORETABDIR, and TABTEXDIR as well.Once the macros are de�ned appropriately, the complete 3TAP system can be installed by justtyping the shell command:[~] > makeBesides that, you can use the commandsmake 2version to install the two-valued version separately.make 3version to install the three-valued version separately.make 7version to install the seven-valued version separately.make compiler to install the compiler separately.make moretab to install the moreTab utility separately.make tabtex to install the tabTEX utility separately.make clean to remove all temporary �les not needed for running 3TAP .make xclean to remove all �les (including the executables) generated by the make�le.

166 APPENDIX C. INSTALLATIONC.4 Installing the ProverFirst, the C-object �les globalvars quintus.o and globalvars sicstus.o have to be genera-ted. They are included by sysdep.pl when initializing the C foreign language interface. Withmost C compilers this may be achieved by switching to the directory 2version (resp. 3versionor 7version) and typing[~/2version] > cc -c -Iquintus header �le path globalvars_quintus.cresp. [~/2version] > cc -c -Isicstus header �le path globalvars_sicstus.ccc is the name of the default C compiler on most machines. The -c switch prevents a call to thesystem linker, thus only the object �les globalvars quintus.o resp. globalvars sicstus.oare generated. quintus header �le path (resp. sicstus header �le path) is the path containing theheader�le quintus.h (resp. sicstus.h). These header �les are part of the Quintus Prolog andSICStus Prolog distributions, respectively.Now, the prover may be compiled by consulting (or compiling) boot.pl after the Prolog systemhas been started. For example:[~/2version] > prologQuintus Prolog Release 3.0 (Sun-4, SunOS 4.1)Copyright (C) 1990, Quintus Computer Systems, Inc. All rights reserved.1310 Villa Street, Mountain View, California U.S.A. (415) 965-7700| ?- compile(boot).After a few seconds (or a few minutes on machines with lower performance) 3TAP will be ready:Available Information Pages:Compiler: see info(compiler)Prover: see info(prover)Equality: see info(equality)Dissolution: see info(diss)Maintain Workspace: see info(maintain)Variables: see info(variables)Tableau output: see info(output)Unix: see info(unix)Info: see info for this helpAll: info(all) prints all available info pages% boot.pl compiled in module user, 78.850 sec 530,812 bytesyes| ?-

C.5. INSTALLING THE COMPILER 167Possibly you got some warnings saying that the clauses for the predicates lookup/n (wheren = 2; : : : ; 6) are not together in the source �le, and that the predicates cd and ls have alreadybeen imported into the module sysdep. These warnings can safely be ignored.Quintus Prolog users may now produce an executable image of 3TAP by the callsave_program(tap).and SICStus users by the callsave(tap).After that you can start the prover from your favourite shell by calling tap from the appropriatedirectory (2version in the above example) without compiling boot.pl or anything else.C.5 Installing the CompilerThe compiler, i.e. the executable �le parser, is generated by using the Unix tools Lex and Yacc(or by using Flex and Bison4).Switch to the directory Compiler, and use the shell commands[~/Compiler] > lex scanner.l[~/Compiler] > yacc -d grammar.y[~/Compiler] > cc y.tab.c lex.yy.c output.c -ll -o parserto compile scanner.l using Lex, to compile grammar.y using Yacc, and �nally to generateparser using the C-compiler.To generate the executable �le debug (see Section 5.15.3) use the shell command[~/Compiler] > cc -D DEBUG lex.yy.c -ll -o debug(after compiling scanner.l).Note, that the name of the directory containing the executable parser has to be made knownto the prover (see Section C.2).C.6 Installing the Utilities for Visualizing ProofsYou need the Unix tool Flex to compile the tools for visualizing proofs: moreTab is compiled bychanging to the directory containing the moreTab �les (Table C.4) and typing:[~/Moretab] > flex moretab.x[~/Moretab] > cc moretab.c lex.yy.c -ll -o moretabA �le moretab will appear in the directory which is the executable moreTab.tabTEX is (analogously) compiled by changing to the directory containing the tabTEX �les (Ta-ble C.5) and typing[~/Tabtex] > flex tabtex.x[~/Tabtex] > cc tabtex.c lex.yy.c -ll -o tabtexA �le tabtex will appear in the directory which is the executable tabTEX.4 You can use \flex -l" instead of \lex" and \bison -y" instead of \yacc".

168 APPENDIX C. INSTALLATIONC.7 Using the Equality Handling Method Stand-aloneIt is possible to use 3TAP 's completion-based method for solving mixed and rigid E-uni�cationproblems stand-alone. It can, thus, be used to add equality to other implementations of Gentzen-type calculi.For that purpose eqinterf.pl provides an interface to module complete. It implements thepredicateclose_conjunctive_path(+Equalities,+Pos_literals,+Neg_literals,+Inequalities,+Univ_vars)This predicate searches for solutions to the simultaneous mixed E-uni�cation problems, thatwould be extracted from a branch containing:5� the equalities in the list Equalities, where a single equality is represented by [s=t,Univ];Univ is a list of the variables with respect to which the equality is universal;� the (positive) literals in the list Pos_literals (in addition to the equalities);� the negation of the literals in the list Neg_literals (in addition to the inequalities);� the negation of the equalities in the list Inequalities.Positive and negative literals and inequalities are simple Prolog terms (without signing andwithout sorts). Univ_vars is the list of all universal variables occurring in the problem.If a solution is found, close_conjunctive_path applies the necessary instantiations and suc-ceeds; backtracking is possible.The values of the 3TAP parameters that in
uence the handling of equality, namely complete �rst,compute additional solutions, weight left only, max rule cr number, max rule simp number, so-lutions per branch, and max term number, are de�ned in comset.pl if the equality handlingmethod is used stand-alone.
5 Which E-uni�cationproblems are extracted is described in Section 2.6.5, the method for solving these problemsin Section 2.6.6, and its implementation in Section 5.13.

ReferencesBachmair, Leo, Dershowitz, Nachum, & Plaisted, David A. 1989. Completion withoutFailure. Chap. 1 of: A��t-Kaci, H., & Nivat, M. (eds), Resolution of Equations in AlgebraicStructures, Volume 2. Academic Press.Beckert, Bernhard. 1991 (July). Konzeption und Implementierung von Gleichheit f�ur einentableau-basierten Theorembeweiser. Studienarbeit, Fakult�at f�ur Informatik, Universit�atKarlsruhe.Beckert, Bernhard. 1992 (Jan.). Konzeption und Implementierung von Gleichheit f�ur einentableau-basierten Theorembeweiser. IWBS Report 208. IBM Germany, Institute for Know-ledge Based Systems.Beckert, Bernhard. 1993a (Mar.). A Completion-Based Method for Adding Equality to FreeVariable Semantic Tableaux. Pages 19{22 of: Basin, D., H�ahnle, R., Fronh�ofer, B.,Posegga, J., & Schwind, C. (eds), Proceedings, 2nd Workshop on Theorem Proving withAnalytic Tableaux and Related Methods, Marseille.Beckert, Bernhard. 1993b (July). Ein vervollst�andigungsbasiertes Verfahren zur Behandlungvon Gleichheit im Tableaukalk�ul mit freien Variablen. Diplomarbeit, Fakult�at f�ur Informatik,Universit�at Karlsruhe.Beckert, Bernhard. 1994a. Adding Equality to Semantic Tableaux. Pages 29{42 of: Broda,K., D'Agostino, M., Gor�e, R., Johnson, R., & Reeves, S. (eds), Proceedings, 3rdWorkshop on Theorem Proving with Analytic Tableaux and Related Methods. Imperial Col-lege London, Department of Computing, Tech Report TR-94/5.Beckert, Bernhard. 1994b. A completion-based method for mixed universal and rigid E-uni�cation. Pages 678{692 of: Bundy, Alan (ed), Proceedings, 12th International Confe-rence on Automated Deduction (CADE), Nancy/France. LNAI 814. Springer Verlag.Beckert, Bernhard. 1994c. Using E-Uni�cation to Handle Equality in Universal FormulaSemantic Tableaux. In: Baumgartner, P., B�urckert, H.-J., Comon, H., Frisch, A.,Furbach, U., Murray, N., Petermann, U., & Stickel, M. (eds), Proceedings, TheoryReasoning in Automated Deduction, Workshop at CADE-12, Nancy, France.Beckert, Bernhard, & H�ahnle, Reiner. 1992. An Improved Method for Adding Equalityto Free Variable Semantic Tableau. Pages 507{521 of: Kapur, D. (ed), Proceedings, 11thConference on Automated Deduction CADE, Albany/NY. Springer, LNCS 607.Beckert, Bernhard, & Posegga, Joachim. 1994a (Apr.). Lean Theorem Proving: MaximalE�ciency from Minimal Means (Position Paper). Pages 7{8 of: Working Notes, AISBWorkshop \Automated Reasoning: Closing the Gap between Theory and Practice", Leeds,England.Beckert, Bernhard, & Posegga, Joachim. 1994b. leanTAP : Lean Tableau-based Deduction.Journal of Automated Reasoning. To appear.169

170 APPENDIX C. INSTALLATIONBeckert, Bernhard, & Posegga, Joachim. 1994c. leanTAP : Lean Tableau-Based TheoremProving. Extended Abstract. Pages 793{797 of: Bundy, A. (ed), Proceedings, 12th In-ternational Conference on Automated Deduction (CADE), Nancy, France. Springer, LNCS814.Beckert, Bernhard, H�ahnle, Reiner, & Schmitt, Peter H. 1993. The Even MoreLiberalized �-Rule in Free Variable Semantic Tableaux. Pages 108{119 of: Gottlob, G.,Leitsch, A., & Mundici, D. (eds), Proceedings, 3rd Kurt G�odel Colloquium (KGC), Brno,Czech Republic. Springer, LNCS 713.Beckert, Bernhard, H�ahnle, Reiner, Ramesh, Anavai, & Murray, Neil V. 1994. OnAnti-Links. Pages 275{289 of: Pfenning, F. (ed), Proceedings, 5th International Confe-rence on Logic Programming and Automated Reasoning (LPAR), Kiev, Ukraine. Springer,LNCS 822.Beth, E. W. 1986. Semantic Entailment and Formal Derivability. Pages 262{266 of: Berka,Karel, & Kreiser, Lothar (eds), Logik-Texte. Kommentierte Auswahl zur Geschichteder modernen Logik. Berlin: Akademie-Verlag.Bibel, Wolfgang. 1987. Automated Theorem Proving. Second revised edn. Vieweg, Braun-schweig.Carnielli, Walter A. 1987. Systematization of Finite Many-Valued Logics through the Me-thod of Tableaux. Journal of Symbolic Logic, 52(2), 473{493.Chabin, Jacques, Anantharaman, Siva, & R�ety, Pierre. 1993 (July). E{Uni�cation viaConstraint Rewriting. Unpublished.Comon, Hubert. 1990. Solving Inequations in Term Algebras. In: Proceedings,5th AnnualIEEE Symposium on Logic in Computer Science (LICS), Philadelphia, PA. IEEE ComputerSociety Press.Cook, Stephen, & Reckhow, Robert. 1974. On the lengths of proofs in the propositionalcalculus. Pages 135{148 of: Proceedings, 6th STOC.D'Agostino, Marcello. 1990 (Nov.). Investigations into the Complexity of some PropositionalCalculi. Ph.D. thesis, Oxford University Computing Laboratory, Programming ResearchGroup. Also Technical Monograph PRG{88, Oxford University Computing Laboratory.Dershowitz, Nachum. 1987. Termination of Rewriting. Journal of Symbolic Computation,3(1), 69{115.Doherty, Patrick. 1991. A constraint-based approach to proof procedures for multi-valuedlogics. In: First World Conference on the Fundamentals of Arti�cial Intelligence WOCFAI{91, Paris.Fenstad, Jens Erik, Halvorsen, Per-Kristian, Langholm, Tore, & van Benthem,Johan F. A. K. 1985. Equations, Schemata and Situations: A Framework for LinguisticSemantics. Tech. rept. CSLI{85{29. Center for the Studies of Language and InformationStanford.Fitting, Melvin C. 1990. First-Order Logic and Automated Theorem Proving. Springer, NewYork.Gallier, Jean H., Narendran, Paliath, Raatz, Stan, & Snyder, Wayne. 1992. TheoremProving Using Equational Matings and Rigid E{Uni�cation. Journal of the ACM, 39(2),377{429.

C.7. USING THE EQUALITY HANDLING METHOD STAND-ALONE 171Gerberding, Stefan. 1990 (July). Exploration der Quintus-Prolog-C-Schnittstelle und Ent-wicklung von C-Werkzeugen f�ur einen automatischen Beweiser. Studienarbeit, Fakult�at f�urInformatik, Universit�at Karlsruhe.Gerberding, Stefan. 1991 (Dec.). Monomorphe Axiomatisierung von Intervallarithmetikenmit mehrwertigen Logiken. Diplomarbeit, Fakult�at f�ur Informatik, Universit�at Karlsruhe.Goubault, J. 1993. Simultaneous Rigid E-Uni�ability is NEXPTIME-Complete. TechnicalReport. Bull Corporate Research Center.H�ahnle, Reiner. 1990a. Spezi�kation eines Theorembeweisers f�ur dreiwertige First{Order Lo-gik. IWBS Report 136. Wissenschaftliches Zentrum, IWBS, IBM Deutschland.H�ahnle, Reiner. 1990b. Towards an E�cient Tableau Proof Procedure for Multiple-ValuedLogics. Pages 248{260 of: Proceedings, Workshop on Computer Science Logic (CSL), Hei-delberg. Springer, LNCS 533.H�ahnle, Reiner. 1991. Uniform Notation of Tableaux Rules for Multiple-Valued Logics. Pa-ges 238{245 of: Proceedings, International Symposium on Multiple-Valued Logic (ISMVL),Victoria. IEEE Press.H�ahnle, Reiner. 1992a. Analytic Tableaux and Integer Programming. In: Fronh�ofer, B.,H�ahnle, R., & K�aufl, Th. (eds), Proceedings, Workshop on Theorem Proving with Ana-lytic Tableaux and Related Methods, Lautenbach/Germany. Internal Report 8/92, Universityof Karlsruhe.H�ahnle, Reiner. 1992b. A New Translation from Deduction into Integer Programming. In:Proceedings, Conference on Arti�cial Intelligence and Symbolic Mathematical Computations,Karlsruhe. Springer, LNCS.H�ahnle, Reiner. 1992c (May). Tableaux-Based Theorem Proving in Multiple-Valued Logics.Ph.D. thesis, University of Karlsruhe, Dept. of Computer Science.H�ahnle, Reiner. 1993a. Automated Deduction in Multiple-Valued Logics. International Seriesof Monographs on Computer Science, vol. 10. Oxford University Press.H�ahnle, Reiner. 1993b. E�cient Deduction in Many-Valued Logics. Pages 54{61 of: Jack-son, Peter, & Scherl, Richard (eds), Proceedings, Workshop Automated Deductionin Nonstandard Logics, AAAI Fall Symposium Series, Raleigh/NC, USA. AAAI TechnicalReport, nos. FS{93{01. AAAI.H�ahnle, Reiner. 1993c. Short Normal Forms for Arbitrary Finitely-Valued Logics. In: Pro-ceedings, ISMIS'93, Trondheim, Norway. Springer, LNCS.H�ahnle, Reiner. 1994a. E�cient Deduction in Many-Valued Logics. Pages 240{249 of: Procee-dings, International Symposium on Multiple-Valued Logics (ISMVL'94), Boston/MA, USA.IEEE Press, Los Alamitos.H�ahnle, Reiner. 1994b. Short Conjunctive Normal Forms in Finitely-Valued Logics. Journalof Logic and Computation. To appear.H�ahnle, Reiner, & Kernig, Werner. 1993. Veri�cation of Switch Level Designs with Many-Valued Logic. Pages 158{169 of: Voronkov, A. (ed), Proceedings, 4th InternationalConference on Logic Programming and Automated Reasoning (LPAR'93), St. Petersburg.Springer, LNAI 698.H�ahnle, Reiner, & Schmitt, Peter H. 1993. The liberalized �-rule in free variable semantictableaux. Journal of Automated Reasoning. To appear.

172 APPENDIX C. INSTALLATIONHintikka, K. J. J. 1955. Form and Content in Quanti�cation Theory. Acta Philosohica Fennica,8, 7{55.Jeffrey, Richard C. 1967. Formal Logic. Its Scope and Limits. McGraw-Hill, New York.Kalish, Donald, & Montague, Richard. 1964. Logic Techniques of Formal Reasoning.Harcourt, Brace & World Publisher.Kernig, Werner. 1990 (July). Automatisches Beweisen von Theoremen �uber Bilattices. Stu-dienarbeit, Fakult�at f�ur Informatik, Universit�at Karlsruhe.Kernig, Werner. 1992 (Apr.). Modellierung und Veri�kation von Switch{Level Spezi�katio-nen mit Hilfe von mehrwertiger Logik. Diplomarbeit, Fakult�at f�ur Informatik, Universit�atKarlsruhe.Knuth, Donald E., & Bendix, P. B. 1970. Simple Word Problems in Universal Algebras.Pages 263{297 of: Leech, J. (ed), Computational Problems in Abstract Algebras. Oxford:Pergamon Press.Kreidler, Martin. 1992 (May). Implementierung von Dissolution in einen tableau-basiertenTheorembeweiser. Studienarbeit, Fakult�at f�ur Informatik, Universit�at Karlsruhe.Mock, Markus. 1990 (Aug.). Verfahren zur Vereinfachung mehrwertiger Logikfunktionen.Studienarbeit, Fakult�at f�ur Informatik, Universit�at Karlsruhe.Morgan, Charles G. 1976. Methods for Automated Theorem Proving in Nonclassical Logics.IEEE Transactions on Computers, C{25(8), 852{862.Murray, Neil V., & Rosenthal, Erik. 1986 (Apr.). Path dissolution for propositional logic.Tech. rept. TR{86{6. Dept. of Computer Science, SUNY at Albany.Murray, Neil V., & Rosenthal, Erik. 1987 (July). Path dissolution: a strongly completerule of inference. Pages 161{166 of: Proceedings, 6th National Conference on Arti�cialIntelligence, Seattle.Murray, Neil V., & Rosenthal, Erik. 1990a. DISSOLUTION: Making paths vanish. Tech.rept. TR{90{?? Dept. of Computer Science, SUNY at Albany.Murray, Neil V., & Rosenthal, Erik. 1990b. On the relative merits of path dissolution andthe method of analytical tableaux. Tech. rept. TR{90{5. Dept. of Computer Science, SUNYat Albany.Murray, Neil V., & Rosenthal, Erik. 1993. Dissolution: Making paths vanish. Journal ofthe ACM, 3(40), 504{535.Nutt, Werner, R�ety, P., & Smolka, Gert. 1989. Basic Narrowing Revisited. Journal ofSymbolic Computation, 7(3/4), 295{318.Pelletier, Francis Jeffry. 1986. Seventy-Five Problems for Testing Automatic TheoremProvers. Journal of Automated Reasoning, 2, 191{216.Prawitz, Dag. 1970. A Proof Procedure with Matrix Reduction. Pages 207{213 of: LNM 125.Springer.Reeves, Steve V. 1987. Adding Equality to Semantic Tableau. Journal of Automated Reaso-ning, 3, 225{246.Schmitt, Peter H. 1987. The THOT Theorem Prover. Tech. rept. TR{87.09.007. IBM Hei-delberg Scienti�c Center.

C.7. USING THE EQUALITY HANDLING METHOD STAND-ALONE 173Schmitt, Peter H. 1989. Perspectives in Multi-Valued Logic. Proceedings, InternationalScienti�c Symposium on Natural Language and Logic, Hamburg.Sch�opke, Gisela. 1991 (Oct.). M�oglichkeiten des Einsatzes eines dreiwertigen Theorembe-weisers. IWBS Report 188. Wissenschaftliches Zentrum, IWBS, IBM Deutschland.Smullyan, Raymond. 1968. First-Order Logic. Springer, New York.Surma, Stanis law J. 1984. An Algorithm for Axiomatizing Every Finite Logic. Pages 143{149of: Rine, David C. (ed), Computer Science and Multiple-Valued Logics. North{Holland,Amsterdam.Wernecke, Wolfgang. 1991. TCG Language Draft. Internal Paper.

Index#, see implication, Lukasiewicz&, see conjunction-, see negation<=, see implication, reverse<=>, see equivalence�, see equality, symbol�, see substitution, specialization==, see demodulator), see derivability relationV, see derivability relationj=, see consequence relation, weakj=�, see consequence relation, strong=>, see implication~, see negation, weak2version, 1633version, 1637version, 163aff, see a�rmation, partiala�rmationpartial (aff), 46, 69partial (ju), 46, 69a�rmation (jt), 46, 69all, 53, 54, see also quanti�er, universalalpha, 89, 161�-formula, 13�-rule, priority, 89Andrew's Challenge, 131apply_rules, 66assert_idx, 92assert_links_and_cont_eq, 92assert_subform, 92atom, complementary, 60, 64atomic link, 61axiom, declaration, 45{47backtracking, 59, 92, 94, 132�-formula, 13Bison, 106, 167boot (module), 54boot tcg (module), 163branch, 14closed, 14, 15closure, 63{64, 65complete, 15data structure, 71{73

displaying, 103exhausted, treatment, 59, 62in focus, 21initial, 49open, 14, 58updating, 73build_disjunctions, 94build_equalities, 94C, 78, 166c-path, 18cd (command), 78, 139check_closure, 63check_dissolution_result, 85choice (module), 65{66choose_sformula, 58, 65close_branch, 58{60close_branch_with_completion, 93close_conjunctive_path, 168close_multiple, 48, 58{59closure (module), 63{64combine_instantiations, 98commands, 139{149comments, 47compall (command), 139compiler, 89, 106{107, 140, 164directory, 163installation, 167temporary �le, 89, 93compiler directory (parameter), 150compkbx (command), 55, 89{90, 140complete (module), 93{101main loop, 95output, 103{106complete �rst (switch), 94, 150completeness, 15, 40of completion, 37{38strong, 16with dissolution, 18, 87with equality, 24completion, 33{35combining with normalization, 37fair, 35implementation, 93{101limits, 96{97rules, 33{35174

INDEX 175combination, 34critical pair, 34deletion, 33equivalence, 34simpli�cation, 34subsumption, 33compute additional solutions (sw.), 97, 150compute_precedence_of_possibility, 95con, see conjunctionconclusion, 83construction, 66data structure, 71displaying, 103conjunctionthree-valued (&), 46, 69two-valued (&), 45, 68connection method, 18connective, 83declaration, 80{81priority, 45three-valued, 46two-valued, 45consequence, 17consequence relationstrong, 23weak, 23constrainedreduction rule, 31{33term, 31{33data structure, 74{75displaying, 103subsumption, 33constraint, 30{31checking consistency, 98{100combination of, 31data structure, 74displaying, 103empty, 31weakly consistent, 99contacting us, 12contradiction set, 15, 20Cook & Reckhow's problems, 124copyright, 11cp (command), 78, 140cr (problem set), 124critical pair, 34cterm (data structure), 74{75displaying, 103current kb (parameter), 151cycle, 95D'Agostino's problems, 123

dagostino (problem set), 123data structures, 66{77displaying, 103datastructures (module), 66{77date (command), 140debug (executable, 107debug (executable), 167debuglevel (parameter), 151declarations (module), 80{83changing, 134{135declarations_sg.pl (�le), 134declarations_sg_as.pl (�le), 134declarations_sg_car.pl (�le), 134declarations_std.pl (�le), 134deduction theorem, 17delkb (command), 55, 140delkbs (command), 55, 141�-formula, 13�-ruledeclaration, 84{85even more liberalized, 16, 84liberalized, 16demod (knowledge base), 123demodulate_term, 101demodulator, 94, 154application, 101data structure, 76declaration, 47symbol (==)declaration, 82test problems, 123derivability relation, 32descendant, 90, 92Dewey number, 72, 73DFG Schwerpunkt, 5directory structure, 163dis, see disjunctiondisjunctionthree-valued (v), 46, 69two-valued (v), 45, 68disjunction of inequalitiesdata structure, 76displaying, 103diss, 89dissbound (parameter), 88, 151disscomplexity (switch), 89, 133, 152dissdebuglevel (parameter), 152dissolution, 18{19complexity check, 89fairness, 87{88implementation, 85{89passes, 86

176 INDEXoptimizations, 88{89priority, 89rule, 18, 86test problems, 130dissolution (switch), 58, 133, 152dissolve (module), 85{89disspriority (switch), 89, 153documentation, 9{11Duisburg, University of, 4E(B), see equalities, set ofE-uni�cationadditional solutions, 38, 97extracting problems, 27{28, 94{95implementation, 93{101mixed, 25{26rigid, 25{26simultaneous, 26solving, 28{38universal, 25{26edit (command), 78, 141editor (parameter), 153edopen (command), 78, 141�, see constraint, emptyeq4 (knowledge base), 130eqdebuglevel (parameter), 103, 153eqinterf.pl (�le), 168eqtest (knowledge base), 123equalities, set of (E(B)), 27extracting, 94{95equality, 24{38, 65data structure, 76displaying, 103declaration, 47implementation, 93{101using stand-alone, 168semantics, 24{25symbol (�), 24symbol (=)declaration, 82syntax, 24{25test problems, 123equality (module), 93{101equality (switch), 59, 91, 154equi, see equivalenceequivalencetwo-valued (<=>), 45, 68weak (<=>), 46, 69error messages, 102ex, see quanti�er, existentialextensiondata structure, 71

displaying, 103fairness, 16, 61, 66data structures, 77of completion, 35, 96of normalization, 36{37, 96with dissolution, 152falsi�cation (jf), 46, 69fig5 14 (knowledge base), 130fig5 17 (knowledge base), 130�les, 163{165
attenformulas (switch), 154Flex, 106, 167
ipconclusion (switch), 133, 154formulaadding to branch, 61{63�-, 13atomic, 15data structure, 68�-, 13branching factor, 70complementary, 14, 15counter, 66data structure, 68{69�-, 13
-, 13linked, 91pre-processing, 93removing unlinked, 65, 91, 159test problems, 123selection, 65signed, 13data structure (sformula), 70tableau provable, 15universal, 23{24, 64, 70, 83, 94recognizing, 24test problems, 123uni�cation, 80unused, 65used, 15FTP, 12functionde�nition, 44unique name, 44
-formula, 13declaration, 82
-limit, 72
-rule, declaration, 84{85generate_further_solutions, 97genidx, 91{92genindices, 91{92get_all_indices, 91

INDEX 177get varname (command), 141globalvars (module), 78{79compilation, 166globalvars quintus (module)compilation, 166globalvars sicstus (module)compilation, 166grn (knowledge bases), 127grammar.y (�le), 107, 136{138grammar.y (�le), 167grepall (switch), 58, 133, 155group theory, 127groups (problem set), 127hardware veri�cation, 9help pages, 143heuristicfor completion, 95{96for dissolution, 88for formula selection, 61{63for selecting closing atoms, 60{61for sorting axioms, 90heuristics (module), 60{63history of 3TAP , 4{6chronological, 5{6IBM Germany, 4id, see substitution, emptyIKBS, 4ILFA, 4imp, see implicationimplication Lukasiewicz (#), 46, 69material (=>), 45, 68reverse material (<=), 45, 68reverse weak (<=), 46, 69weak (=>), 46, 69inconsistent (command), 56, 57, 141inc limit (parameter), 155index, 61, 90{92index (module), 90{92inequalitydata structure, 76displaying, 103inference (module), 66info (command), 54, 143information (module), 54information pages, 143init (command), 143initialize variables (command), 83, 144input languagesyntax, 42{47

installation, 163{168compiler, 167moreTab, 167prover, 166{167tabTEX, 167with makefile, 165interface (module), 55{58internal_set, 90interval arithmetic, 9jf, see falsi�cationjt, see a�rmation (jt)ju, see a�rmation, partialkalish (problem set), 125Kalish & Montague's problems, 125Karlsruhe, University of, 4KB, see knowledge base.kb (�le extension), 89, 93.kbx (�le extension), 55, 89, 90, 93, 140kbx extension (parameter), 156knowledge basecompiled, syntax, 93compiling, 89{90reading, 90syntax, 42{47Knuth-Bendix-AlgorithmUnfailing, 28l5 1 (knowledge base), 130l5 9 (knowledge base), 130labels, 68, 69, 77counter, 77implementation, 79LaTEX, 53, 109style �le, 109, 114lean deduction, 9leanTAP , 9lemma generation, 21{23, 161declaration of lemmata, 85many-valued, 21LEU, 4Lex, 106, 167lex.yy.c (�le), 167lexicographic path ordering, 30, 97library predicates, 78LILOG{KRinstallation under, 163message format, 102user interface, 102linking signs, 81links, 18, 87, 90{92computation, 91{92

178 INDEXlogicchanging, 134{138de�nition, 80many-valued, 19{21seven-valued, 134three-valued, 134lookup (command), 57, 144LPO, see lexicographic path orderingls (command), 78, 144main (module), 58{60makefile, 165makekbx (module), 89{90makekbx, 89max rule cr number (parameter), 96, 156max rule simp number (parameter), 97, 156max solutions per branch (param.), 96, 132,156max term number (parameter), 97, 156maxbranchlength (parameter), 53, 132, 157maxbranchlength (keyword), 53maxcounter (parameter), 53, 72, 132, 133,157mbr (keyword), 53meaning function, 19meta pl (problem set), 125{126MGU, see uni�er, most generalmixed E-uni�cation, 25{26model, 19canonical, 25normal, 25modularity, 48modules, 49compiler, 49dependency, 51forming 3TAP 's core, 49forming 3TAP 's shell, 49providing services, 49moreTab, 101and dissolution, 88commands, 111{112overview, 113help page, 112inputstructure, 109{110syntax, 115installation, 167invocation, 108navigating through output, 111{112options, 110{111setting marks, 112moretab (executable), 167

moretab.c (�le), 167moretab.x (�le), 167Morgan's method, 125{126mr (problem set), 124Murray & Rosenthal's problems, 124mv (command), 78, 144nabla, see nabla operatornabla operator (nabla), 46, 69narrowing, 28negationstrong (-), 46, 69two-valued (-), 45, 68weak (~), 46, 69negation normal form, 18nested terms (knowledge base), 123NNF, see negation normal formnormalization, 36{37combining with completion, 37fair, 36{37limits, 96{97rules, 36occur check, 79operatoradding new, 135{138attributes, 135changingarity, 137{138priority, 136{137representation, 136ordercondition, 30simple, 99weakly consistent, 99on terms, 97output (module), 101{106output redirection, 144, 158output.c (�le), 107, 137, 138, 167output.h (�le), 107, 167output�le (parameter), 102, 158P(B), see uni�cation, problems, set ofparameters, 150{162paramodulation, 132parser (executable), 167parser (executable), 106partaffirm, see a�rmation, partialpel eq (problem set), 127pel pred (problem set), 127pel prop (problem set), 127pelletier (problem sets), 53, 127Pelletier's

INDEX 17924th problem, 117problems, 127phi (problem set), 129{130pig alt (problem set), 126pigeon (problem set), 126Pigeonhole formulae, 126pmi, see implication, reverseposition, 24possibility (data structure), 75, 103precedence, 97predicatede�nition, 44interface to C, 78library, 78system dependent, 78unique name, 44preproc (module), 93problem sets, 122{130Cook & Reckhow's problems, 124D'Agostino's problems, 123group theory, 127Kalish & Montague's problems, 125meta predicate logic, 125{126Murray & Rosenthal's problems, 124Pelletier's problems, 127Pigeonhole formulae, 126prede�ned, 146proving, 139, 145simple tests, 123three-valued, 130Prolog, 48prooffailure to �nd, 132{133shortening, 133strategy, 57{58tableau, 15visualization, 108{115overview, 108{109protmode (switch), 102, 158protprove (command), 56, 144prove (command), 56, 57, 145proveall (command), 52{54, 145proveall (module), 52{54proveinc (command), 56, 57, 132, 147ps (problem set), 128{129pwd (command), 78, 147quanti�er, 83declaration, 80{81existential, 68many-valued, 16, 19, 21rule, declaration, 84{85

universal, 68Quintus Prolog, 48library predicates, 78readkbx (command), 55, 90, 147readkbx_loop, 90readtcplus, 90reductionordering, 97rule, 31{33system, 31{33completion, 33{35initial, 32inversion, 97reg, see implication, Lukasiewiczremoveantilinks (switch), 158removetest (knowledge base), 123removeunlinked (switch), 65, 91, 133, 159representationexternal, 80internal, 80, 89reset (command), 78rigid E-uni�cation, 25{26rm (command), 78, 148rule, see tableau rulerules (module), 83{85changing, 135rules, 135rules_sg.pl (�le), 134rules_sg_car.pl (�le), 134rules_std.pl (�le), 134rules_sg_as.pl (�le), 134Sat(C), see substitution, satisfyingsatis�able, 19scanner.l (�le), 107, 136{138, 167Schubert's Steamroller, 127set varname (command), 148sets-as-signs, 38{417version, 163sformula (data structure), 70displaying, 103SICStus Prolog, 48library predicates, 78sign, 39axiom, 89base set of, 39classical, 13complementary, 14declaration, 81declaration, 81denial, 89generalized, 39

180 INDEXmany-valued, 20representation, 70signaturechanging, 134declaration, 44{45, 80{81simultaneous, uni�cation problem, 26Skolemsymbol, 13term, 16sneg, see negationsolutionto uni�cation problem, 26sort ambiguity, 79, 90and equality, 94declaration, 42hierarchy, 42, 79operator, 82representation, 67uni�cation, 79soundness, 15, 41of completion, 37{38strong, 16with equality, 24standard output, 101statistics, 122{130statistics (�le), 52, 146stepmode (switch), 57, 159cterm (data structure), 94sterm (data structure), 94sterm (data structure), 75displaying, 103Subst, 25substitution, 25application, 25canonical, 98closing, 95combination of, 98data structure, 77empty, 25free variable, 23handling, 98satisfying, 31specialization, 25subsumptioncompletion rule, 33constraints, 31of constrained terms, 33switches, 150{162default settings, 142sysdep (module), 78

tableauanalytic, 13{17branch, 14closed, 14, 15closure, 63{64, 65complete, 15in focus, 21open, 14classical, 14closed, 15with universal formulae, 23complete, 15construction, 14dissolution rule, 86equality in, 24{38free variable, 16ground, 16initial, 155number of trees, 21output, 108{109generation, 109redirection, 144structure, 109{110syntax, 115proof, 15redundancy in, 38ruleapplication, 66asymmetric, 21branching factor, 20changing, 135declaration, 82{85for quanti�ed formulae, 40, 41liberalized, 16many-valued, 20minimal, 40number of extensions, 20proviso, 16satis�able, 16semantic, see tableau, analyticsystematic, 16tableau proveable, 15tableau.out (�le), 108, 109, 160tableau output (switch), 108, 109tableauout�le (parameter), 109, 160tabTEX, 101inputstructure, 109{110syntax, 115installation, 167invocation, 108{109operator list, 82

INDEX 181options, 113{114style �le, 114{115tabtex (executable), 167tabtex.c (�le), 167tabtex.h (�le), 167tabtex.x (�le), 167tap (executable), 167tap.sty (style �le), 109, 114{115tap msg (module), 102tautology, 15, 17, 19TC, 4TCG project, 4{5contributions, 4tasks, 4tcplus extension (parameter), 161termconstrained, 31{33data structure, 74{75displaying, 103subsumption, 33data structure, 67position in, 24sorted, 67weight, 96with substitution (sterm)data structure, 75tests (problem set), 123TEX, 109tex (keyword), 53theorem, declaration, 45{47theoretical achievements, 7{9three valued (problem set), 1303TAP , 1commands, 139{149copyright, 11directories, 163{165documentation, 9{11evaluation, 122{133features, 7�les, 163{165history, 4{6chronological, 5{6installation, 163{168with makefile, 165logics, 134{138main features, 7modules, 49parameters, 150{162hints for setting, 132{133programming language, 48sample session, 117{121starting, 166{167

strengths, 131{132switches, 150{162default settings, 142hints for setting, 132{133system architecture, 48{51tutorial, 117{121via FTP, 12via the World Wide Web, 11{123version, 163time (command), 78, 148token.h (�le), 167top (sort), 42treat_dissolution_part, 85truth table, 19truth valuedeclaration, 81designated, 19tutorial, 117{1212version, 163UKBA, see Knuth-Bendix-Algorithmuni�cationE-additional solutions, 38, 97extracting problems, 27{28, 94{95implementation, 93{101mixed, 25{26rigid, 25{26simultaneous, 26solving, 28{38universal, 25{26problemsextracting, 94{95sorted, 79universal formulae, 80unsorted, 79unification (module), 79{80uni�cation problemsset of (P(B)), 27uni�er, most general, 42, 79{80, 98uniform notation, 13, 14, 20unify_terms, 79univ (knowledge base), 123universalE-uni�cation, 25{26formula, 23{24recognizing, 24uni�cation, 80University ofDuisburg, 4Karlsruhe, 4usekbx (command), 55, 148

182 INDEXuselemmata (switch), 66, 133, 161v, see disjunctionvariablede�nition, 44free, 16global, 78{79instantiationdata structure, 77universal, see formula, universalweight, 96weight, of terms, 96weight left only (switch), 96, 161wneg, see negation, weakWorld Wide Web, 11{12writeidx (command), 55, 148writekb (command), 55, 149writekbx (command), 55, 149writesort (command), 55, 149WWW, see World Wide Webx_nl, 102x_readchar, 101x_write, 101{102y.tab.c (�le), 167Yacc, 106, 167

