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Abstract.

“prove ((E,F),A,B,C,D) :- !, prove(E,[F[A],B,C,D).
prove((E;F),A,B,C,D) :- !, prove(E,A,B,C,D), prove(F,A,B,C,D).
prove(all(H,I),A,B,C,D) :- !,

\+length(C,D), copy_term((H,I,C),(G,F,C)),
append (A, [al1(H,1)],E), prove(F,E,B,[G|C],D).
prove(A,_,[CID],_, ) :-
((A= =(B); -(A)=B)) -> (unify(B,C); prove(A,[1,D,_, )).
prove(A,[E|F],B,C,D) :- prove(E,F,[A[B],C,D).”
implements a first-order theorem prover based on free-variable semantic
tableanx. Tt is complete, sound, and efficient.

1 Introduction

The Prolog program listed in the abstract implements a complete and sound
theorem prover for first-order logic; 1t is based on free-variable semantic tableaux
(Fitting, 1990). We call this lean deduction: the idea is to achieve maximal
efficiency from minimal means. We will see that the above program is indeed
very efficient  not although but because it is extremely short and compact.

Our approach surely does not lead to a deduction system which is superior
to highly sophisticated systems like Otter (McCune, 1990) or Setheo (Tetz et al.,
1992); these are bhetter on solving difficult problems. However, many applications
do not require deduction which is as complex as the state of the art in automated
theorem proving can handle. Furthermore, there are often strong constraints on
the time allowed for deduction. Our approach can be particularly useful in such
areas: 1t offers high inference rates on simple to moderately complex problems
and a high degree of adaptability.

Another important argument for lean deduction is safety: Tt 1s easily possible
to verify a couple of lines of standard Prolog; verifying thousands of lines of
C code, however, is hard 1f not impossible in practice.

Satchmo (Manthey & Bry, 1988) can be regarded the earliest application of
lean theorem proving. The core of Satchmo is about 15 lines of Prolog code,

* To appear in the Journal of Automated Reasoning.



and for implementing a refutation complete version another 15 lines are re-
quired. Unfortunately, Satchmo works only for range-restricted formulae in clau-
sal form (CNF). Range-restrictedness can be avoided with some extra effort, but
the restriction to clausal form is crucial to Satchmo’s underlying calculus. Many
problems become much harder when translating them to clausal form, so it seems
better to avoid CNF and to preserve position and scope of quantifiers.?2 One way
to achieve this is to use a calculus based on free-variable tableaux. Tt is a com-
mon, but mistaken belief that tableau calculi are inefficient; we will demonstrate
the contrary.

Paper Outline

The paper is organized as follows: Section 2 discusses our implementation and ex-
plains the underlying idea. In Section 3 we present a simple but efficient method
for computing an optimized negation normal form (NNF). After giving some
performance data in Section 4, we describe in Sections 5 and 6 how the program
can be improved by using the “universal formula” mechanism; in Section 7 we
sketch the proof for leanT'P’s soundness and completeness.

We draw conclusions from our research and give an outlook to future appli-
cations of lean theorem proving in Section 8. Finally, in an appendix, we briefly
survey the history of tableau-based theorem provers.

Thorough the paper we assume familiarity with free-variable tableaux for
classical first-order logic (see e.g. (Fitting, 1990)) and the basics of programming
in Prolog (O’Keefe, 1990). All source code given in this paper is available upon
request, from the authors.

2 The Program

The idea behind leanT'P is to exploit the power of Prolog’s inference engine as
much as possible; whilst Satchmo is based upon assert and retract, we do not
use these at all but rely on Prolog’s clause indexing scheme and backtracking
mechanism. We modify Prolog’s depth-first search to bounded depth-first search
for gaining a complete prover.

For the sake of simplicity, we restrict our considerations to closed first-order
formulae in Skolemized negation normal form. This is not a serious restriction;
the prover can easily be extended to full first-order logic by adding the standard
tableau rules (cf. Section 3). We will use Prolog syntax for first-order formulae:

w_»

atoms are Prolog terms, is negation, “;” disjunction, and “,” conjunction.
Universal quantification is expressed as all(X,F), where X is a Prolog variable
and F is the scope. Thus, a first-order formula is represented by a Prolog term

(e.g., (p(0),al1 (W, (-p(W); p(s(N))))) stands for p(0)A(Vn(—p(n)Vp(s(n))))).

We use a single Prolog predicate to implement our prover:

? Using a definitional CNTF (Eder, 1992) helps at most partially: it avoids exponential
growth of formulae for the price of introducing some redundancy into the proof
search. Fxtending the scope of quantifiers to clause level, however, cannot be avoided.



prove(Fml,UnExp,Lits,FreeV,VarLim)

succeeds if there 18 a closed tableau for the first-order formula bound to Fml.
This is the case if the formula is inconsistent. The proof proceeds by considering
individual branches (from left to right) of a tableau; the parameters Fml, UnExp,
and Lits represent the current branch: Fml is the formula being expanded, UnExp
holds a list of formulae not yet expanded, and Lits is a list of the literals present
on the current branch. FreeV is a list of the free variables on the hranch (these
are Prolog variables, which might be bound to a term). A positive integer VarLim
is used to initiate backtracking; it is an upper bound for the length of FreeV.

We will briefly go through the program listed in the abstract again (using a
more readable form now) and explain its behavior. The prover is started with
the goal prove(Fml, [1,[1, [1,VarLim), which succeeds if Fm1? can be proven
inconsistent without using more than VarLim free variables on each branch.

If a conjunction (a-formula®) “A and B” is to be expanded, then “A” is
considered first and “B” is put in the list of not yet expanded formulae:

prove((A,B),UnExp,Lits,FreeV,VarLim) :— !,
prove(A, [B|UnExp]l ,Lits,FreeV,VarLim).

For disjunctions (8-formulae) we split the current branch and prove two new
goals:

prove((A;B),UnExp,Lits,FreeV,VarLim) :— !,
prove(A,UnExp,Lits,FreeV,VarLim),
prove(B,UnExp,Lits,FreeV,VarLim).

Handling universally quantified formulae (y-formulae) requires a little more ef-
fort. We first check the number of free variables on the branch. Backtracking is
initiated if the depth-bound VarLim is reached. Otherwise, we generate a “fresh”
instance of the current y-formula al1(X,Fml) with copy_term. FreeV is used
to avoid renaming the free variables in Fml. The original y-formula i1s put at
the end of UnExp®, and the proof search is continued with the renamed instance
Fml1 as the formula to be expanded next. The copy of the quantified variable,
which is now free, is added to the list FreeV:

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :— !,
\+ length(FreeV,VarLim),
copy_term((X,Fml,FreeV), (X1,Fml1,FreeV)),
append (UnExp, [a11(X,Fml)],UnExpl),
prove(Fmll,UnExpl,Lits, [X1|FreeV],VarLim).

* Formally, we should say “the formula that is represented by the Prolog term bound
to Fm1”. However, we will simply write “the formula Fm1” in the sequel.

* Due to R. Smullyan, conjunctive type formulae are called a-formulae in the semantic
tableaux framework.

® Putting it at the top of the list destroys completeness: the same y-formnla would be
nsed over and over again until the depth bound is reached.



Recall that “\+” denotes Prolog’s negation as failure. copy_<term(+Term,-Copy)
makes a copy of Term by replacing each distinct variable in Term by a new va-
riable that occurs nowhere else in the system, and unifies Copy with the result.

The next clause of prove closes branches; it is the only one which is not
determinate. Note, that it will only be entered with a literal as its first argument.
Neg is bound to the negated literal and sound unification® is tried against the
literals on the current branch. The clause calls itself recursively and traverses
the list in 1ts second argument; no other clause will match since UnExp is set to
the empty list.

prove(Lit, _,[LILits],_, ) :-
(Lit = -Neg; -Lit = Neg) ->
(unify(Neg,L); prove(Lit,[],Lits,_,_)).

Note, that the implication “~>” after binding Neg introduces an implicit cut: this
prevents generating double negation when backtracking (which would happen,
if “,” were used instead).

The last clause is reached if the preceding clause cannot close the current
branch. We add the current formula (always a literal) to the list of literals on
the branch and pick a formula waiting for expansion:

prove(Lit, [Next|UnExp]l,Lits,FreeV,VarLim) :-—
prove(Next,UnExp, [Lit|Lits] ,FreeV,VarLim).

lean7'P has two choice points: one 18 selecting between the last two clauses,
which means closing a branch or extending it. The second choice point within
the fourth clause enumerates closing substitutions during backtracking.

The enumeration of closing substitutions is controlled with the limit VarLim:
if the limit is reached before a closed tableau has been found, the clause for
universally quantified formulae fails and leanT'P searches for alternate substitu-
tions for closing branches. However, leanT'P will never change a given value for
VarLim, thus the program is only complete in the sense that it will find a proof
if one with less than VarLim 4-rule applications on each branch exists.

Tt is important in practise that the limit is not chosen to high, as the search
space grows exponentially with VarLim. A good solution for this problem is to
simply wrap the call to the predicate prove in Prolog code that implements
iterative deepening. The standard solution in Prolog for this is:

inc_prove(Fml,VarLim) :- prove(Fml,[]1,[],[],VarLim).

inc_prove(Fml,VarLim) :- NewVarLim is VarLim + 1,
inc_prove(Fml,NewVarLim).

The prover is then started with inc_prove(Fml,N) and searches with the
values N, N+1, ... for VarLim.

% Tn contrary to Prolog’s built-in unification “=", the predicate unify implements
sonnd unification, i.e., unification with occur check. Most Prolog systems provide

unify as a library predicate.



3 Computing a Negation Normal Form

The prover above works only for formulae in negation normal form (NNF), since
we did not implement all tableau rules for general formulae. If we want to use
leanT'P for formulae that are not in NNF, we can either add clauses for prove
that implement the corresponding rules, or apply the conversion into NNF as a
preprocessing step. The first alternative means merging the derivation of NNF
into the proof search, the latter separating it from the proof search. ITn both
cases, the same operations are carried out and we do not gain anything from
carrying them out simultaneously. On the other hand, it is reasonable to keep
the proof search as simple as possible; we will therefore separate both issues and
derive an NNF in advance.

Most operations for deriving NNF are straightforward. What is not straight-
forward 18 coming up with a good Skolemization; this is one reason we give a
complete Prolog implementation of the conversion. The second 1s that we show
how to optimize the NNF without extra cost by changing the sequence of dis-
Jjunctively connected formulae.

Recall that the conversion into NNF 1s linear w.r.t. the length of a formula not
containing equivalences. With equivalences, it can be implemented with quadra-
tic effort (Eder, 1992), but, for the sake of simplicity, we will use a naive version
which is in the worst case exponential for equivalences.

The predicate used for computing a negation normal form 1s

nnf (+Fml,+FreeV,-NNF,-Paths)

Fml is the formula to be transformed, FreeV is the list of free variables occurring
in Fml, NNF is bound to the Prolog term representing the computed NNF of Fml,
and Paths is bound to the number of disjunctive paths in NNF (resp. Fml). We
will see soon what this latter information is good for.

The goal for computing the NNF of Fml is nnf (Fml, [1,NNF,_). We imple-
ment a more convenient syntax for first-order formulae, using as logical connec-
tives “v” (disjunction), “€” (conjunction), “=>" (implication), and “<=>" (equi-
valence).

The first clause of the predicate nnf corresponds to the standard rules in
semantic tableaux; nothing exciting is done  we just use tautologies for rewriting
formulae:

nnf (Fml ,FreeV,NNF,Paths) :-
(Fml = -(-4) -> Fmll = 4;
Fml = -all(X,F) -> Fmll = ex(X,-F);
Fml = -ex(X,F) -> Fmll = all(X,-F);
Fml = -(A v B) -> Fmll = -A & -B;
Fml = -(A & B) -> Fmll = -A v -B;
Fml = (A => B) -> Fmll = -A v B;
Fml = -(4 => B) -> Fmll = A & -B;
Fml = (A <=>B) -> Fmll1 = (A & B) v (-A & -B);
Fml = —(A <=> B) -> Fm11 = (A & -B) v (-A & B)),!,



nnf(Fml1,FreeV,NNF,Paths).

For universally quantified formulae, we add the quantified variable to FreeV
and compute the NNF of the scope:

nnf(all(X,F),FreeV,all(X,NNF),Paths) :— !,
nnf (F, [X|FreeV],NNF,Paths).

Skolemization has to be carried out very carefully, since straightforwardly
Skolemizing can easily hinder finding a proof: Fitting (1990) proposes to insert a
Skolem-term containing all variables that appear free on a branch; this is correct,
but too restrictive: it often delays closing of inconsistent branches. The current
state of the art (Beckert ef al., 1993) is less restrictive: Tt suffices to use a Skolem-
term that is unique (up to variable renaming) to the existentially quantified
formula; this term only holds the free variables occurring in the formula (and not
all free variables on the current branch as Fitting proposes).” An ideal candidate
for such a term is the formula itself.® This can be implemented in Prolog in the
following way:

nnf (ex(X,Fml),FreeV,NNF,Paths) :— !,
copy_term((X,Fml,FreeV),(Fml,Fml1l,FreeV)),
copy_term((X,Fmll,FreeV), (ex,Fml2,FreeV)),
nnf (Fml2,FreeV,NNF,Paths).

We generate a copy Fml1 of the scope Fml; none of the free variables in Fm11 are
renamed (they occur in FreeV), except the existentially guantified variable X;
Fml is inserted for it. Fml contains all the free variables that have to occur
in a Skolem-term and we use it for this purpose. We do not need to create
a new function symbol for Skolemization, as we will assume that disjoint sets
of predicate and function symbols are used. The second copy_term goal just
instantiates the existentially quantified variable to the constant ex, since we do
not want to introduce free variables when Skolemizing.”
The next clause is routine, besides counting disjunctive paths:

nnf(A & B,FreeV, (NNF1,NNF2),Paths) :— !,
nnf (A,FreeV,NNF1,Paths1),
nnf (B,FreeV,NNF2,Paths2),
Paths is Paths1l * Paths2.

The number of disjunctive paths in a formula (i.e. the number of branches a
fully expanded tableau for it will have) is used when handling disjunctions: we

" From a logical perspective, our version of Skolemization results in a stronger calculus
than the one proposed by Fitting (1990); both calculi are complete, but the shortest
proofs in Fitting’s calculus are sometimes longer.

8 This is actnally known since more than fifty years: it resembles the e-formulae de-
scribed in (Hilbert & Bernays, 1939, §1).

? As this might be a bit hard to understand for people not used to programming in
Prolog, we give an example: the Prolog query nnf (ex(X,p(X,Y)), [Y],UNF, ) will
succeed and bind NNF to p(p(ex,Y),Y).



put the less branching formula to the left. That way the number of choice points
during the proof search 1s reduced, since lean TP will expand the left part of a
disjunction first.

nnf(A v B,FreeV,NNF,Paths) :— !,
nnf (A,FreeV,NNF1,Paths1),
nnf (B,FreeV,NNF2,Paths2),
Paths is Pathsi1 + Paths2,

(Paths1l > Paths2 -> NNF

NNF

(NNF2;NNF1);
(NNF1;NNF2)).

The last clause will match hterals:

nnf(Lit,_,Lit,1).

4 Performance

Although (or better: because) the prover is so small, it shows striking perfor-
mance. Table 1 shows experimental results for a subset of Pelletier’s problems
(Pelletier, 1986). We placed the negated theorem in front of the axioms and used
the above program for computing negation normal form.

No.| Tamit Branches Time No.| Tamit Branches Time

VarLim Closed| tried| msec VarLim Closed| tried| msec
17 1 14 14 0 32 3 10 10 10
18 2 1 1 9 33 1 11 11 0
19 2 4 6 0 34 5 267 792 700
20 6 3 3 9 35 4 1 1 0
21 2 8 8 0 36 6 3 3 0
22 2 7 14 9 37 7 8 8 9
23 1 4 4 0 38 4 901 101 210
24 6 33 33 9 39 1 2 2 0
25 3 5 5 0 40 3 4 5 0
26 3 16 17 0 41 3 4 5 0
27 4 8 0 42 3 5 5 9
28 3 5 0 43 5 18 18 109
29 2 11 11 9 44 3 5 5 10
30 2 9 45 5 17 17 39
31 3 5 5 0 46 5 53 63 59

The runtime has been measured on a SUN SPARC 10 workstation with STCStus Pro-
log 2.1; “0 msec” means “not measurable”. The times reflect the search for a proof
with iterative deepening on VarLim and include NNF derivation.

Table 1. |ean774P7s performance for Pelletier’s problems.



Some of the theorems, like Problem 38, are quite hard: the 37’4P prover (Bec-

kert et al., 1992), for instance, needs more than ten times as long. Tf lean7'P
can solve a problem, its performance is in fact comparable to compilation-based
systems that search for proofs by generating Prolog programs and running them
(Stickel, 1988; Posegga, 1993a; Posegga, 1993b).

Schubert’s Steamroller (Pelletier No. 47) cannot be solved; this is no surprise,
since the problem is designed for forward chaining based on clauses. Tt can only
be proven in tableau-based systems if good heuristics for selecting v-formulae are
used. Using a queue, as in our case, is not sufficient. We console ourselves with
Problem No. 38, which is barely solvable in a comparable time by CNF-based
provers.

Pelletier No. 34 Pelletier No. 34 (also called “Andrews Challenge”) is the
hardest problem; it can only be solved if exactly the required value of 5 for
VarLim is choosen. An iterative deepening approach (as applicable to all other
problems) does not work: if VarLim is set to 4, the prover does not return after
30 minutes.

5 Universal Variables in Formulae

One of the major problems with implementing a first-order tableau calculus 1s
to control the application of universal quantifiers or y-formulae; these generate
the free variables in a tableau, which may be instantiated for closing branches.
In tableaux, these free variables are not implicitly universally quantified as it is
for instance the case with variables in clauses when using a resolution calculus.
Free variables in tableaux are rigid, this means the same substitution must be
applied to all occurrences of the variable in the whole tableau.

From a more formal point of view, this situation is closely related to what is
usually called the strong consequence relation:

Definition1 Strong consequence relation.
Let ¢, v be first-order formulae;
oE Y
if for all interpretations T and for all variable assignments 3:

if valr g(¢) = true then waly g(¢0) = true

(Note, that for example p(2) B (Yap(x)), but p(x) E (Yep(x)), where “E7

denotes the weak consequence relation.)

Suppose we have a branch B with a formula ¢(2) on it in a tableau; assume
further that the expansion of the tableau then proceeds with creating new bran-
ches; some of these branches contain occurrences of z. For closing the generated
branches, we must use the same substitution for 2 on all of them. Figure 1 gives
an example for the situation: the tableau cannot be closed immediately as no
single substitution closes both branches simultaneously. To find a proof, we have
to apply the y-rule again and create another instance of p(x).
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Fig.1. An example for universal formulae.

For particular branches it could be the case that B 2 (Va ¢(x)). This is
for instance the case in Figure 1. On these branches, we can use different sub-
stitutions for z. The tableau in Figure 1 closes then immediately. Recognizing
such situations and exploiting them yields shorter tableau proofs, as less rule
applications for closing a tableau are needed.

This is the idea behind the heuristic discussed in this section. We present a

method that detects universal variables in formulae in some cases.'®

Definition 2 Universal formula.
Suppose ¢ is a formula on some tableau branch B. ¢ is universal on B with
respect to the variable x if

BE (Yrg)

Now, we can use a new rule for closing branches that takes this definition
into account:

Definition 3 Closed tableau.
A tableau consisting of k branches B;(1 < i < k) is closed if there are

1. a substitution o,
2. hterals I;, I; € B;, and
3. substitutions o;, such that
(a) lio; and l;o; are complementary, and
(b) if o;(2) # o(x) then both I; and [; are universal on B; w.r.t. z.

With this definition of closed tableaux it is possible that a tableau is closed after
less applications of expansion rules than in the standard free-variable tableau
calculus. Thus, the calculus us strengthened.

10 See (Beckert & Hahnle, 1992) for details; we only give a slightly simplified account
here

" Tn the sequel, we will often refer to a formula ¢ which is nniversal on a branch B
w.r.t. a variable z just by “the universal formula ¢”, and to the variable = by “the
universal variable z” (if the context is clear).



The problem of recognizing universal formulae is of course undecidable in
general. However, a wide and important class can be recognized quite easily:
assume there is a sequence of tableau rule applications that does not contain a
disjunctive rule (i.e., the tablean does not branch). All formulae that are gene-
rated by this sequence are universal w.r.t. the free variables introduced by the
sequence. Substitutions for these variables can be ignored, since the correspon-
ding inference steps could be repeated arbitrarily often to generate new instances
of the universal variables (without generating new branches).

More formally, we use the following lemma:

Lemmad4. A formula ¢ on a branch B is uniwversal w.r.t. x if ¢ was put on B
by either

1. applying a v-rule and x is the free variable introduced by the application of
this rule, or

2. applications of non-branching rules to a formula 1 € B, where 1) 1s universal
on B w.ri x.

A proof is immediate, as the criteria of Definition 2 are implied.

Recognizing the above subset of universal formulae in the lean7'P program
can be implemented by keeping a list of in this sense universal variables for each
formula. This information 1s used to rename the universal variables occurring in
literals, such that their instantiation does not effect the rest of the tableau. This
renaming “simulates” universal quantification of the variable that is renamed; it
is carried out when expanding a disjunction.

For this, the arity of prove is extended from 5 to 7:

prove(Fml,UnExp,Lits,DisV,FreeV,UnivV,VarLim)

The use of all parameters but UnivV and DisV remains unchanged. UnivVis a list
of the universal variables in Fml. DisV is a Prolog term containing all variables
on the current branch which are not universal in one of the formulae (we will
call these “disjunctive variables”). Each unexpanded formula in UnExp will have

the list of its universal variables attached. The Prolog functor “:” is used for
this.

The prover is now started with the goal
prove(Fml,[]1,[1,[1,01,[1,Varlim)

to prove the inconsistency of Fml. We will discuss the extended program by
explaining the differences to our previous version.

A1l universal variables of a conjunction are universal for each of its compo-
nents:

prove((A,B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,
prove(A, [(UnivV:B) |UnExp],Lits,DisV,FreeV,UnivV,VarLim).

Disjunction destroys universality: the universal variables of a disjunction are
not universal to its components. The tableau is split and the universal variables

10



become non-universal on both resulting branches. We therefore add them to DisV
by creating a new Prolog term'?. Universal variables occurring in the literals on
the branch are renamed by copy_term. This allows to instantiate the universal
variables differently on the two resulting branches.

prove((A;B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,
copy_term((Lits,DisV),(Lits1,DisV)),
prove(A,UnExp,Lits, (DisV+UnivV) ,FreeV, [1,VarLim),
prove(B,UnExp,Lits1, (DisV+UnivV),FreeV, [],VarLim).

When introducing a new variable by the quantifier rule, this variable becomes
universal for the scope (it may lose that status if a disjunction in the scope is
expanded, see above).

prove(all(X,Fml),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,
\+ length(FreeV,VarLim),
copy_term((X,Fml,FreeV), (X1,Fml1,FreeV)),
append (UnExp, [(UnivV:all(X,Fml))],UnExpl),
prove(Fmll,UnExpl,Lits,DisV, [X1|FreeV], [X1|UnivV],VarLim).

The next clause remains unchanged, besides having two more parameters.

prove(Lit, _,[LILits]l,_,_,_,) :-
(Lit = -Neg; -Lit = Neg ) —>
(unify(Neg,L); prove(Lit,[],Lits,_,_,_,_)).

Recall that the sixth parameter of prove holds the universal variables of the
current. formula (not of the whole branch). Thus, when extending branches we
must change this argument:

prove(Lit, [(UnivV:Next)|UnExp],Lits,DisV,FreeV,_,VarLim) :-
prove(Next,UnExp, [Lit|Lits],DisV,FreeV,UnivV,VarLim).

6 Performance with the Universal Formula Mechanism

Problem No. 34 can now be solved faster, as Table 2 shows. The runtime for other
problems (like 38) increased, as there is some overhead involved with maintaining
universal variables. Note, that Problem No. 22 works better now: we need only 4
instead of 7 branches.

7 Proving leanT4P’s Soundness and Completeness

7.1 Preliminaries

One of the advantages of leanT'P’s compactness is that it is possible to formally
prove 1ts correctness, i.e., its soundness and completeness. Nevertheless, due to

2 We conld nuse a list, but creating a new term by “+” (an arbitrary functor) is faster.

11



No.| Limit | Branches Time No.| Limit | Branches Time
VarLim|closed |tried| msec VarLim|closed |tried | msec

17 1 14 14 10 32 3 10 10 10
18 2 1 1 0 33 1 11 11 10
19 2 3 3 10 34 5 79 791 109
20 6 3 3 9 35 2 1 1 0
21 2 8 8 0 36 6 3 3 0
22 2 4 4 0 37 7 8 8 30
23 1 4 4 0 38 4 90| 101| 489
24 6 33 33 39 39 1 2 2 0
25 3 5 5 0 40 3 4 5 0
26 3 16 17 19 41 3 4 5 9
27 4 8 8 10 42 3 5 5 9
28 3 5 5 10 43 5 18 18] 179
29 2 11 11 19 44 3 5 5 19
30 2 4 4 0 45 5 17 17 79
31 3 5 5 10 46 5 53 63| 189

The runtime has been measured on a SUN SPARC 10 workstation with SICStus Pro-
log 2.1; “0 msec” means “not measurable”.

Table 2. leanTP’s performance with the universal formula mechanism.

space restrictions, we will not give a detailed proof here, but only a proof sketch.
We present the theorems that have to be proven, and the main arguments that
may be used.

The proof makes use of the well-known fact, that free variable semantic ta-
bleaux are a sound and complete calculus. Tn addition, we assume (and do not
prove) the Prolog compiler (resp. interpreter) to be correct, as well as the im-
plementation of library predicates.

First, we formally define the free variable tableau calculus, using a slightly
non-standard representation:'? Tableaux are multi-sets of multi-sets of first-order
formulae; as usual, the branches of a tableau are implicitly disjunctively connec-
ted, and the formulae on a branch are implicitly conjunctively connected.

Definition5. A tableau is a (finite) multi-set of tableau hranches, where a ta-
bleaun branch is a (finite) multi-set of first order formulae.

There are three types of rules that can be applied to a tableau to derive a new
one: expansion rules, the closure rule, and the substitution rule. The expansion
rules are the classical a-, 5- und y-rules for formulae in NNF (only using our
set notation). The closure rule removes closed hranches instead of just marking
them as being closed.

'? We stress that this calculus differs from classical free variable tableanx (e.g. (Fitting,
1990)) only in notation and the way tableaux are represented.
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Definition 6. T.et T be a tableau, B € T a branch of 7', and ¢ € B a formula
on B.

Expansion rules: The tableau may be derived from T that is constructed by re-
moving the branch B from T and replacing it by one, resp. two new branches:

(B\A{e}) U {tn, v} ifo=1h1 Avs  (a)
(B\{oh)U{vr} and (B\{o}) U {¢a} ifo=1v1 Vs  (B)
BU{4(y)} (where y is a new variable) if ¢ = (Vo)u(z) (v)

Closure rule: Tf Bis closed, i.e., if there are complementary literals [, € B, then
T'\ {B} may be derived from T.

Substitution rule: The tableau T'o may be derived from T, where o is any sub-
stitution that does not instantiate bound variablesin T (including the empty
substitution).

During leanT'P’s proof search, the current prove goal together with the
prove goals on the Prolog goal stack'® represent the tableau that has been
computed so far. A goal prove(Fml,UnExp,Lits,FreeV,VarLim) represents the
tableau branch consisting of the formulae in Fml, UnExp and Lits, that still has
to be closed.

7.2 Soundness
The soundness theorem to be proven is:

Theorem 7. If Fml is bound to a closed first-order formula ¢ in NNF, and the
goal prove(Fml, [1,[],[1,VarLim) succeeds, then ¢ is inconsistent.

The proof is based on the soundness of free variable tableaux:

Fact 8 If ¢ is a closed first-order formula ¢ in NNF, and the empty tableaun
(the empty sel) can be derived from the initial tableau {{¢}} by applying a finite
sequence of the rules from Definition 6, then ¢ is inconsistent.

Using Fact 8, 1t suffices to validate the following statements to prove Theorem 7:

If Fml is bound to ¢, the initial goal prove(Fml, [1, [1,[1,VarLim) repre-
sents the initial tableau {{¢}}.

Whenever lean7P changes the set of prove goals on the Prolog goal stack,
i.e., derives a new tableau, this corresponds to an application of one of the
tableau rules from Definition 6.1°

lean7'P only terminates successfully, when the goal stack is empty, i.e., when
the empty tableau has been derived.

' The state a Prolog computation has reached is nsually represented as a list (stack)
[Gh,...,Gg] of atomic formulae (called goals), and a substitution o of the Prolog
variables occurring in this list. o is the answer substitution compnted np to that
point. For onr purposes, however, it is not necessary to separate the substitution
from the goals; we therefore consider [G1a, ..., Gia] to be the current goal stack.

1o |ean774P7s last clanse does not change the tableau, but only its internal representation.
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7.3 Completeness
The completeness theorem to be proven is:

Theorem 9. If ¢ s an inconsistent first-order formula in NNF, then there is
an n > 0 such that, if Fml s bound to ¢ and VarLim s bound ton, then the
goal prove(Fml, [1,[1, [1,VarLim) succeeds.

Central to the prove of Theorem 9 1s the notion of fully expanded tableaur,
and that of a sequence of tableau derivations that ends with a fully expanded
tableau:

Definition10. A sequence Ty, ..., T, of tableaux is a fully expanding tableau
sequence w.r.t. the limits p and ¢ (p,q > 0), if T;;1 has been derived from T;
using one of the rules from Definition 6 (1 < i < n), and:

1. Only expansion rules have been applied in the sequence.

2. There are only literals and y-formulae in T, .

3. Tf there is a y-formula ¢ on a branch B € T; (0 < i < n) that is one of the
first g formulae that have heen added to B (or were initially present on B),
then the y-rule has been applied at least p times to this occurrence of ¢.

a- and B-formulae are removed from a tableau once their according rule has
been applied to them. Therefore, Condition 2 in Definition 10 is equivalent to:
There 18 no a- or f-formula in the tableau, that the according rule has not been
applied to.

Using the notion of fully expanding sequence, the well-known completeness
theorem for free variable semantic tableaux can be formulated in the following
way:

Fact 11 If the first-order formula ¢ that is in NNF is inconsistent, then there
are limits p and q (p,q > 0) such that for any sequence Ty, ..., T, of tableauz
that begins with the initial tableaw To = {{¢}} and that is a fully erpanding
sequence w.r.t. p and q, there is a substitution o such that each branch of the
Tableaw T, 0 15 closed.

That is, there are (i) literals I; and I; on each branch B (1 <i < m) of Ty,
and (i) substituiions p; thal are more general than o, such that l;pu; and lp; are
complementary.

The tableau sequences computed by lean7'P are not fully expanding, be-
canse leanT'P closes branches immediately that contain complementary literals.
However, we can achieve this with a variant leanT'P’ of the program that 1s

identical to the leanT'P except that: (i) the fourth clause, that closes branches,
is omitted; and (ii) there is an additional clause

prove(Fml,UnExp,Lits,_,_) :-—
write([’The branch consisting of ’, Fml, UnExp, Lits,
> ig part of the fully expanded tableau’]).
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at the end of leanT'P’. This last clause is needed, because we do not want the
construction of the expansion sequence to fail when a branch 1s fully expanded.

Now, if Fml is bound to the inconsistent formula ¢ in NNF, VarLim is chosen
high enough, and leanT'P’ is started by the goal prove(Fml1,[1,[1,[]1,VarLim),
then it constructs a fully expanding sequence T, ..., T}, w.r.t. arbitrary limits
p,q > 0,1n particular w.r.t. the limits that exist according to Fact 11. Therefore,
the tableau T, is closed (as described in Fact 11), if only VarLim is high enough.
The proof of this can be based on the following arguments (that have to he
validated):

leanT'P’ does neither apply substitutions nor close and remove branches
(Definition 10, Cond. 1).

The a- and the S-rule are applied as often as possible (Def. 10, Cond. 2).
The list UnExp implements a priority queue. Therefore, the y-rule is applied
arbitrarily often to each y-formula, if only VarLim is high enough (Def. 10,
Cond. 3).

The computation of tableau branches and tableaux terminates, since with
each step either the formulae on the branch become less complex, the length
of FreeV increases, or the number of formulae in UnExp decreases.

Tt remains to be proven, that the original leanT'P constructs a closed tablean
as well, and, in addition, actually closes the branches. To do this, we change
in two steps  the fully expanding sequence 7§, ..., T", constructed by |ean7’4P’7

such that the resulting sequence is constructed by the original leanT'P and ends
with the empty tableau:

First, all expansions of branches are removed from the sequence that already
contain the pair I; I; of closing literals (since leanT'P does not expand such
branches). Tt is easy to check, that the last tableau in the resulting sequence is
closed in the same way as 7)., using the same literals and substitutions.

In a second step, substitution and closure rule applications are inserted into
the sequence. As soon as closing literals [;,l; occur on a branch B € T/, the
substitution p; is applied to 7}, and the closed branch By, is removed using the
closure rule.

Obviously, the resulting tableau sequence Ty, ..., T, (n < n') ends with the
empty tableau 7;,, = 0. By induction on 7 one proves that after a finite number
of the original leanT'P’s computation steps (and possibly after backtracking, if
there are choice points), the prove goals exactly represent the tablean T;. For

1 = n this immediately implies that leanT'P derives the empty tableau, i.e.,
terminates with success.'®

For the induction proof, one has to validate that applying closing substituti-
ons and deleting closed branches does not effect the expansion of the rest of the
tableau, i.e. of those branches that have not been closed yet. The order in which

formulae are chosen for expansion remains the same.

'® There may be other possibilities to construct an empty (closed) tablean; in that case

it is not obvious, which one |ean774P will find first.
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8 Conclusion & Outlook

We showed how a first-order calculus based on free-variable semantic tableaux
can be efficiently implemented in Prolog with minimal means. The proposed
implementation is surprisingly efficient, especially if universal formulae are taken
into account.

One could regard leanTP as a Prolog hack. However, we think it demon-
strates more than tricky use of Prolog: it shows that semantic tableaux can be
efficiently implemented with little effort. Among other things, this makes lean7'P
ideal for clagssroom use.

Furthermore, the philosophy of “lean theorem proving” is interesting: We
showed that it is possible to reach considerable performance by using extremely
compact (and efficient) code instead of elaborate heuristics. One should not
confuse “lean” with “simple”: each line of a “lean” prover has to be coded with
a lot of careful consideration.

“lean” provers

large provers

tractability for applications

Runtime

SUI9)SAs 95ae] asn

Jesroun

use lean systems

Problem Complexity

Fig. 2. Lean vs. Large Deduction Systems.

Tt is interesting to consider the principle of lean deduction w.r.t. applications.
Deduction systems like ours have their limits, in that many problems are sol-
vable with complex and sophisticated theorem provers but not with an approach

like leanTP. However, when applying deduction in practice, this might not be
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relevant at all: Figure 2 oversimplifies but shows the point; the x-axis gives a
virtual value of the complexity of a problem, and the y-axis shows the runtime
required for finding a solution. The two graphs give the performance of lean and
of large deduction systems.

We are better off with a system like leanT'P below a certain degree of pro-
blem complexity: lean7'P is compact, easier adaptable to an application, and
also faster because it has less overhead than a huge system. Between a break-
even point, where sophisticated systems become faster, and the point where
small systems fail, it is at least not immediately clear which approach to fa-
vor: adaptability can still be a good argument for lean deduction. For really
hard problems, a sophisticated deduction system is the only choice. This last
area, however, could indeed be neglectable, depending on the requirements of
an application: if little time can be allowed, we cannot treat hard problems by
deduction at all. Thus, lean deduction can be superior in all cases depending
on the concrete application'”.

There is still room for improvement without sacrificing simplicity and /or ele-
gance of our approach: we can, for instance, use an additional preprocessing step
that translates a negation normal form into a graphical representation of a fully
expanded tableau (see (Posegga, 1993a) for details). This can be implemented
equivalently simply and requires only linear effort at runtime. The prover itself
then becomes smaller, since no compound formulae are present any more and all
branches are already fully developed. The speedup will not be dramatic, but con-
siderable. Furthermore, we can implement the compilation principle described
by Posegga (1993a): the idea is to translate tableau graphs into Prolog clauses
that carry out the proof search at runtime. Compared with “conventional” im-
plementations of tableau-based systems, this gains about one order of magnitude
of speed. Tt will be subject to future research to apply this principle in the spirit
of lean deduction.

A Brief Historical Survey on Tableau-based Provers

Compared to resolution, few attempts have been made in the past to implement
tableau-based calculi; thus we can take the risk of presenting a brief survey (that,
nevertheless, is likely to be incomplete).'®

The first tableau-based theorem prover was developed in the late fifties by
Dag Prawitz, Hakan Prawitz, and Neri Voghera (Prawitz et al., 1960). Tt ran on
a computer named Facit EDB (manufactured by AB Advidabergs Tndustrier).
The tableau calculus implemented was already quite similar to todays versions;

'7 Researchers in Antomated Reasoning often regret /complain that there are sparse ap-
plications of the techniques they develop. One reason might be that implementation-
oriented research favors huge and highly complex systems. Tt is hard to see how to
apply these besides nusing them as a black box. Adaptability, however, is an impor-
tant criterion for applying techniques; systems like leanTP do give a good starting
point here.

'8 Tt is restricted to approaches for formulae of first-order logic in non-clansal form.
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it did, however, not use free variables. This prover was perhaps the earliest for
first-order logic at all.!?

At about the same time, Hao Wang implemented a prover for first-order
logic, that was based on a sequent calculus similar to semantic tableaux (Wang,
1960). The program ran on TBM 704-computers.

FEwa Ortowska implemented a calculus that can be seen as tableau-based in
1967 on a GTER digital computer??. The calculus was based on deriving if-then-
else normal forms rather than disjunctive normal forms. Only the propositional
part of the calculus was implemented.

We are not aware of any implementation-oriented research around tableaux
in the seventies; there have been a number of theoretic contributions to tableau
calculi but nothing seems to have been implemented.

In the eighties, the research lab of IBM in Heidelberg, Germany was a ma-
jor driving force of tableau-based deduction: Wolfgang Schonfeld developed a
prover within a project on legal reasoning (Schonfeld, 1985). Tt was based on
free-variable semantic tableaux and used unification for closing branches. A few
years later Peter Schmitt developed the THOT theorem prover at TBM (Schmitt,
1987); this was also an implementation of free-variable tableaux and part of a
project aiming at natural language understanding. Both implementations have
been carried out in Prolog. Based on experiences with the THOT theorem prover,
the development of the 37’4P system started around 1990 at Karlsruhe Univer-
sity (Beckert et al., 1992); the project was funded by TBM Germany and carried

out by Peter Schmitt and Reiner Hahnle. The 37’4P prover was again written in
Prolog and implemented a calculus for free-variable tableaux, both for classical
first-order logic with equality as well as for multi-valued logics. This program
can bee seen as the direct ancestor of leanTP.

Besides the line of research outlined above there was also other work on
tableau-based deduction in the eighties: Oppacher and Suen published their well-
known paper on the HARP theorem prover in 1988 (Oppacher & Suen, 1988).
This prover was implemented in I.ISP and is probably the best-known instance
of a tableau-based deduction system. Another implementation, the Helsinki Lo-
gic Machine (HLM), is a Prolog program that actually implements about 60
different calculi, among them semantic tableaux for classical first-order logic,
non-monotonic logic, dynamic logic, and autoepistemic logic. Approximately at
the same time a tableau-based prover was implemented at Karlsruhe Univer-
sity by Thomas Kaufl (Kaufl & Zabel, 1990); the system, called “Tatzelwurm?”,
implemented classical first-order logic with equality, but did not use a calculus
based on free variables. Tts main purpose was to be used as an inference engine
in a program verification system.

Since 1990, the interest in tableau-based deduction continuously increased,
and we will not try continue our survey beyond this date. From 1992 onwards,

1% Actnally, Prawitz et al. implemented a calculus for first-order logic without function
symbols; that, however, has the same expressiveness as full first-order logic.

2% The GTER (Geodaetisk Tnstituts Flektroniske Regnemaskine) was produced by
Regnecentralen in Copenhagen (Denmark) in the early sixties.
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the activities of the international tableau community are quite well documented,
as annual workshops were started; we refer the interested reader to the workshop
proceedings (Fronhofer et al., 1992; Basin et al., 1993; Broda et al., 1994).%1
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