
The KeY System 1.0

(Deduction Component)

Bernhard Beckert, Martin Giese, Reiner Hähnle, Vladimir Klebanov,
Philipp Rümmer, Steffen Schlager, and Peter H. Schmitt

www.key-project.org

Abstract. The KeY system is a development of the ongoing KeY proj-
ect, whose aim is to integrate formal specification and deductive veri-
fication into the industrial software engineering processes. The deduc-
tive component of the KeY system is a novel interactive/automated
prover for first-order Dynamic Logic for Java. The KeY prover features
a user-friendly graphical interface, a backtracking-free free-variable se-
quent calculus, a simple and powerful theory formalization language
called “taclets,” solution procedures for linear and non-linear integer
arithmetic, external theorem prover integration, and facilities for proof
reuse, among other aspects. The system is publicly available.

Introduction. The KeY system is the main software product of the KeY
project, a joint effort between the University of Karlsruhe, Chalmers Univer-
sity of Technology in Göteborg, and the University of Koblenz. The KeY system
is a formal software development tool that aims to integrate design, implemen-
tation, formal specification, and formal verification of object-oriented software
as seamlessly as possible. At the core of the system is a deductive verification
component, which also can be used as a stand-alone prover. It employs a free-
variable sequent calculus for first-order Dynamic Logic for JAVA. The calculus is
proof-confluent, i.e., no backtracking is necessary during proof search.

While we constantly strive to increase the degree of automation, user inter-
action remains indispensable in deductive program verification. The main design
goal of the KeY prover is thus a seamless integration of automated and interac-
tive proving. Efficiency must be measured in terms of user plus prover, not just
prover alone. Therefore, a combination of a good user interface for proof state
presentation and rule application, a high level of automation, extensibility of the
rule base, and a calculus without backtracking is the strong point of KeY.

In this paper we concentrate on the description of the KeY prover and the
reasoning techniques it employs. The prover consists of ca. 124,000 lines1 of
JAVA code. The standard rule base consists of 1,725 rules that are written in
about 15,000 lines of KeY’s “taclet” rule description language. About 1,300 of
these formalize the semantics of the JAVA programming language. The system
has been created by 14 implementors since 1999, who spent a total of about

1 Not counting comments. These numbers are based on our estimates and the results
of the SLOCCount tool (www.dwheeler.com/sloccount).



Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a

Fig. 1. Architecture and interfaces of the KeY system

30 person years. Recently, version 1.0 of the KeY system has been released in
connection with the KeY book [2]. The KeY tool is available under GPL and can
be downloaded from www.key-project.org.

The KeY Program Verification System. The architecture of the KeY sys-
tem is shown in Fig. 1. Optional plugins to the popular Eclipse IDE and to the
Borland Together CASE tool suite have been developed to lower the entry hurdle
for users with no or little training in formal methods. KeY supports several lan-
guages for specifying properties of object-oriented models. Many people working
with UML or model-driven development have familiarity with the specification
language OCL (Object Constraint Language), a part of UML 2.0. Another sup-
ported specification language, which enjoys popularity among JAVA developers,
is JML (Java Modeling Language). KeY can also translate OCL expressions to
natural language (English and German).

The target programming language for verification in KeY is JAVA CARD 2.2.1.
KeY is the only publicly available verification tool that supports the full JAVA

CARD standard including the persistent/transient memory model of the card de-
vices and the atomic transactions. Rich specifications of the JAVA CARD API are
available both in OCL and JML. JAVA 1.4 programs that respect the limitations
of JAVA CARD (no floats, no reflection, no dynamic class loading) can be verified
as well. A first prototype for verifying (restricted) multi-threaded programs is
also available.

The system is not a classical verification condition generator (VCG), but
a theorem prover for program logic that combines a variety of automated rea-
soning techniques. The KeY prover is distinguished from most other deductive
verification systems in that symbolic execution of programs, first-order reason-



ing, arithmetic simplification, external decision procedures, and symbolic state
simplification are interleaved. For loop- and recursion-free programs, symbolic
execution typically is performed in a fully automated manner.

Syntax and Semantics of the KeY Logic. The foundation of the KeY logic
is a typed first-order predicate logic with subtyping. This foundation is extended
with parameterized modal operators 〈p〉 and [p], where p can be any sequence of
legal JAVA CARD statements. The resulting multi-modal program logic is called
JAVA CARD Dynamic Logic or, for short, JAVA CARD DL [2, Chapt. 3].

As is typical for dynamic logic, JAVA CARD DL integrates programs and
formulas within a single language. The modal operators refer to the final state of
program p and can be placed in front of any formula. The formula 〈p〉φ expresses
that the program p terminates in a state in which φ holds, while [p]φ does not
demand termination and expresses that if p terminates, then φ holds in the final
state. For example, “when started in a state where x is zero, x++; terminates in
a state where x is one” can be expressed as x

.
= 0 −> 〈x++;〉(x

.
= 1). The states

used to interpret formulas are first-order structures sharing a common universe.

The type system of the KeY logic is designed to match the JAVA type system
but can be used for other purposes as well. The logic includes type casts (changing
the static type of a term) and type predicates (checking the dynamic type of a
term) in order to reason about inheritance and polymorphism [2, Chapter 2].
The type hierarchy contains the types such as boolean, the root reference type
Object, and the type Null, which is a subtype of all reference types. It contains a
set of user-defined types, which are usually used to represent the interfaces and
classes of a given JAVA CARD program. Finally, it contains several integer types,
including both the range-limited types of JAVA and the infinite integer type Z.

Beside built-in symbols (such as type-cast functions, equality, and operations
on integers), user-defined functions and predicates can be added to the signa-
ture. They can be either rigid or non-rigid. Intuitively, rigid symbols have the
same meaning in all program states (e.g., the addition on integers), whereas the
meaning of non-rigid symbols may differ from state to state.

Finally, there is another kind of modal operators called updates. They can be
seen as a language for describing program transitions. There are simple function
updates corresponding to assignments in an imperative programming language,
which in turn can be composed sequentially and used to form parallel or quanti-
fied updates. Updates play a central role in KeY: the verification calculus trans-
forms JAVA CARD programs into updates. KeY contains a powerful and efficient
mechanism for simplifying updates and applying them to formulas.

Rule Formalization and Application. The user can easily interleave the
automated proof search implemented in KeY and interactive rule application.
For interactive rule application, the KeY prover has an easy to use graphical user
interface that is built around the idea of direct manipulation (Fig. 2). To apply a
rule, the user first selects a focus of application by highlighting a (sub-)formula
or a (sub-)term in the goal sequent. The prover then offers a choice of rules



Fig. 2. Screenshot of the KeY prover user interface

applicable at this focus. This choice remains manageable even for very large rule
bases. Rule schema variable instantiations are mostly inferred by matching.

Another simple way to apply rules and give instantiations is by drag and
drop. If the user drags an equation onto a term the system will try to rewrite
the term with the equation. If the user drags a term onto a quantifier the system
will try to instantiate the quantifier with this term.

The interaction style is closely related to the way rules are formalized in the
KeY prover. There are no hard-coded rules; all rules are defined in the taclet
language instead. Besides the conventional declarative semantics, taclets have a
clear operational semantics, as the following example shows—a “modus ponens”
rule in textbook notation (left) and as a taclet (right):

φ, ψ, Γ ⊢ ∆
φ, φ→ ψ, Γ ⊢ ∆

\find (p −> q ==>) // implication in antecedent
\assumes (p ==>) // side condition
\replacewith(q ==>) // action on found focus
\heuristics(simplify) // strategy information

The find clause specifies the potential application focus. The taclet will be
offered to the user on selecting a matching focus and if the formula mentioned
in the assumes clause is present in the sequent. The action clauses replacewith
and add allow modifying (or deleting) the formula in focus, as well as adding
additional formulas (not present here). The heuristics clause provides priority
information to the parameterized automated proof search strategy.

The taclet language is quickly mastered and makes the rule base easy to
maintain and extend. Taclets can be proven correct against a set of base taclets.
A full account of the taclet language is given in [2].

Confluent Calculus. In order to simplify the proof construction, which is typ-
ically partly automated and partly interactive, we have developed and employ a



proof confluent sequent calculus. This means that automated proof search does
not require backtracking over rule applications, which is advantageous for ana-
lyzing failed proof attempts. The automated search for quantifier instantiations
uses rigid free variables (called meta variables) like in a free-variable tableau cal-
culus. Instead of backtracking over meta-variable instantiations, instantiations
are postponed to the point where the whole proof can be closed, and an incre-
mental global closure check is used. To minimize the confusion of novice users,
meta variables are not visible in normal interactive use, if the user provides
all required instantiations. Rule applications requiring particular instantiations
(unifications) of meta variables are handled by attaching unification constraints
to the resulting formulas [2, Sects. 4.3 and 10.2.2]. Equations are handled by
ordered rewriting (currently in an incomplete way, which we have not, however,
found to be a limiting factor so far).

The taclet language is designed in such a way that the user can only write
rules with local effects on sequents, and the handling of meta variables, skolem-
ization, constraints, etc. is taken care of automatically, to reduce the risk of
inadvertently introducing rules that are unsound or damage confluence.

Handling Arithmetics. As the theory of integer arithmetic is omnipresent in
program verification, KeY directly provides a number of automatic solution and
simplification procedures for different fragments of arithmetic. All procedures
are formulated in terms of taclets, which have been verified against a small set
of base axioms. The implemented methods target both proving (showing that
equations are unsolvable) and construction of counterexamples (finding solutions
of equations) for ground integer formulas.

The most basic method is a sequent calculus formulation of integer Gaus-
sian elimination, which is a complete method for solving linear equations. As a
prerequisite of the procedure, integer expressions are always fully expanded and
sorted. Linear inequalities are handled by Fourier-Motzkin variable elimination,
which we combine with systematic case distinctions in order to obtain a complete
procedure over the integers.

Reasoning in non-linear integer arithmetic is mainly carried out by heuristic
cross-multiplication of inequalities, similar to the approach of the ACL2 prover.
In order to reduce expressions as far as possible and handle non-linear equations
more efficiently, KeY also computes Gröbner bases over the integers.

The KeY system also features a component for easy integration of exter-
nal automated theorem provers and (semi-)decision procedures. Proof goals are
translated into the standardized input format SMT-LIB and discharged by call-
ing any tool that understands this format, such as Yices or CVC Lite. A similar
connector for the theorem prover Simplify is also available. The user benefits
from the particular abilities of these tools to decide fragments of arithmetics,
heuristically instantiate quantifiers, etc.

Applications. The main application of the KeY prover is to support program
verification in the KeY system. Among the major achievements in this field so
far are the treatment of the Demoney case study (an electronic purse application



provided by Trusted Logic S.A.) and the verification of a JAVA implementation of
the Schorr-Waite graph marking algorithm. This algorithm, originally developed
for garbage collectors, has recently become a popular benchmark for program
verification tools. Chapters 14 and 15 of the KeY book [2] are devoted to a
detailed description of these case studies. A case study [6] performed within the
HIJA project has verified with KeY the lateral module of the flight management
system, a part of the on-board control software from Thales Avionics.

Lately we have applied the KeY system also to issues of security analysis [3],
and in the area of model-based test case generation [1, 4] where, in particular,
the prover is used to compute path conditions and to identify infeasible paths.
The flexibility of KeY w.r.t. the used logic and calculus further manifests itself
in the fact that the prover has been chosen as a reasoning engine for a vari-
ety of other purposes. These include the mechanization of a logic for Abstract
State Machines [7] and the implementation of a calculus for simplifying OCL
constraints [5].

KeY is also very useful for teaching logic, deduction, and formal methods.
Its graphical user interface makes KeY easy to use for students. They can step
through proofs with different degrees of automation (using the full verification
calculus or just the first-order core rules). The authors have been successfully
teaching courses for several years using the KeY system. An overview and course
materials are available at www.key-project.org/teaching.

References

1. B. Beckert and C. Gladisch. White-box testing by combining deduction-based spec-
ification extraction and black-box testing. In Y. Gurevich, editor, Proceedings, Test-
ing and Proofs, Zürich, Switzerland, LNCS. Springer, 2007.

2. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

3. A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of
secure information flow. In D. Hutter and M. Ullmann, editors, Proc. 2nd Int. Conf.
on Security in Pervasive Computing, LNCS 3450, pages 193–209. Springer, 2005.

4. C. Engel and R. Hähnle. Generating unit tests from formal proofs. In Y. Gurevich,
editor, Proceedings, Testing and Proofs, Zürich, Switzerland, LNCS. Springer, 2007.

5. M. Giese and D. Larsson. Simplifying transformations of OCL constraints. In
L. Briand and C. Williams, editors, Proceedings, Model Driven Engineering Lan-
guages and Systems (MoDELS), Montego Bay, Jamaica, LNCS 3713. Springer, 2005.

6. J. J. Hunt, E. Jenn, S. Leriche, P. Schmitt, I. Tonin, and C. Wonnemann. A case
study of specification and verification using JML in an avionics application. In
M. Rochard-Foy and A. Wellings, editors, Proc. of the 4th Workshop on Java Tech-
nologies for Real-time and Embedded Systems (JTRES). ACM Press, 2006.

7. S. Nanchen, H. Schmid, P. Schmitt, and R. F. Stärk. The ASMKeY prover. Technical
Report 436, Department of Computer Science, ETH Zürich, 2004.


