
leanTAP : Lean Tableau-based Deduction?Bernhard Beckert & Joachim PoseggaUniversit�at KarlsruheInstitut f�ur Logik, Komplexit�at und Deduktionssysteme76128 Karlsruhe, Germanyfbeckert|poseggag@ira.uka.deAbstract.\prove((E,F),A,B,C,D) :- !, prove(E,[F|A],B,C,D).prove((E;F),A,B,C,D) :- !, prove(E,A,B,C,D), prove(F,A,B,C,D).prove(all(H,I),A,B,C,D) :- !,\+length(C,D), copy_term((H,I,C),(G,F,C)),append(A,[all(H,I)],E), prove(F,E,B,[G|C],D).prove(A,_,[C|D],_,_) :-((A= -(B); -(A)=B)) -> (unify(B,C); prove(A,[],D,_,_)).prove(A,[E|F],B,C,D) :- prove(E,F,[A|B],C,D)."implements a �rst-order theorem prover based on free-variable semantictableaux. It is complete, sound, and e�cient.1 IntroductionThe Prolog program listed in the abstract implements a complete and soundtheorem prover for �rst-order logic; it is based on free-variable semantic tableaux(Fitting, 1990). We call this lean deduction: the idea is to achieve maximale�ciency from minimal means. We will see that the above program is indeedvery e�cient|not although but because it is extremely short and compact.Our approach surely does not lead to a deduction system which is superiorto highly sophisticated systems like Otter (McCune, 1990) or Setheo (Letz et al.,1992); these are better on solving di�cult problems. However, many applicationsdo not require deduction which is as complex as the state of the art in automatedtheorem proving can handle. Furthermore, there are often strong constraints onthe time allowed for deduction. Our approach can be particularly useful in suchareas: it o�ers high inference rates on simple to moderately complex problemsand a high degree of adaptability.Another important argument for lean deduction is safety: It is easily possibleto verify a couple of lines of standard Prolog; verifying thousands of lines ofC code, however, is hard|if not impossible|in practice.Satchmo (Manthey & Bry, 1988) can be regarded the earliest application oflean theorem proving. The core of Satchmo is about 15 lines of Prolog code,? To appear in the Journal of Automated Reasoning.

and for implementing a refutation complete version another 15 lines are re-quired. Unfortunately, Satchmo works only for range-restricted formulae in clau-sal form (CNF). Range-restrictedness can be avoided with some extra e�ort, butthe restriction to clausal form is crucial to Satchmo's underlying calculus. Manyproblems become much harder when translating them to clausal form, so it seemsbetter to avoid CNF and to preserve position and scope of quanti�ers.2 One wayto achieve this is to use a calculus based on free-variable tableaux. It is a com-mon, but mistaken belief that tableau calculi are ine�cient; we will demonstratethe contrary.Paper OutlineThe paper is organized as follows: Section 2 discusses our implementation and ex-plains the underlying idea. In Section 3 we present a simple but e�cient methodfor computing an optimized negation normal form (NNF). After giving someperformance data in Section 4, we describe in Sections 5 and 6 how the programcan be improved by using the \universal formula" mechanism; in Section 7 wesketch the proof for leanTAP 's soundness and completeness.We draw conclusions from our research and give an outlook to future appli-cations of lean theorem proving in Section 8. Finally, in an appendix, we brie
ysurvey the history of tableau-based theorem provers.Thorough the paper we assume familiarity with free-variable tableaux forclassical �rst-order logic (see e.g. (Fitting, 1990)) and the basics of programmingin Prolog (O'Keefe, 1990). All source code given in this paper is available uponrequest from the authors.2 The ProgramThe idea behind leanTAP is to exploit the power of Prolog's inference engine asmuch as possible; whilst Satchmo is based upon assert and retract, we do notuse these at all but rely on Prolog's clause indexing scheme and backtrackingmechanism. We modify Prolog's depth-�rst search to bounded depth-�rst searchfor gaining a complete prover.For the sake of simplicity, we restrict our considerations to closed �rst-orderformulae in Skolemized negation normal form. This is not a serious restriction;the prover can easily be extended to full �rst-order logic by adding the standardtableau rules (cf. Section 3). We will use Prolog syntax for �rst-order formulae:atoms are Prolog terms, \-" is negation, \;" disjunction, and \," conjunction.Universal quanti�cation is expressed as all(X,F), where X is a Prolog variableand F is the scope. Thus, a �rst-order formula is represented by a Prolog term(e.g., (p(0),all(N,(-p(N);p(s(N))))) stands for p(0)^(8n(:p(n)_p(s(n))))).We use a single Prolog predicate to implement our prover:2 Using a de�nitional CNF (Eder, 1992) helps at most partially: it avoids exponentialgrowth of formulae for the price of introducing some redundancy into the proofsearch. Extending the scope of quanti�ers to clause level, however, cannot be avoided.2

prove(Fml,UnExp,Lits,FreeV,VarLim)succeeds if there is a closed tableau for the �rst-order formula bound to Fml.This is the case if the formula is inconsistent. The proof proceeds by consideringindividual branches (from left to right) of a tableau; the parameters Fml, UnExp,and Lits represent the current branch: Fml is the formula being expanded, UnExpholds a list of formulae not yet expanded, and Lits is a list of the literals presenton the current branch. FreeV is a list of the free variables on the branch (theseare Prolog variables, which might be bound to a term). A positive integer VarLimis used to initiate backtracking; it is an upper bound for the length of FreeV.We will brie
y go through the program listed in the abstract again (using amore readable form now) and explain its behavior. The prover is started withthe goal prove(Fml,[],[],[],VarLim), which succeeds if Fml3 can be proveninconsistent without using more than VarLim free variables on each branch.If a conjunction (�-formula4) \A and B" is to be expanded, then \A" isconsidered �rst and \B" is put in the list of not yet expanded formulae:prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,prove(A,[B|UnExp],Lits,FreeV,VarLim).For disjunctions (�-formulae) we split the current branch and prove two newgoals:prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,prove(A,UnExp,Lits,FreeV,VarLim),prove(B,UnExp,Lits,FreeV,VarLim).Handling universally quanti�ed formulae (
-formulae) requires a little more ef-fort. We �rst check the number of free variables on the branch. Backtracking isinitiated if the depth-bound VarLim is reached. Otherwise, we generate a \fresh"instance of the current
-formula all(X,Fml) with copy_term. FreeV is usedto avoid renaming the free variables in Fml. The original
-formula is put atthe end of UnExp5, and the proof search is continued with the renamed instanceFml1 as the formula to be expanded next. The copy of the quanti�ed variable,which is now free, is added to the list FreeV:prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,\+ length(FreeV,VarLim),copy term((X,Fml,FreeV),(X1,Fml1,FreeV)),append(UnExp,[all(X,Fml)],UnExp1),prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).3 Formally, we should say \the formula that is represented by the Prolog term boundto Fml". However, we will simply write \the formula Fml" in the sequel.4 Due to R. Smullyan, conjunctive type formulae are called �-formulae in the semantictableaux framework.5 Putting it at the top of the list destroys completeness: the same
-formula would beused over and over again until the depth bound is reached.3

Recall that \\+" denotes Prolog's negation as failure. copy_<term(+Term,-Copy)makes a copy of Term by replacing each distinct variable in Term by a new va-riable that occurs nowhere else in the system, and uni�es Copy with the result.The next clause of prove closes branches; it is the only one which is notdeterminate. Note, that it will only be entered with a literal as its �rst argument.Neg is bound to the negated literal and sound uni�cation6 is tried against theliterals on the current branch. The clause calls itself recursively and traversesthe list in its second argument; no other clause will match since UnExp is set tothe empty list.prove(Lit, ,[L|Lits], ,) :-(Lit = -Neg; -Lit = Neg) ->(unify(Neg,L); prove(Lit,[],Lits, ,)).Note, that the implication \->" after binding Neg introduces an implicit cut: thisprevents generating double negation when backtracking (which would happen,if \," were used instead).The last clause is reached if the preceding clause cannot close the currentbranch. We add the current formula (always a literal) to the list of literals onthe branch and pick a formula waiting for expansion:prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).leanTAP has two choice points: one is selecting between the last two clauses,which means closing a branch or extending it. The second choice point withinthe fourth clause enumerates closing substitutions during backtracking.The enumeration of closing substitutions is controlled with the limit VarLim:if the limit is reached before a closed tableau has been found, the clause foruniversally quanti�ed formulae fails and leanTAP searches for alternate substitu-tions for closing branches. However, leanTAP will never change a given value forVarLim, thus the program is only complete in the sense that it will �nd a proofif one with less than VarLim
-rule applications on each branch exists.It is important in practise that the limit is not chosen to high, as the searchspace grows exponentially with VarLim. A good solution for this problem is tosimply wrap the call to the predicate prove in Prolog code that implementsiterative deepening. The standard solution in Prolog for this is:inc_prove(Fml,VarLim) :- prove(Fml,[],[],[],VarLim).inc_prove(Fml,VarLim) :- NewVarLim is VarLim + 1,inc_prove(Fml,NewVarLim).The prover is then started with inc prove(Fml,N) and searches with thevalues N, N+1, : : : for VarLim.6 In contrary to Prolog's built-in uni�cation \=", the predicate unify implementssound uni�cation, i.e., uni�cation with occur check. Most Prolog systems provideunify as a library predicate. 4

3 Computing a Negation Normal FormThe prover above works only for formulae in negation normal form (NNF), sincewe did not implement all tableau rules for general formulae. If we want to useleanTAP for formulae that are not in NNF, we can either add clauses for provethat implement the corresponding rules, or apply the conversion into NNF as apreprocessing step. The �rst alternative means merging the derivation of NNFinto the proof search, the latter separating it from the proof search. In bothcases, the same operations are carried out and we do not gain anything fromcarrying them out simultaneously. On the other hand, it is reasonable to keepthe proof search as simple as possible; we will therefore separate both issues andderive an NNF in advance.Most operations for deriving NNF are straightforward. What is not straight-forward is coming up with a good Skolemization; this is one reason we give acomplete Prolog implementation of the conversion. The second is that we showhow to optimize the NNF without extra cost by changing the sequence of dis-junctively connected formulae.Recall that the conversion into NNF is linear w.r.t. the length of a formula notcontaining equivalences. With equivalences, it can be implemented with quadra-tic e�ort (Eder, 1992), but, for the sake of simplicity, we will use a naive versionwhich is in the worst case exponential for equivalences.The predicate used for computing a negation normal form isnnf(+Fml,+FreeV,-NNF,-Paths)Fml is the formula to be transformed, FreeV is the list of free variables occurringin Fml, NNF is bound to the Prolog term representing the computed NNF of Fml,and Paths is bound to the number of disjunctive paths in NNF (resp. Fml). Wewill see soon what this latter information is good for.The goal for computing the NNF of Fml is nnf(Fml,[],NNF,_). We imple-ment a more convenient syntax for �rst-order formulae, using as logical connec-tives \v" (disjunction), \&" (conjunction), \=>" (implication), and \<=>" (equi-valence).The �rst clause of the predicate nnf corresponds to the standard rules insemantic tableaux; nothing exciting is done|we just use tautologies for rewritingformulae:nnf(Fml,FreeV,NNF,Paths) :-(Fml = -(-A) -> Fml1 = A;Fml = -all(X,F) -> Fml1 = ex(X,-F);Fml = -ex(X,F) -> Fml1 = all(X,-F);Fml = -(A v B) -> Fml1 = -A & -B;Fml = -(A & B) -> Fml1 = -A v -B;Fml = (A => B) -> Fml1 = -A v B;Fml = -(A => B) -> Fml1 = A & -B;Fml = (A <=> B) -> Fml1 = (A & B) v (-A & -B);Fml = -(A <=> B) -> Fml1 = (A & -B) v (-A & B)),!,5

nnf(Fml1,FreeV,NNF,Paths).For universally quanti�ed formulae, we add the quanti�ed variable to FreeVand compute the NNF of the scope:nnf(all(X,F),FreeV,all(X,NNF),Paths) :- !,nnf(F,[X|FreeV],NNF,Paths).Skolemization has to be carried out very carefully, since straightforwardlySkolemizing can easily hinder �nding a proof: Fitting (1990) proposes to insert aSkolem-term containing all variables that appear free on a branch; this is correct,but too restrictive: it often delays closing of inconsistent branches. The currentstate of the art (Beckert et al., 1993) is less restrictive: It su�ces to use a Skolem-term that is unique (up to variable renaming) to the existentially quanti�edformula; this term only holds the free variables occurring in the formula (and notall free variables on the current branch as Fitting proposes).7 An ideal candidatefor such a term is the formula itself.8 This can be implemented in Prolog in thefollowing way:nnf(ex(X,Fml),FreeV,NNF,Paths) :- !,copy_term((X,Fml,FreeV),(Fml,Fml1,FreeV)),copy_term((X,Fml1,FreeV),(ex,Fml2,FreeV)),nnf(Fml2,FreeV,NNF,Paths).We generate a copy Fml1 of the scope Fml; none of the free variables in Fml1 arerenamed (they occur in FreeV), except the existentially quanti�ed variable X;Fml is inserted for it. Fml contains all the free variables that have to occurin a Skolem-term and we use it for this purpose. We do not need to createa new function symbol for Skolemization, as we will assume that disjoint setsof predicate and function symbols are used. The second copy term goal justinstantiates the existentially quanti�ed variable to the constant ex, since we donot want to introduce free variables when Skolemizing.9The next clause is routine, besides counting disjunctive paths:nnf(A & B,FreeV,(NNF1,NNF2),Paths) :- !,nnf(A,FreeV,NNF1,Paths1),nnf(B,FreeV,NNF2,Paths2),Paths is Paths1 * Paths2.The number of disjunctive paths in a formula (i.e. the number of branches afully expanded tableau for it will have) is used when handling disjunctions: we7 From a logical perspective, our version of Skolemization results in a stronger calculusthan the one proposed by Fitting (1990); both calculi are complete, but the shortestproofs in Fitting's calculus are sometimes longer.8 This is actually known since more than �fty years: it resembles the �-formulae de-scribed in (Hilbert & Bernays, 1939, x1).9 As this might be a bit hard to understand for people not used to programming inProlog, we give an example: the Prolog query nnf(ex(X,p(X,Y)),[Y],NNF,) willsucceed and bind NNF to p(p(ex,Y),Y).6

put the less branching formula to the left. That way the number of choice pointsduring the proof search is reduced, since leanTAP will expand the left part of adisjunction �rst.nnf(A v B,FreeV,NNF,Paths) :- !,nnf(A,FreeV,NNF1,Paths1),nnf(B,FreeV,NNF2,Paths2),Paths is Paths1 + Paths2,(Paths1 > Paths2 -> NNF = (NNF2;NNF1);NNF = (NNF1;NNF2)).The last clause will match literals:nnf(Lit,_,Lit,1).4 PerformanceAlthough (or better: because) the prover is so small, it shows striking perfor-mance. Table 1 shows experimental results for a subset of Pelletier's problems(Pelletier, 1986). We placed the negated theorem in front of the axioms and usedthe above program for computing negation normal form.No. Limit Branches TimeVarLim closed tried msec17 1 14 14 018 2 1 1 919 2 4 6 020 6 3 3 921 2 8 8 022 2 7 14 923 1 4 4 024 6 33 33 925 3 5 5 026 3 16 17 027 4 8 8 028 3 5 5 029 2 11 11 930 2 4 4 931 3 5 5 0
No. Limit Branches TimeVarLim closed tried msec32 3 10 10 1033 1 11 11 034 5 267 792 70035 4 1 1 036 6 3 3 037 7 8 8 938 4 90 101 21039 1 2 2 040 3 4 5 041 3 4 5 042 3 5 5 943 5 18 18 10944 3 5 5 1045 5 17 17 3946 5 53 63 59The runtime has been measured on a SUN SPARC 10 workstation with SICStus Pro-log 2.1; \0 msec" means \not measurable". The times re
ect the search for a proofwith iterative deepening on VarLim and include NNF derivation.Table 1. leanTAP 's performance for Pelletier's problems.7

Some of the theorems, like Problem 38, are quite hard: the 3TAP prover (Bec-kert et al., 1992), for instance, needs more than ten times as long. If leanTAPcan solve a problem, its performance is in fact comparable to compilation-basedsystems that search for proofs by generating Prolog programs and running them(Stickel, 1988; Posegga, 1993a; Posegga, 1993b).Schubert's Steamroller (Pelletier No. 47) cannot be solved; this is no surprise,since the problem is designed for forward chaining based on clauses. It can onlybe proven in tableau-based systems if good heuristics for selecting
-formulae areused. Using a queue, as in our case, is not su�cient. We console ourselves withProblem No. 38, which is barely solvable in a comparable time by CNF-basedprovers.Pelletier No. 34 Pelletier No. 34 (also called \Andrews Challenge") is thehardest problem; it can only be solved if exactly the required value of 5 forVarLim is choosen. An iterative deepening approach (as applicable to all otherproblems) does not work: if VarLim is set to 4, the prover does not return after30 minutes.5 Universal Variables in FormulaeOne of the major problems with implementing a �rst-order tableau calculus isto control the application of universal quanti�ers or
-formulae; these generatethe free variables in a tableau, which may be instantiated for closing branches.In tableaux, these free variables are not implicitly universally quanti�ed as it isfor instance the case with variables in clauses when using a resolution calculus.Free variables in tableaux are rigid , this means the same substitution must beapplied to all occurrences of the variable in the whole tableau.From a more formal point of view, this situation is closely related to what isusually called the strong consequence relation:De�nition1 Strong consequence relation.Let �; be �rst-order formulae; � j=� if for all interpretations I and for all variable assignments �:if val I;�(�) = true then valI;�() = true(Note, that for example p(x) 6j=� (8xp(x)), but p(x) j= (8xp(x)), where \j="denotes the weak consequence relation.)Suppose we have a branch B with a formula �(x) on it in a tableau; assumefurther that the expansion of the tableau then proceeds with creating new bran-ches; some of these branches contain occurrences of x. For closing the generatedbranches, we must use the same substitution for x on all of them. Figure 1 givesan example for the situation: the tableau cannot be closed immediately as nosingle substitution closes both branches simultaneously. To �nd a proof, we haveto apply the
-rule again and create another instance of p(x).8

(:p(a) _ :p(b)) ^ (8x p(x)):p(a) _ :p(b)8x p(x)p(x):p(a) :p(b)Fig. 1. An example for universal formulae.For particular branches it could be the case that B j=� (8x�(x)). This isfor instance the case in Figure 1. On these branches, we can use di�erent sub-stitutions for x. The tableau in Figure 1 closes then immediately. Recognizingsuch situations and exploiting them yields shorter tableau proofs, as less ruleapplications for closing a tableau are needed.This is the idea behind the heuristic discussed in this section. We present amethod that detects universal variables in formulae in some cases.10De�nition2 Universal formula.Suppose � is a formula on some tableau branch B. � is universal on B withrespect to the variable x if B j=� (8x�) :11Now, we can use a new rule for closing branches that takes this de�nitioninto account:De�nition3 Closed tableau.A tableau consisting of k branches Bi(1 � i � k) is closed if there are1. a substitution �,2. literals li; �li 2 Bi, and3. substitutions �i, such that(a) li�i and �li�i are complementary, and(b) if �i(x) 6= �(x) then both li and �li are universal on Bi w.r.t. x.With this de�nition of closed tableaux it is possible that a tableau is closed afterless applications of expansion rules than in the standard free-variable tableaucalculus. Thus, the calculus us strengthened.10 See (Beckert & H�ahnle, 1992) for details; we only give a slightly simpli�ed accounthere11 In the sequel, we will often refer to a formula � which is universal on a branch Bw.r.t. a variable x just by \the universal formula �", and to the variable x by \theuniversal variable x" (if the context is clear).9

The problem of recognizing universal formulae is of course undecidable ingeneral. However, a wide and important class can be recognized quite easily:assume there is a sequence of tableau rule applications that does not contain adisjunctive rule (i.e., the tableau does not branch). All formulae that are gene-rated by this sequence are universal w.r.t. the free variables introduced by thesequence. Substitutions for these variables can be ignored, since the correspon-ding inference steps could be repeated arbitrarily often to generate new instancesof the universal variables (without generating new branches).More formally, we use the following lemma:Lemma4. A formula � on a branch B is universal w.r.t. x if � was put on Bby either1. applying a
-rule and x is the free variable introduced by the application ofthis rule, or2. applications of non-branching rules to a formula 2 B, where is universalon B w.r.t. x.A proof is immediate, as the criteria of De�nition 2 are implied.Recognizing the above subset of universal formulae in the leanTAP programcan be implemented by keeping a list of in this sense universal variables for eachformula. This information is used to rename the universal variables occurring inliterals, such that their instantiation does not e�ect the rest of the tableau. Thisrenaming \simulates" universal quanti�cation of the variable that is renamed; itis carried out when expanding a disjunction.For this, the arity of prove is extended from 5 to 7:prove(Fml,UnExp,Lits,DisV,FreeV,UnivV,VarLim)The use of all parameters but UnivV and DisV remains unchanged. UnivV is a listof the universal variables in Fml. DisV is a Prolog term containing all variableson the current branch which are not universal in one of the formulae (we willcall these \disjunctive variables"). Each unexpanded formula in UnExp will havethe list of its universal variables attached. The Prolog functor \:" is used forthis.The prover is now started with the goalprove(Fml,[],[],[],[],[],VarLim)to prove the inconsistency of Fml. We will discuss the extended program byexplaining the di�erences to our previous version.All universal variables of a conjunction are universal for each of its compo-nents:prove((A,B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,prove(A,[(UnivV:B)|UnExp],Lits,DisV,FreeV,UnivV,VarLim).Disjunction destroys universality: the universal variables of a disjunction arenot universal to its components. The tableau is split and the universal variables10

become non-universal on both resulting branches. We therefore add them to DisVby creating a new Prolog term12. Universal variables occurring in the literals onthe branch are renamed by copy term. This allows to instantiate the universalvariables di�erently on the two resulting branches.prove((A;B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,copy term((Lits,DisV),(Lits1,DisV)),prove(A,UnExp,Lits,(DisV+UnivV),FreeV,[],VarLim),prove(B,UnExp,Lits1,(DisV+UnivV),FreeV,[],VarLim).When introducing a new variable by the quanti�er rule, this variable becomesuniversal for the scope (it may lose that status if a disjunction in the scope isexpanded, see above).prove(all(X,Fml),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,\+ length(FreeV,VarLim),copy term((X,Fml,FreeV),(X1,Fml1,FreeV)),append(UnExp,[(UnivV:all(X,Fml))],UnExp1),prove(Fml1,UnExp1,Lits,DisV,[X1|FreeV],[X1|UnivV],VarLim).The next clause remains unchanged, besides having two more parameters.prove(Lit, ,[L|Lits], , , ,) :-(Lit = -Neg; -Lit = Neg) ->(unify(Neg,L); prove(Lit,[],Lits, , , ,)).Recall that the sixth parameter of prove holds the universal variables of thecurrent formula (not of the whole branch). Thus, when extending branches wemust change this argument:prove(Lit,[(UnivV:Next)|UnExp],Lits,DisV,FreeV, ,VarLim) :-prove(Next,UnExp,[Lit|Lits],DisV,FreeV,UnivV,VarLim).6 Performance with the Universal Formula MechanismProblem No. 34 can now be solved faster, as Table 2 shows. The runtime for otherproblems (like 38) increased, as there is some overhead involved with maintaininguniversal variables. Note, that Problem No. 22 works better now: we need only 4instead of 7 branches.7 Proving leanTAP 's Soundness and Completeness7.1 PreliminariesOne of the advantages of leanTAP 's compactness is that it is possible to formallyprove its correctness, i.e., its soundness and completeness. Nevertheless, due to12 We could use a list, but creating a new term by \+" (an arbitrary functor) is faster.11

No. Limit Branches TimeVarLim closed tried msec17 1 14 14 1018 2 1 1 019 2 3 3 1020 6 3 3 921 2 8 8 022 2 4 4 023 1 4 4 024 6 33 33 3925 3 5 5 026 3 16 17 1927 4 8 8 1028 3 5 5 1029 2 11 11 1930 2 4 4 031 3 5 5 10
No. Limit Branches TimeVarLim closed tried msec32 3 10 10 1033 1 11 11 1034 5 79 79 10935 2 1 1 036 6 3 3 037 7 8 8 3038 4 90 101 48939 1 2 2 040 3 4 5 041 3 4 5 942 3 5 5 943 5 18 18 17944 3 5 5 1945 5 17 17 7946 5 53 63 189The runtime has been measured on a SUN SPARC 10 workstation with SICStus Pro-log 2.1; \0 msec" means \not measurable".Table 2. leanTAP 's performance with the universal formula mechanism.space restrictions, we will not give a detailed proof here, but only a proof sketch.We present the theorems that have to be proven, and the main arguments thatmay be used.The proof makes use of the well-known fact, that free variable semantic ta-bleaux are a sound and complete calculus. In addition, we assume (and do notprove) the Prolog compiler (resp. interpreter) to be correct, as well as the im-plementation of library predicates.First, we formally de�ne the free variable tableau calculus, using a slightlynon-standard representation:13 Tableaux are multi-sets of multi-sets of �rst-orderformulae; as usual, the branches of a tableau are implicitly disjunctively connec-ted, and the formulae on a branch are implicitly conjunctively connected.De�nition5. A tableau is a (�nite) multi-set of tableau branches, where a ta-bleau branch is a (�nite) multi-set of �rst order formulae.There are three types of rules that can be applied to a tableau to derive a newone: expansion rules, the closure rule, and the substitution rule. The expansionrules are the classical �-, �- und
-rules for formulae in NNF (only using ourset notation). The closure rule removes closed branches instead of just markingthem as being closed.13 We stress that this calculus di�ers from classical free variable tableaux (e.g. (Fitting,1990)) only in notation and the way tableaux are represented.12

De�nition6. Let T be a tableau, B 2 T a branch of T , and � 2 B a formulaon B.Expansion rules: The tableau may be derived from T that is constructed by re-moving the branch B from T and replacing it by one, resp. two new branches:(B n f�g)[f 1; 2g if � = 1 ^ 2 (�)(B n f�g)[f 1g and (B n f�g)[f 2g if � = 1 _ 2 (�)B [f (y)g (where y is a new variable) if � = (8x) (x) (
)Closure rule: If B is closed, i.e., if there are complementary literals l; �l 2 B, thenT n fBg may be derived from T .Substitution rule: The tableau T� may be derived from T , where � is any sub-stitution that does not instantiate bound variables in T (including the emptysubstitution).During leanTAP 's proof search, the current prove goal together with theprove goals on the Prolog goal stack14 represent the tableau that has beencomputed so far. A goal prove(Fml,UnExp,Lits,FreeV,VarLim) represents thetableau branch consisting of the formulae in Fml, UnExp and Lits, that still hasto be closed.7.2 SoundnessThe soundness theorem to be proven is:Theorem7. If Fml is bound to a closed �rst-order formula � in NNF, and thegoal prove(Fml,[],[],[],VarLim) succeeds, then � is inconsistent.The proof is based on the soundness of free variable tableaux:Fact 8 If � is a closed �rst-order formula � in NNF, and the empty tableau(the empty set) can be derived from the initial tableau ff�gg by applying a �nitesequence of the rules from De�nition 6, then � is inconsistent.Using Fact 8, it su�ces to validate the following statements to prove Theorem 7:{ If Fml is bound to �, the initial goal prove(Fml,[],[],[],VarLim) repre-sents the initial tableau ff�gg.{ Whenever leanTAP changes the set of prove goals on the Prolog goal stack,i.e., derives a new tableau, this corresponds to an application of one of thetableau rules from De�nition 6.15{ leanTAP only terminates successfully, when the goal stack is empty, i.e., whenthe empty tableau has been derived.14 The state a Prolog computation has reached is usually represented as a list (stack)[G1; : : : ;Gk] of atomic formulae (called goals), and a substitution � of the Prologvariables occurring in this list. � is the answer substitution computed up to thatpoint. For our purposes, however, it is not necessary to separate the substitutionfrom the goals; we therefore consider [G1�; : : : ;Gk�] to be the current goal stack.15 leanTAP 's last clause does not change the tableau, but only its internal representation.13

7.3 CompletenessThe completeness theorem to be proven is:Theorem9. If � is an inconsistent �rst-order formula in NNF, then there isan n � 0 such that, if Fml is bound to � and VarLim is bound to n, then thegoal prove(Fml,[],[],[],VarLim) succeeds.Central to the prove of Theorem 9 is the notion of fully expanded tableaux ,and that of a sequence of tableau derivations that ends with a fully expandedtableau:De�nition10. A sequence T0; : : : ; Tn of tableaux is a fully expanding tableausequence w.r.t. the limits p and q (p; q � 0), if Ti+1 has been derived from Tiusing one of the rules from De�nition 6 (1 � i � n), and:1. Only expansion rules have been applied in the sequence.2. There are only literals and
-formulae in Tn.3. If there is a
-formula � on a branch B 2 Ti (0 � i � n) that is one of the�rst q formulae that have been added to B (or were initially present on B),then the
-rule has been applied at least p times to this occurrence of �.�- and �-formulae are removed from a tableau once their according rule hasbeen applied to them. Therefore, Condition 2 in De�nition 10 is equivalent to:There is no �- or �-formula in the tableau, that the according rule has not beenapplied to.Using the notion of fully expanding sequence, the well-known completenesstheorem for free variable semantic tableaux can be formulated in the followingway:Fact 11 If the �rst-order formula � that is in NNF is inconsistent, then thereare limits p and q (p; q � 0) such that for any sequence T0; : : : ; Tn of tableauxthat begins with the initial tableau T0 = ff�gg and that is a fully expandingsequence w.r.t. p and q, there is a substitution � such that each branch of theTableau Tn� is closed.That is, there are (i) literals li and �li on each branch Bi (1 � i � m) of Tn,and (ii) substitutions �i that are more general than �, such that li�i and �l�i arecomplementary.The tableau sequences computed by leanTAP are not fully expanding, be-cause leanTAP closes branches immediately that contain complementary literals.However, we can achieve this with a variant leanTAP 0 of the program that isidentical to the leanTAP except that: (i) the fourth clause, that closes branches,is omitted; and (ii) there is an additional clauseprove(Fml,UnExp,Lits,_,_) :-write(['The branch consisting of ', Fml, UnExp, Lits,' is part of the fully expanded tableau']).14

at the end of leanTAP 0. This last clause is needed, because we do not want theconstruction of the expansion sequence to fail when a branch is fully expanded.Now, if Fml is bound to the inconsistent formula � in NNF, VarLim is chosenhigh enough, and leanTAP 0 is started by the goal prove(Fml,[],[],[],VarLim),then it constructs a fully expanding sequence T 00; : : : ; T 0n0 w.r.t. arbitrary limitsp; q � 0, in particular w.r.t. the limits that exist according to Fact 11. Therefore,the tableau T 0n0 is closed (as described in Fact 11), if only VarLim is high enough.The proof of this can be based on the following arguments (that have to bevalidated):{ leanTAP 0 does neither apply substitutions nor close and remove branches(De�nition 10, Cond. 1).{ The �- and the �-rule are applied as often as possible (Def. 10, Cond. 2).{ The list UnExp implements a priority queue. Therefore, the
-rule is appliedarbitrarily often to each
-formula, if only VarLim is high enough (Def. 10,Cond. 3).{ The computation of tableau branches and tableaux terminates, since witheach step either the formulae on the branch become less complex, the lengthof FreeV increases, or the number of formulae in UnExp decreases.It remains to be proven, that the original leanTAP constructs a closed tableauas well, and, in addition, actually closes the branches. To do this, we change|in two steps|the fully expanding sequence T 00; : : : ; T 0n0 constructed by leanTAP 0,such that the resulting sequence is constructed by the original leanTAP and endswith the empty tableau:First, all expansions of branches are removed from the sequence that alreadycontain the pair li; �li of closing literals (since leanTAP does not expand suchbranches). It is easy to check, that the last tableau in the resulting sequence isclosed in the same way as T 0n0 , using the same literals and substitutions.In a second step, substitution and closure rule applications are inserted intothe sequence. As soon as closing literals li; �li occur on a branch B 2 T 0i , thesubstitution �i is applied to T 0i , and the closed branch B�i is removed using theclosure rule.Obviously, the resulting tableau sequence T0; : : : ; Tn (n � n0) ends with theempty tableau Tn = ;. By induction on i one proves that after a �nite numberof the original leanTAP 's computation steps (and possibly after backtracking, ifthere are choice points), the prove goals exactly represent the tableau Ti. Fori = n this immediately implies that leanTAP derives the empty tableau, i.e.,terminates with success.16For the induction proof, one has to validate that applying closing substituti-ons and deleting closed branches does not e�ect the expansion of the rest of thetableau, i.e. of those branches that have not been closed yet. The order in whichformulae are chosen for expansion remains the same.16 There may be other possibilities to construct an empty (closed) tableau; in that caseit is not obvious, which one leanTAP will �nd �rst.15

8 Conclusion & OutlookWe showed how a �rst-order calculus based on free-variable semantic tableauxcan be e�ciently implemented in Prolog with minimal means. The proposedimplementation is surprisingly e�cient, especially if universal formulae are takeninto account.One could regard leanTAP as a Prolog hack. However, we think it demon-strates more than tricky use of Prolog: it shows that semantic tableaux can bee�ciently implemented with little e�ort. Among other things, this makes leanTAPideal for classroom use.Furthermore, the philosophy of \lean theorem proving" is interesting: Weshowed that it is possible to reach considerable performance by using extremelycompact (and e�cient) code instead of elaborate heuristics. One should notconfuse \lean" with \simple": each line of a \lean" prover has to be coded witha lot of careful consideration.
Runtime

Problem Complexity
tractability for applications \lean" proverslarge provers

use lean systems unclear uselargesystemsFig. 2. Lean vs. Large Deduction Systems.It is interesting to consider the principle of lean deduction w.r.t. applications.Deduction systems like ours have their limits, in that many problems are sol-vable with complex and sophisticated theorem provers but not with an approachlike leanTAP . However, when applying deduction in practice, this might not be16

relevant at all: Figure 2 oversimpli�es but shows the point; the x-axis gives avirtual value of the complexity of a problem, and the y-axis shows the runtimerequired for �nding a solution. The two graphs give the performance of lean andof large deduction systems.We are better o� with a system like leanTAP below a certain degree of pro-blem complexity: leanTAP is compact, easier adaptable to an application, andalso faster because it has less overhead than a huge system. Between a break-even point, where sophisticated systems become faster, and the point wheresmall systems fail, it is at least not immediately clear which approach to fa-vor: adaptability can still be a good argument for lean deduction. For reallyhard problems, a sophisticated deduction system is the only choice. This lastarea, however, could indeed be neglectable, depending on the requirements ofan application: if little time can be allowed, we cannot treat hard problems bydeduction at all. Thus, lean deduction can be superior in all cases|dependingon the concrete application17.There is still room for improvement without sacri�cing simplicity and/or ele-gance of our approach: we can, for instance, use an additional preprocessing stepthat translates a negation normal form into a graphical representation of a fullyexpanded tableau (see (Posegga, 1993a) for details). This can be implementedequivalently simply and requires only linear e�ort at runtime. The prover itselfthen becomes smaller, since no compound formulae are present any more and allbranches are already fully developed. The speedup will not be dramatic, but con-siderable. Furthermore, we can implement the compilation principle describedby Posegga (1993a): the idea is to translate tableau graphs into Prolog clausesthat carry out the proof search at runtime. Compared with \conventional" im-plementations of tableau-based systems, this gains about one order of magnitudeof speed. It will be subject to future research to apply this principle in the spiritof lean deduction.A Brief Historical Survey on Tableau-based ProversCompared to resolution, few attempts have been made in the past to implementtableau-based calculi; thus we can take the risk of presenting a brief survey (that,nevertheless, is likely to be incomplete).18The �rst tableau-based theorem prover was developed in the late �fties byDag Prawitz, H�akan Prawitz, and Neri Voghera (Prawitz et al., 1960). It ran ona computer named Facit EDB (manufactured by AB �Advidabergs Industrier).The tableau calculus implemented was already quite similar to todays versions;17 Researchers in Automated Reasoning often regret/complain that there are sparse ap-plications of the techniques they develop. One reason might be that implementation-oriented research favors huge and highly complex systems. It is hard to see how toapply these besides using them as a black box. Adaptability, however, is an impor-tant criterion for applying techniques; systems like leanTAP do give a good startingpoint here.18 It is restricted to approaches for formulae of �rst-order logic in non-clausal form.17

it did, however, not use free variables. This prover was perhaps the earliest for�rst-order logic at all.19At about the same time, Hao Wang implemented a prover for �rst-orderlogic, that was based on a sequent calculus similar to semantic tableaux (Wang,1960). The program ran on IBM 704-computers.Ewa Or lowska implemented a calculus that can be seen as tableau-based in1967 on a GIER digital computer20. The calculus was based on deriving if-then-else normal forms rather than disjunctive normal forms. Only the propositionalpart of the calculus was implemented.We are not aware of any implementation-oriented research around tableauxin the seventies; there have been a number of theoretic contributions to tableaucalculi but nothing seems to have been implemented.In the eighties, the research lab of IBM in Heidelberg, Germany was a ma-jor driving force of tableau-based deduction: Wolfgang Sch�onfeld developed aprover within a project on legal reasoning (Sch�onfeld, 1985). It was based onfree-variable semantic tableaux and used uni�cation for closing branches. A fewyears later Peter Schmitt developed the THOT theorem prover at IBM (Schmitt,1987); this was also an implementation of free-variable tableaux and part of aproject aiming at natural language understanding. Both implementations havebeen carried out in Prolog. Based on experiences with the THOT theorem prover,the development of the 3TAP system started around 1990 at Karlsruhe Univer-sity (Beckert et al., 1992); the project was funded by IBM Germany and carriedout by Peter Schmitt and Reiner H�ahnle. The 3TAP prover was again written inProlog and implemented a calculus for free-variable tableaux, both for classical�rst-order logic with equality as well as for multi-valued logics. This programcan bee seen as the direct ancestor of leanTAP .Besides the line of research outlined above there was also other work ontableau-based deduction in the eighties: Oppacher and Suen published their well-known paper on the HARP theorem prover in 1988 (Oppacher & Suen, 1988).This prover was implemented in LISP and is probably the best-known instanceof a tableau-based deduction system. Another implementation, the Helsinki Lo-gic Machine (HLM), is a Prolog program that actually implements about 60di�erent calculi, among them semantic tableaux for classical �rst-order logic,non-monotonic logic, dynamic logic, and autoepistemic logic. Approximately atthe same time a tableau-based prover was implemented at Karlsruhe Univer-sity by Thomas K�au
 (K�au
 & Zabel, 1990); the system, called \Tatzelwurm",implemented classical �rst-order logic with equality, but did not use a calculusbased on free variables. Its main purpose was to be used as an inference enginein a program veri�cation system.Since 1990, the interest in tableau-based deduction continuously increased,and we will not try continue our survey beyond this date. From 1992 onwards,19 Actually, Prawitz et al. implemented a calculus for �rst-order logic without functionsymbols; that, however, has the same expressiveness as full �rst-order logic.20 The GIER (Geodaetisk Instituts Elektroniske Regnemaskine) was produced byRegnecentralen in Copenhagen (Denmark) in the early sixties.18

the activities of the international tableau community are quite well documented,as annual workshops were started; we refer the interested reader to the workshopproceedings (Fronh�ofer et al., 1992; Basin et al., 1993; Broda et al., 1994).21ReferencesBasin, David, Fronh�ofer, Bertram, H�ahnle, Reiner, Posegga,Joachim, & Schwind, Camilla. 1993 (May). 2nd Workshop on TheoremProving with Analytic Tableaux and Related Methods. Tech. rept. 213. Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany. (Workshop held inMarseilles, France).Beckert, Bernhard, & H�ahnle, Reiner. 1992. An Improved Method forAdding Equality to Free Variable Semantic Tableaux. Pages 507{521 of:Kapur, Depak (ed), 11th International Conference on Automated Deduc-tion (CADE). Lecture Notes in Computer Science. Albany, NY: Springer-Verlag.Beckert, Bernhard, Gerberding, Stefan, H�ahnle, Reiner, & Kernig,Werner. 1992. The Tableau-Based Theorem Prover 3TAP for Multiple-Valued Logics. Pages 758{760 of: 11th International Conference on Auto-mated Deduction (CADE). Lecture Notes in Computer Science. Albany,NY: Springer-Verlag.Beckert, Bernhard, H�ahnle, Reiner, & Schmitt, Peter H. 1993. TheEven More Liberalized �-Rule in Free Variable Semantic Tableaux. Pages108{119 of: Gottlob, Georg, Leitsch, Alexander, & Mundici, Da-niele (eds), 3rd Kurt G�odel Colloquium (KGC). Lecture Notes in ComputerScience. Brno, Czech Republic: Springer-Verlag.Broda, Krysia, D'Agostino, Marcello, Gor�e, Rajeev, Johnson, Rob,& Reeves, Steve. 1994 (Apr.). 3rd Workshop on Theorem Proving withAnalytic Tableaux and Related Methods. Tech. rept. TR-94/5. Imperial Col-lege London, Department of Computing, London, England. (Workshop heldin Abingdon, England).Eder, Elmar. 1992. Relative Complexities of First-Order Calculi. Arti�cialIntelligence. Vieweg Verlag.Fitting, Melvin C. 1990. First-Order Logic and Automated Theorem Proving.Springer-Verlag.Fronh�ofer, Bertram, H�ahnle, Reiner, & K�aufl, Thomas. 1992 (Mar.).Workshop on Theorem Proving with Analytic Tableaux and Related Methods.Tech. rept. 8/92. Universit�at Karlsruhe, Fakult�at f�ur Informatik, Karlsruhe,Germany. (Workshop held in Lautenbach, Germany).Hilbert, David, & Bernays, Paul. 1939. Grundlagen der Mathematik II. DieGrundlehren der mathematischen Wissenschaften in Einzeldarstellungenmit besonderer Ber�ucksichtigung der Anwendungsgebiete, vol. 50. Springer-Verlag.21 Proceedings of subsequent workshops will be published within Springer's LNCSseries. 19

K�aufl, Thomas, & Zabel, Nicolas. 1990. Cooperation of Decision Proce-dures in a Tableau-Based Theorem Prover. Revue d'Intelligence Arti�cielle,4(3).Letz, Reinhold, Schumann, Johann, Bayerl, Stephan, & Bibel, Wolf-gang. 1992. SETHEO: A High-Performance Theorem Prover. Journal ofAutomated Reasoning, 8(2).Manthey, Rainer, & Bry, Fran�cois. 1988. SATCHMO: A Theorem Pro-ver Implemented in Prolog. Pages 415{434 of: Lusk, Ewing, & Over-beek, Ross (eds), 9th International Conference on Automated Deduction(CADE). Lecture Notes in Computer Science. Argonne, Ill: Springer-Verlag.McCune, William W. 1990 (Mar.). Otter 2.0 Users Guide. Tech. rept. ANL{90/9. Argonne National Laboratories, Mathematics and Computer ScienceDivision, Argonne, Ill.O'Keefe, Richard A. 1990. The Craft of Prolog. MIT Press.Oppacher, F., & Suen, E. 1988. HARP: A Tableau-based Theorem Prover.Journal of Automated Reasoning, 4, 69{100.Pelletier, Francis Jeffry. 1986. Seventy-Five Problems for Testing Auto-matic Theorem Provers. Journal of Automated Reasoning, 2, 191{216.Posegga, Joachim. 1993a. Compiling Proof Search in Semantic Tableaux. Pa-ges 67{77 of: 7th International Symposium on Methodologies for IntelligentSystems (ISMIS). Lecture Notes in Computer Science. Trondheim, Norway:Springer-Verlag.Posegga, Joachim. 1993b. Deduktion mit Shannongraphen f�ur Pr�adikatenlogikerster Stufe. St. Augustin, Germany: in�x-Verlag.Prawitz, Dag, Prawitz, H�akan, & Voghera, Neri. 1960. A MechanicalProof Procedure and Its Realization in an Electronic Computer. Journal ofthe ACM, 7(1{2), 102{128.Schmitt, Peter H. 1987. The THOT Theorem Prover. Tech. rept. 87.9.7.IBM Germany, Scienti�c Center, Heidelberg, Germany.Sch�onfeld, Wolfgang. 1985. Prolog Extensions Based on Tableau Calculus.Pages 730{733 of: 9th International Joint Conference on Arti�cial Intelli-gence, Los Angeles, vol. 2.Stickel, Mark E. 1988. A Prolog Technology Theorem Prover. Pages 752{753of: Lusk, Ewing, & Overbeek, Ross (eds), 9th International Conferenceon Automated Deduction (CADE). Lecture Notes in Computer Science.Argonne, Ill: Springer-Verlag.Wang, Hao. 1960. Toward Mechanical Mathematics. IBM Journal of Researchand Development, 4(1).
20

