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Abstract We present MODL, a Dynamic Logic and a deductive verification calculus for a core Java-like lan-
guage that includes multi-threading. The calculus is based on symbolic execution. Even though we currently
do not handle non-atomic loops, employing the technique of symmetry reduction allows us to verify systems
without limits on state space or thread number.

We have instantiated our logic for (restricted) multi-threaded Java programs and implemented the verifi-
cation calculus within the KeY system. We demonstrate our approach by verifying a central method of the
StringBuffer class from the Java standard library in the presence of unbounded concurrency.
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1 Introduction

1.1 Motivation and Goals

Verification of concurrent systems has traditionally been—with a few exceptions—the domain of model
checking tools. This holds also for Java program verification, where several very successful model check-
ing frameworks have been established [31, 15]. Nonetheless, for verification problems that are data-centric
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or that involve an unbounded number of threads, deductive verification offers advantages. The properties that
we deal with can, in general, neither be expressed in temporal logic nor verified with a model checker.

We present a Dynamic Logic and a deductive verification calculus for a core Java-like language that
includes multi-threading. In parallel to Object-oriented Dynamic Logic (ODL) [5], which captures the essence
of object-orientation in a small language, we have called our logic MODL—Multi-threaded Object-oriented
Dynamic Logic. In Section 6.2, we describe an (implemented) mapping from Java programs satisfying our
requirements (cf. next section) to MODL. The mapping is such that the Java program and its counterpart
in MODL perform the same state transition. If the MODL program can be verified, then the original Java
program is correct as well.

Our aim has been to design a program logic that

– reflects the properties of thread-based concurrency in an intuitive manner
– has a sound and (relatively) complete calculus
– employs only sound and transparent for the user abstractions
– poses no bounds on the state space or thread number
– allows reasoning about complex properties of the scheduler, but does not require such reasoning for pro-

gram verification.

To achieve our goal, we currently have to make three important restrictions. (1) We do not consider thread
identities in programs, (2) we do not handle dynamic thread creation (but do handle systems with an un-
bounded number of threads), (3) we require that all loops are executed atomically. These restrictions allow
us to employ very efficient symmetry reductions and thus symbolically execute programs in the presence of
unbounded concurrency. We will discuss the significance of these restrictions in the next section.

Our calculus has been implemented in the KeY system [7], which has been successfully used for verifi-
cation of non-concurrent Java programs. An application of our method to verify one of the most commonly
used pieces of production Java code in the presence of unbounded concurrency is described towards the end.

1.2 Restrictions of MODL and Achieved Java Coverage

Not all Java programs can currently be modeled faithfully (and thus verified) with MODL. In the following,
we describe the abilities and limitations of MODL from this point of view. The restrictions stem from the
simplified model of the scheduler, and we believe that they can be overcome in the future by elaborating the
model.

Sequential coverage The MODL programming language we define in the following is intentionally mini-
malistic. In the implementation, though, we benefit from the 100% Java Card coverage of the KeY calculus.
This includes full support for dynamic object creation (with static initialization), efficient aliasing treatment,
Java-faithful arithmetics, etc. All of these features can be reduced to MODL, resp. used in verification of
concurrent programs.

One area where there is currently a gap between the concurrent and the sequential calculus is exception
handling. The concurrent proof system is sound but incomplete in this regard. Exceptions are always detected,
but once thrown they cannot be caught. The calculus treats the whole program as non-terminating in this case.

No dynamic thread creation (but unbounded multi-threading) In Java, threads are created and (to some ex-
tent) controlled via instances of the java.lang.Thread class. The only thread creation mechanism MODL
currently provides is a possibility to specify the initial thread configuration of a program (together with the
initial local variable assignment). Note that the configuration values can be symbolic (“k threads”).

This limitation does not impair the usefulness of the calculus much. It is in the nature of concurrent Java
applications that most objects are passive entities. They are unaware of thread creation and can (and indeed
have to) be verified for an arbitrary number of threads accessing them. The most prominent expression of this
fact is library code, which has to be thread-safe for any number of client threads.

No thread identities in programs MODL threads can communicate by exchanging data through the shared
heap and by mutual exclusion primitives (synchronized methods and blocks in Java, lock acquisition and
release operations in MODL). We have performed initial experiments with condition variables (wait()/
notify() in Java), but the rules are not yet mature enough to be presented here.
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if (true)

a=x;
· ¹

if (a>0)

x=a-1;
. . .

Fig. 1 Graph representation of a multi-threaded program {¶ ¸ º}a=x; if (a>0) {{· ¹}x=a-1; ...}

All of these communication means have in common that they work without identifying threads via corre-
sponding instances of java.lang.Thread (as mentioned above for thread creation). Indeed, we currently do
not provide for a connection between such instances and MODL threads. A programmer, thus, cannot invoke
thread-controlling methods of the Thread instance, the most important being t.interrupt() and t.join().
We believe that this limitation prevents us from verifying only a small fraction of interesting code.

No non-atomic loops Finally, we require all loops to be atomic. This is the biggest limitation currently. It
means that the programmer has to ensure that no interference with other threads is possible while a loop runs.
For Java programs, compliance with this restriction must be proven to maintain soundness. We can check
an overapproximation of this property as shown later on (⇒ Sect. 8.3). Detailed technical reasons for this
restriction are given in Note 2, Section 3.6 when we describe our model of the scheduler. In the cases when
the non-atomic loop is on the top level of a program (e.g., in servers), it is possible to cut the loop and verify
its body under execution by an unlimited number of threads.

Java Memory Model We assume an intuitive, sequentially consistent memory model, where updates to shared
state are immediately visible to all threads. In reality, the Java Memory Model guarantees sequential consis-
tency only for data-race-free programs. We have developed and implemented a calculus extension to check
programs for absence of data races [24].

1.3 Main Idea of the Proposed Logic and Proof System

The logic MODL Unsurprisingly, MODL is a close relative of Java Card DL, the sequential KeY logic [7].
It has the DL-customary modal operators 〈p〉φ and [p]φ referring to the total and partial correctness of a
program p w.r.t. the postcondition φ . The biggest difference lies in the programs: multi-threaded programs
require a different representation than sequential ones. We use the CFG-style program model of Keller [20],
who has defined “parallel programs” as

a bipartite directed graph, the nodes of which are divided into
– place nodes: representing points at which an instruction pointer of a processor may dwell,
– transitions nodes: representing a class of transitions, each denoting an event which corresponds to

the execution of a particular instruction.

In our case, the role of place nodes is played by set-valued control variables, which are part of the state and
contain thread ids (collectively we also call them a thread configuration). The transition nodes are given by
Java-like statements, which appear as “program text” inside the modal operator.

Execution of a program corresponds to the movement of thread id “tokens,” while the program text remains
unaltered. The movement is accompanied by a corresponding change in data state. It is clear that programs can
behave differently depending on the thread scheduling. The natural question is how to model the scheduler?

With a purely nondeterministic scheduling, we have no choice but to perform (a prohibitively large number
of) case distinctions in the calculus. Meta-level efforts would then be necessary to prune the proof search
space and get a grip on the complexity (this is an approach taken in [4]). Instead, we opt for an underspecified
deterministic scheduler, and express its decisions explicitly on the object level by means of a partially specified
scheduling function.

Such a design gives our concurrent programs (surprisingly maybe) a deterministic semantics: a program
started in a given state has at most one final state, just as is the case with sequential Java programs. The main
advantage is the much stronger control over granularity of reasoning. By reifying the scheduler in the logic,
we gain the power to express complex scheduling properties for demanding cases, but still can tackle simple
problems with relatively little effort. Furthermore, we retain beneficial logical properties, like 〈p〉φ → [p]φ .
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A calculus for MODL To prove theorems of the above logic we have developed a sequent-style calculus.
The calculus performs symbolic execution of programs—a method (going back to [22]) that ensures good
understandability of the process for the user. As far as we know, this work is the first application of symbolic
execution to full functional verification of multi-threaded programs foregoing a bound on the number of
threads or explored program states.

In principle, the calculus explores the behavior of a concurrent program by building all possible thread
interleavings. Done naively, such an approach is doomed to failure due to state explosion; it is also inapplica-
ble to systems with an unbounded number of threads. Our calculus can effectively perform such exploration
by employing symmetry reductions that merge a large number of structurally identical interleavings. This is
efficiently possible for the considered language fragment and produces a feasible number of cases (even in
the presence of unbounded concurrency). Further efficiency gains are possible from appropriate program and
proof modularization.

By means of symbolic execution, the calculus reduces assertions about programs to assertions about data
types and permutations, which encapsulate the scheduler decisions and hide symmetric schedulings. In the
desirable case that the program is scheduling-independent1 the permutations can be removed from the cor-
rectness assertions by application of standard algebraic lemmas. When also the remaining assertions (now
without permutations) can be discharged, then the program is fully correct w.r.t. its functional specification.

2 Related Work

Classical approaches to deductive verification of concurrent programs One of the first deductive verification
methods for concurrent programs was the partial correctness proof method of Ashcroft [3] and Keller [20],
incorporating a CFG-like program formalism and an induction principle. The principle is to show that every
atomic statement preserves a global invariant. Of course, such global invariants can quickly become unwieldy
without modularization. Nonetheless, these early works contain many seminal insights into the inner workings
of concurrent programs.

Another classical method is due to Owicki and Gries [27] and builds on Hoare Logic for sequential
programs. The method combines a proof of local (i.e., sequential) correctness with a non-interference check.
The latter establishes that assumptions used throughout the proof of local correctness are not destroyed if the
scheduler chooses to interleave execution with other threads. This leads to proof size that is quadratic in the
number of statements. The method is not compositional. We have implemented an Owicki-Gries-style proof
system for a fragment of Java in KeY [23]. Further modern adaptations of the method are described in the
next section.

A revolutionary step towards compositional verification of concurrent programs was the rely-guarantee
method of Jones [19]. The method introduces for each thread two predicates: rely and guarantee. In contrast
to assertions or postconditions, these predicates range not over states but over pairs of consecutive states. The
proof method consists in showing that every step of a thread satisfies its guarantee obligation assuming that
every step of the environment satisfies the rely assumption. The rely assumption in its turn is composed from
the guarantee obligations of other threads. The method is compositional and the proof size is linear in the
number of threads. The difficulty resides in summarizing the behavior of a thread in one transitive predicate.

Deductive verification of multi-threaded Java programs Several deductive calculi for (different fragments of)
sequential Java exist [17, 30, 35, 37, 26]. In contrast, the only implemented deductive verification system for
multi-threaded Java existing to date is—to our knowledge—Verger [2]. The calculus is an adaptation of the
Owicki-Gries method to Java, incorporating a proof method for CSP in order to reason about method calls
as message passing. The system generates verification conditions from programs augmented with auxiliary
variables and annotated with Hoare-style assertions. The verification conditions are subsequently discharged
in PVS. The system has good concurrent language coverage.

A recent and more accessible formulation is [9], which replaces the CSP calculus with proof theory of
recursive procedures.

Separation Logic is another extension of Hoare Logic with operators for reasoning about resource access,
which allows for greater modularity of reasoning. The logic has also been extended to handle Java and con-

1 Scheduling independence means here that the program’s final state always satisfies the specification, in spite of possibly
different intermediate states taken in different runs.
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currency, and the latest development is a “marriage” of rely-guarantee and Separation Logic [34]. The latter
promises better modularity in dealing with rely and guarantee predicates.

Temporal logics A huge body of work is available on verifying temporal properties of concurrent software.
This includes model checkers and even deductive proof systems (e.g., by Manna and Pnueli [25]). In contrast
to using temporal logic, though, a proof system for Dynamic Logic allows functional verification, i.e., full
reasoning about data. This way verification tasks can be tackled where not only safety or liveness but the
input-output relation of a concurrent program is of interest.

Concurrent Dynamic Logic The only Dynamic Logic for a programming language incorporating concur-
rency is—to our knowledge—the Concurrent Dynamic Logic (CDL) by Peleg [29]. He notes, however, that
this particular logic “suffers from the absence of any communication mechanisms; processes of CDL are
totally independent and mutually ignorant.” Peleg [28] gives two extensions of CDL with interprocess com-
munication: one with channels and one with shared variables. In both works cited, the focus is on studying
concerns of expressivity and decidability of the logics (communication renders the logic highly undecidable).
The issue of a calculus or program verification in general is not touched.

Model checkers Formal analysis of concurrent systems has traditionally been—with a few exceptions—the
domain of model checking tools. This holds also for Java programs, where several very successful model
checking frameworks have been established. Prominent model checkers for Java programs are Bogor [31]
and Java PathFinder [15].

Modern software model checkers can check not only temporal but also functional properties. They employ
very clever optimizations and abstractions and can verify programs of substantial size. Many of the employed
techniques—like symmetry reduction—are sound and do not come at the price of missed errors. Still, to
guarantee termination of the model checking process, a finite system model is required. For concurrent pro-
grams, finiteness must be achieved either by unsound abstraction (bounding the length of explored executions,
number of threads, context switches, heap configurations, etc.) or through a loss of precision.

As such, model checking is very useful for detecting bugs but is not intended for full functional verifica-
tion. An interesting extension of model checking and a close relative of our approach is [21], which allows
symbolic execution of multi-threaded Java programs in a model checker by means of program instrumen-
tation. The instrumentation lifts the program data to symbolic values (delegating reasoning to an external
decision procedure), but lets the model checker handle the concrete threads. The framework can “prove cor-
rectness for programs that have finite execution trees and have decidable data constraints.”

A comprehensive control flow model of Java concurrency is given in [10]. The authors use a variant of
Petri nets to model the control flow of concurrent programs. The nets are specifically tailored to treat the
“partially non-blocking rendez-vous” nature of Java’s wait()/notify() mechanism. The authors do not
perform functional verification but have built a model checker that can check safety properties expressed in
terms of control flow. Their Petri net representation is conceptually close to ours, though we use full programs
as transitions.

Yahav [36] describes a system for verifying safety properties of multi-threaded Java-like programs. The
system (implemented in the TVLA framework) is an instance of symbolic on-the-fly model checking, where
first-order logical structures are used to represent states of the program. It can cope with an unbounded number
of allocated objects by building conservative abstract descriptions of (multiple) program states in 3-valued
logic. Also, in the above paper, symmetry reduction is mentioned and the author reports having obtained
interesting results for an unbounded number of threads.

Static verifiers Another broad category of verification systems for concurrent programs are static verifiers.
Static verifiers are tools that can automatically check program properties by sufficiently approximating the
program semantics. Many static verifiers allow the users to improve the quality of the approximation by
adding annotations to the code.

Per design, static verifiers are not geared towards input-output reasoning. They are—in most cases—also
neither sound nor complete. Still, such tools are very useful for automated detection of concurrency-related
problems in practice. There is also a big potential in combining static verification systems with systems for
full-functional verification.
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A prominent representative of this class of tools is ESC/Java [13], an extended static checker for many
types of properties. On the concurrency side this includes inter-thread escape analysis, race condition detec-
tion, deadlock detection, etc. There are also a number of dedicated static analysis tools for race condition
detection. One of them is Houdini/rcc [1], which is based on an elaborate type system.

Such tools are aimed to check that access to object fields is guarded by locks and that all threads adhere
to a consistent locking policy. This check can be easy if the object fields are protected by the lock associated
with the object itself or a dedicated object referenced by a final static field. More elaborated locking schemes
might require user annotation or are beyond the scope of the tools.

A class of its own in this category is the SPEC# system, which (in its derivative SpecLeuven) incorporates
a “static verifier” for a concurrent object-oriented language [18]. For one, verification with SPEC# guarantees
the absence of data races and deadlocks. It also guarantees compliance of the program with programmer-
provided method contracts and object invariants.

A very interesting body of research has been produced by Greenhouse and Scherlis [14]. The authors have
developed an annotation language to specify many important aspects of multi-threaded programs together
with a tool suite to statically check them. The annotations include:

– effects (an upper bound on state a method reads and writes)
– aliasing intent. Unaliased data can be reasoned about sequentially
– locking intent. Programmers can associate locks with regions of state; the tool verifies that state is ac-

cessed only when the appropriate lock is held. Programmers can also declare that a method requires that
a particular lock be held by the caller

– concurrency policy. Programmers can specify methods that can be safely executed concurrently.

The authors also make it plausible that for lock-based programs, concurrency policy combined with models
of locking intent can be a surrogate for representation invariants.

3 Syntax of MODL

We start with a very general formalism that is quite close to the “machine” semantics. The usefulness of this
logic is not so much in its suitability for verification (this will be addressed in Section 5), but in formalizing
basic concepts of thread-based concurrency. We define the syntax and semantics of a multi-threaded Java-
like programming language and a Dynamic Logic for reasoning about it. Along the way we introduce such
concepts as thread configurations, shared and thread-local data, and a deterministic scheduler model.

3.1 Threads and Multi-threaded Programs

The concurrent programming language that we consider is very close to a fragment of multi-threaded Java. Its
basic constructs are assignments, if-then-else statements, while-loops, Java-like concurrency primitives (lock
acquisition and release), but also atomic blocks. Several threads can execute a program concurrently. Thus, in
contrast to the sequential programs in KeY, a concurrent program is a passive template “without life,” until a
thread configuration is added. A thread configuration is a part of the program state describing which threads
are executing the program. Threads are given a unique identifier, conventionally called thread id (tid), which
is a term of type Thread; they are in fact identified with this identifier. In the following, we will denote the
carrier set of Thread as T .

In addition to concurrent programs, we also use sequential MODL programs. A sequential program is,
roughly, a concurrent program executed by a single thread. The executing thread is explicitly identified in
thread-local variables of the program. This explicit thread identifier is also the major difference between
sequential MODL programs and sequential Java programs as formalized in KeY.

Modeling locking in our programming language A Java thread can enter a synchronized method or block
only after successfully acquiring the lock of the object synchronized on. When a thread’s control flow leaves
the synchronization scope, the involved lock is automatically released. Locks are reentrant: if a thread already
possesses a certain lock, a repeated acquisition of the same lock succeeds, increasing the locking depth.

To make lock acquisition and release explicit, we extend the Object class with two “ghost” methods:
public void <lock>() and public void <unlock>(). Code marked as synchronized is automatically
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Program entity modeled by notation in logics

local variable v (of thread t) unary function v(t)
static field access Class.a constant Class.a

a(o) or o.a
[ ](o, i) or o[i]

}
heap
access

instance field access o.a unary function
array access o[i] binary function

Table 1 How program variables are modeled in MODL

surrounded by invocations of these methods during the unfolding stage (⇒ Sect. 6.2). To keep track of locking
state, we also declare two ghost fields per object: <lockedby> of type Thread (the identity of the thread
holding the object’s lock) and int <lockcount> (the locking depth).

3.2 Signatures and Variables

The formulas of our logic are built over a set V of logical (quantifiable) variables and a signature Σ of function
and predicate symbols. Function symbols are either rigid or non-rigid. Rigid function symbols have a fixed
interpretation for all states; in contrast, the interpretation of non-rigid function symbols may differ from state
to state. Moreover, we only consider models where some symbols (both rigid and non-rigid) have a certain
intended meaning. The interpretation of such pre-defined symbols can be fixed completely (e.g., addition) or
partially (e.g., division) by means of axioms.

Logical variables are rigid in the sense that if a logical variable has a value, it is the same for all states.
They cannot be assigned to in programs. Everything that is subject to assignment during program execution
(variables, object attributes, arrays) is modeled by non-rigid functions. We will call these functions program
variables. In particular, arrays and object attributes give rise to functions with arity n > 0 (Table 1).

We further divide program variables into heap- and stack-allocated. A variable on the heap refers to a
single value and assignments changing it are immediately visible to all threads.2 On the other hand, every
thread has its own copy of each local variable (allocated on the thread’s stack). An assignment to a local
variable within one thread is not visible to other threads.

The local variable v in a concurrent program refers to a series of values. When the program executes, the
unique value is identified by the context of the currently running thread. In the logic, we can talk about the
local variable values in different threads by using a combination of variable name and thread id. All other
variables (lines 2–4) are considered heap-allocated and have the same arity in programs and in the logic.

Example 1 (Arity of thread-local variables) Consider the concurrent MODL program if (a>0)... where
a is a local variable. This thread-local variable a is modeled by a non-rigid function of arity 1. In the program,
however, it appears without parameters, i.e, has the arity 0. Symbolic execution of this statement by a thread
with id t will lead to the branch condition formula a(t)> 0 appearing in the proof. Here the symbol a appears
with its full arity.

Terms in MODL are defined as usual in first-order logic.

3.3 Updates

Terms and formulas can be prefixed by updates though. Updates can be seen as a language for describing
state transitions. Evaluating {loc := val}φ in some state is equivalent to evaluating φ in a modified state
where loc evaluates to val. The difference between updates and assignments is that the syntax of updates
is quite restricted, making analysis and simplification of state change effects easier and efficient. Updates
(together with case distinctions) can be seen as a normal form for programs and, indeed, the idea of our
calculus is to stepwise transform a program to be verified into a sequence of updates, which are then simplified
and applied to first-order formulas.

2 The cross-thread visibility is actually subject to conditions of the Java Memory Model. We have developed a calculus
extension for checking these conditions [24].
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Definition 1 (Updates) The most basic update is the function update f (t1, . . . , tn) := t, where f is a non-rigid
function, and t, t1, . . . , tn are terms respecting the arity and typing of f .

Furthermore, if u,u1,u2 are updates, then the following are also updates: sequential update u1 ;u2, parallel
update u1 ||u2, quantified update for x; φ ; u.

In both sequential and parallel3 updates, a later sub-update to the same location overrides an earlier one.
The difference however is that with sequential updates the evaluation of the second sub-update is affected by
the evaluation of the first one. This is not the case for parallel updates, which are evaluated simultaneously.

Example 2 Consider the updates x := x+ 1;x := x+ 2 and x := x+ 1 ||x := x+ 2 where x is a program
variable (non-rigid constant). Evaluating these updates in a state satisfying x = 0 results in a state satisfying
x= 3 in the first case resp. x= 2 in the second case.

Quantified updates are a generalization of parallel updates. A quantified update (for x; φ ; u) can be un-
derstood as (the possibly infinite) sequence of updates

· · · || [x/tn]u || · · · || [x/t0]u

put in parallel in a fixed canonical order. The individual updates [x/tn]u, . . . , [x/t0]u are obtained by substituting
the free variable x in the update u with all terms tn, . . . , t0 such that [x/ti]φ holds.

3.4 Syntax of Programs

First, we define sequential programs of MODL, which later serve as building blocks for concurrent programs.
Our sequential programs have several technical peculiarities4:

– There is a stop statement, which does nothing and is never enabled. This statement is of little use in the
sequential case, but is used to model concurrent programs with several thread classes.

– There is an atomic block construct, which, again, only becomes useful when the programming language
is extended with concurrency.

– Every sequential program is identified with some thread executing it. All local variables are augmented
with this thread id as an argument.

– Assignments must not contain more than one heap access. This restriction is necessary to faithfully model
the semantics of concurrent Java assignments. We consider assignments to be atomic in our language,
while they indeed can be non-atomic in Java. A program with more than one heap access in an assignment
is transformed into a program satisfying the above condition by adding assignments that store the value of
heap-allocated variables in fresh local variables.

– Conditions of if-then-else statements must be local variables not occurring in the then- or else-part of the
statement. This restriction is similarly easy to satisfy by adding assignments with fresh local variables.
The fact that these variables—once set—cannot change their value eliminates technical difficulties when
specifying execution path conditions.

Definition 2 (Sequential programs) The set of sequential programs is recursively defined as follows. For all
thread ids τ:

(Assignment statement)
f(t1,...,tn)=t; is a program if
1. f is a non-rigid function symbol of arity n
2. t1, . . . , tn, as well as t are terms correctly

typed w.r.t. f
3. the assignment contains at most one heap ac-

cess.

(Conditional statement)
if (v(τ)) {p} else {q} is a program if p
and q are programs and v(τ) is a thread-local
boolean variable not appearing in p or q.

(Loop statement)
while (v(τ)) {p} is a program if p is a pro-
gram, and v(τ) is a thread-local boolean variable.

3 Despite what their name suggests, parallel updates are not related to concurrency.
4 The technical definitions of MODL programs do not pose restrictions on the set of Java programs that can be verified with

MODL beyond those that have been stated in the introduction (⇒ Sect. 1.2).
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(Stop statement)
stop is a program.

(Sequential composition)
pq is a program if p and q are programs.

(Atomic block (also a statement))
�p� is a program if p is a program.

(Lock acquisition statement)
o(τ).<lock>(); is a program if o(τ) is a thread-
local reference-valued variable.

(Lock release statement)
o(τ).<unlock>(); is a program if o(τ) is a
thread-local reference-valued variable.

Under atomic statements in a program, we understand the assignments, atomic blocks, lock acquisition
and release statements, as well as stop.

Example 3 (Sequential program syntax) The following is an example of a concrete sequential program exe-
cuted by thread t:
o(t).<lock>(); a(t)=o(t).sum; o(t).sum=a(t)+e(t); o(t).<unlock>();

We now use the sequential programming language to define concurrent programs. Conversely, the veri-
fication calculus breaks concurrent programs down into sequential fragments. The part of this process that
builds a sequential program from a part of a concurrent one is called sequential instantiation (⇒ Def. 4).

Definition 3 (Concurrent programs) The set of concurrent programs is defined as follows. Every sequential
program is a concurrent program under the following transformation/conditions:

– all occurrences of loops must be within atomic blocks
– atomic blocks may not be nested
– atomic blocks may not contain locking operations
– all function symbols representing local variables are stripped of thread identity (i.e., in contrast to sequen-

tial programs, the number of arguments is now one less than actual symbol arity)
– the last statement of the program must be stop
– stop may only occur on the top level in a program (not within a loop, a conditional, or an atomic block).

Example 4 (Concurrent program syntax) The following is an example of a concrete concurrent program with
one thread class:

o.<lock>(); a=o.sum; o.sum=a+e; o.<unlock>(); stop; .

The purpose of the final stop statement is to provide a “parking position” for the threads that have run to
completion. It also helps in writing programs with several thread classes. The following is an example of a
concrete concurrent program with two thread classes:

x=1; stop; x=2; stop; .

The unfolded run() methods are sequentially composed, separated by stop statements. Since threads already
execute concurrently, MODL lacks a dedicated parallel composition operator ||.

We will omit the final stop statement from concurrent programs whenever clarity is not sacrificed.

Definition 4 (Sequential instantiation) If p is a concurrent program and τ is a thread id, then the sequential
instantiation p∗(τ) is a sequential program built by augmenting every thread-local variable v in p by the thread
id, giving v(τ).

We define a sequential instantiation in an analogous manner also for terms.

3.5 Program Positions, Control Variables, and Thread Configurations

Until now, we have dealt with syntactic programs, which are just templates for threads to execute. Now we
introduce means to describe which threads are executing a program, and where exactly each thread is at any
given moment. For this, we number all atomic statements in a program (these are: assignments, atomic blocks,
lock acquisition and release statements, as well as stop) from left to right, starting with one. We call these
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numbers the positions of the program. Their intuitive meaning is that if a thread is at a certain position, it is
about to execute the corresponding atomic statement when it is next scheduled to run. We will refer to the
statement at position i in a program p as p(i) and to the total number of positions as size(p).

Every position i is associated with a control variable pos(i), which is a set-valued variable not occurring
in programs. The control variable lists exactly the tids waiting to be scheduled at the resp. position. Together,
the control variables specify the thread configuration.

Definition 5 (Thread configuration) A thread configuration for a program p is a non-rigid function posp

posp : {1, . . . ,size(p)}→ 2T .

In order not to clutter notation, we will omit the program index and just write pos, as p is always clear from
the context.

Example 5 (Thread configuration notation) In this example we assume that thread ids are integers. Then,
({3,17,5},{},{2}) is an example of a configuration of size 3. A configuration of size n is compatible with
programs that have n positions.

We write (compatible) pairs of thread configurations and programs by inlining the values of the control
variables within the program. For example, the program

v=(x<10); if (v) {a=10; x=a+1}

together with the configuration ({5},{3,4},{1},{2}), where four threads are active and one has already
terminated, is written as

{5}v=(x<10); if (v) {{3,4}a=x;{1}x=a+1;}{2} .

On the formula level, if U is a sequence of updates and c̄|p is a program with an inlined thread configuration,
the formula

U 〈c̄|p〉φ

is shorthand for
{pos(1) := c1 || . . . ||pos(n) := cn}U 〈p〉φ .

Note 1 (Disjointness of control variable values) In general, we expect to deal only with disjoint values of
control variables: every thread can be at only one place at the same time. Our calculus preserves this property,
but the user can still, of course, write a formula describing a state where this is not true. We dismiss such
cases as pathological and leave the semantics of such formulas underspecified.

Definition 6 (Threads in a program) The set of threads in a program Tids(p) is

Tids(p) =
n⋃

i=1

pos(i)

for a program p with n atomic positions. Technically, this set is state-dependent, but our programs can neither
create nor destroy threads.

3.6 The Scheduler

Definition 7 (Scheduler) For each program p, the scheduler is (modeled by) the non-rigid function (actually,
constant)

schedp :→T ∪{⊥} ,

which says which thread is to run next in a given state. In order not to clutter notation, we will omit the
program index and just write sched in the future. The program to which the scheduler function refers is
always clear from the context.
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The interpretation of sched depends, in general, on program state, even though we try to minimize this
dependency in our program semantics. Different models, furthermore, may interpret this function differently
and, thus, have different schedulers. The value that sched returns must, of course, be compatible with other
components of the state, i.e., the program variables and the control variables. To express this we first define
what it means for a thread to be enabled.

Definition 8 (Statement Enabledness) We introduce a non-rigid predicate enabled(s, t) capturing when a
thread t is enabled to execute an atomic statement s within a concurrent program. We declare the predicate
predefined, and its values are given by the following table:

Statement s Enabledness condition enabled(s, t)

stop false
assignment true
atomic block true
o.<lock>() o(t).<lockcount>= 0∨o(t).<lockedby>= t
o.<unlock>() true

Definition 9 (Thread Enabledness) The following non-rigid predicate captures when a thread t is enabled
in a program p (we will, again, omit this program index in the future). The predicate is predefined with the
following semantics:

enabledp(t) =

{
enabled(s, t), if t ∈ Tids(p),
false, otherwise,

where s is the statement at which t is waiting to be scheduled. Per Note 1 there is at most one such statement.
If there is none, the predicate evaluates to false.

We now state the scheduler axioms.

1. The scheduler may only schedule existing threads. Which threads “exist” is given by the control variables
of the state for the program at hand:

sched ∈ Tids(p) . (1)

2. The scheduled thread must be enabled. When a thread is enabled is defined in Def. 9. At this point the
scheduler depends upon actual program variables.

sched = t ∧ t 6=⊥→ enabled(t) (2)

3. If no thread is enabled, the scheduler must return ⊥. This is the case when the program has terminated or
entered deadlock.

sched =⊥↔
∀t. t ∈ Tids(p)→¬enabled(t) (3)

In general, this is already everything we assume about a scheduler. Fairness5 or other scheduler properties are
not built into our model. It is, however, possible to add further axioms restricting the function sched.

Note 2 (The reason for forbidding non-atomic loops) A problem for a deterministic scheduler model is the
possibility that a program returns to a previously visited state (a kind of déjà vu). This situation may occur
when a thread is executing a loop. In the real world, it would be unreasonable to expect that the scheduler
run the same thread as last time in that state. A deterministic scheduler has no other option but to repeat the
previous choice as the state completely determines the scheduler function. To avoid the unsoundness that is
due to this discrepancy we have two options.

Option one is to forbid programs that exhibit problematic behavior, i.e., programs with non-atomic loops.
This is the option we have chosen for the moment. The key property of an atomic loop (as any atomic piece
of code) is that it runs without interference, and we can collapse its intermediate states. From the scheduler’s
perspective an atomic loop is a single state transition. When all loops are thusly collapsed, threads never
“jump back” in a configuration, and a program never passes the same thread configuration (and thus state)

5 It should be noted that Java itself is only “statistically fair.”
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twice. By demanding that all loops are atomic we have eliminated déjà vus. This is not possible in the presence
of non-atomic loops.

Option two (which is part of future work) is to extend the notion of state by adding yet another control
variable: a scheduling seed σ . Symbolic execution would keep updating σ to guarantee that as long as a
program is running, it never passes the same state twice. Depending on the implementation details, one could
think of σ as a ghost loop counter or as a clock. We would then make the scheduling function depend on σ .

There is yet another potential reason to have an explicit seed. By using two different seeds it becomes
possible to relate two different runs of the same program.

3.7 Formulas

The set of formulas is defined as common in first-order dynamic logic. That is, they are built using the
connectives ∧,∨,→,¬ and the quantifiers ∀,∃ (first-order part). Furthermore, MODL defines two concurrent
and two sequential kinds of modal operators.

Definition 10 (Modal formulas of MODL )
For each concurrent program p and every formula φ , 〈p〉φ (the concurrent “diamond” modality) and [p]φ

(the concurrent “box” modality, which is a shorthand for ¬〈p〉¬φ ) are formulas.
If p is a sequential program and φ a formula, then 〈p〉φ (the sequential “diamond” modality) and [p]φ (the

sequential “box” modality, which is a shorthand for ¬〈p〉¬φ ) are formulas.

Intuitively, a diamond formula 〈p〉φ (resp. its concurrent counterpart 〈p〉φ ) means that the program p in
the diamond must terminate (resp. all threads must terminate) and afterwards φ has to hold. The meaning of
a box formula is the same, but termination is not required, i.e., φ must only hold if p terminates. The formula
ψ → [p]φ has the same meaning as the Hoare triple {ψ}p{φ}.

4 Semantics of MODL

4.1 Models

The models used to interpret MODL formulas are Kripke structures K = (S ,ρ), where S is the set of
program states and ρ is the transition relation interpreting programs.

The states s ∈ S provide interpretations of predicates and functions (including program variables) via
first-order structures for the signature Σ . We work under the constant domain assumption, i.e., for any two
states s1,s2 ∈S the universes of s1 and s2 are the same set U . We refer to U as the universe of K . Rigid func-
tion symbols have the same interpretation for all states, while the interpretation of non-rigid function symbols
may differ from state to state. Pre-defined symbols only admit interpretations adhering to their definitions. We
assume that the set S of states of any Kripke structure consists of all first-order structures with signature Σ

over some fixed universe and for some interpretation of the rigid symbols.
MODL incorporates two programming languages: the sequential and the concurrent one. The semantics

of a program (of any language) is a relation between initial and final states. The semantics of a sequential
program p is given by a transition relation on states ρ1(p)⊆S 2. Since sequential programs are deterministic,
the relation is actually a partial function: ρ1(p) : S →S .

The semantics of a concurrent program p is given by a transition relation ρ(p). Since our concurrent pro-
grams are deterministic by means of an underspecified scheduler, this relation is a partial function as well. The
next section concentrates on defining the semantics relations of the concurrent and sequential programming
languages in detail.

The valuation vals of terms w.r.t. a given state s is as usual in first-order logic. The formal semantics of
updates is given in [7]; here we appeal to the informal description given in Section 3.3. The semantics of
modal formulas (the validity relation |=) is given in the definition below, otherwise the semantics of formulas
is as usual in first-order logic.

Definition 11 (Semantics of modal formulas)

(Modalities with concurrent programs)
s |= 〈p〉φ iff (s,s′) ∈ ρ(p) for some state s′ with s′ |= φ .
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(Modalities with sequential programs)
s |= 〈q〉φ iff (s,s′) ∈ ρ1(q) for some state s′ with s′ |= φ .

We say that a Kripke structure is a model of a formula φ iff s |= φ is true in all states s of that structure. A
formula φ is valid if all Kripke structures are a model of φ .

Definition 12 (State variation) If s ∈ S is a state and u is an update, then s′ = sJuK is a state variation
(i.e., also a state). This means that s′ is identical to s except for the interpretation mapping, which is changed
according to the update u.

4.2 Semantics of Sequential Programs

Definition 13 (Semantics of sequential programs) The semantics of sequential programs ρ1(p) is the small-
est relation satisfying the following conditions. It does not depend on the scheduler.

(Stop)
ρ1(stop) = id

(Atomic block)
ρ1(�p�) = ρ1(p)

(Assignment)
(s,s′) ∈ ρ1( f (t1, . . . , tn) = t) iff the statement f (t1, . . . , tn) := t interpreted as a Java assignment does not
throw an exception6 and s′ = sJ f (t1, . . . , tn) := tK.

(Sequential composition)
(s,s′) ∈ ρ1(pq) iff (s,s′′) ∈ ρ1(p) and (s′′,s′) ∈ ρ1(q) for some state s′′.

(Conditional)
(s,s′) ∈ ρ1(if (v(t)) {p} else {q}) iff either

(1) vals(v(t)) = TRUE and(s,s′) ∈ ρ1(p), or
(2) vals(v(t)) = FALSE and (s,s′) ∈ ρ1(q).

(Loop)
(s,s′) ∈ ρ1(while (v(t)) {p}) iff there is an n ∈ N and there are states s0, . . . ,sn with s = s0 and s′ = sn
such that

(1) for 0≤ i < n, valsi(v(t)) = TRUE and (si,si+1) ∈ ρ1(p), and
(2) valsn(v(t)) = FALSE.

(Lock acquisition)
(s,s′) ∈ ρ1(o(t).<lock>()) iff either
(Case 1: the lock is free)

vals(o(t).<lockcount>) = 0 and vals(o(t).<lockedby>) =⊥

or

vals(o(t).<lockcount>)> 0 and vals(o(t).<lockedby>) = vals(t)

and, in either case,

s′ = s

t
o(t).<lockcount> := o(t).<lockcount>+1 ||

o(t).<lockedby> := t

|

or

6 We do not give a formal definition of when an assignment throws an exception, since it would require formalizing here large
portions of the Java Language Specification. The sequential KeY calculus does exactly this though, and, in our implementation,
we delegate to it the check if an assignment succeeds.
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(Case 2: the lock is taken)
vals(o(t).<lockcount>)> 0 and vals(o(t).<lockedby>) 6= vals(t) with s′ = s.

(Lock release)
(s,s′) ∈ ρ1(o(t).<unlock>()) iff either

(Case 1: lock depth not yet exhausted)

vals(o(t).<lockcount>)> 1
vals(o(t).<lockedby>) = vals(t)

s′ = s

t
o(t).<lockcount> :=
o(t).<lockcount>−1

| or

(Case 2: lock depth exhausted)

vals(o(t).<lockcount>) = 1
vals(o(t).<lockedby>) = vals(t)

s′ = s

t
o(t).<lockcount> := 0 ||

o(t).<lockedby> :=⊥

|

4.3 Semantics of Concurrent Programs

To make specifying the semantics of if-statements easier we assume that every thread steps through both the
then- and the else-part of all if-statements. Yet the thread can only change the state if it is in the “right” part
and executes NOPs otherwise. The path condition tells us if we are in the right part.

Definition 14 (Path condition of a position in program) Let k be a position of an atomic sub-program in a
non-atomic program p. Let this position occur within the scope of n ≥ 0 (nested) if-statements in their then-
or else part. Let v1, . . . ,vn be the conditions of these if-statements.

Since, by definition, the local variable vi does not occur in the then- or else-part of the ith if-statement, its
value is not changed during the execution of the if-statement after it has been evaluated.

We define the path condition of position k in program p as the formula:

path(k, p, tid) = B1∧ . . .∧Bn ,

where

Bi =

{(
vi(tid) = TRUE

)
, if k is in the then-part of the ith if-statement(

vi(tid) = FALSE
)
, if k is in the else-part.

Thus, a thread t will execute the atomic program at k within p iff path(k, p, t) holds.

Example 6 The path condition of the statement l=r; in the program

if (a) {if (b) {} else {l=r;}} else {}

for a thread t is
a(t) = TRUE∧b(t) = FALSE .

Our next goal is to define the semantics of concurrent programs ρ(·). The base for this is the semantics of
sequential programs ρ1(·). We use ρ1(·) to describe the first step in the execution of a concurrent program, as
scheduled by the scheduler function. All further steps of the concurrent program are handled by recursively
repeating the process.

Definition 15 (Semantics of concurrent programs) The semantics ρ(p) of a concurrent program p is in-
ductively defined as the smallest relation such that:

– (s,s) ∈ ρ(p) if no thread of p is enabled in s, i.e., sched =⊥ in s.
– (s,s′) ∈ ρ(p) if some thread of p is enabled in s , and

(1) sched = tid in s
(2) tid ∈ pos(i) in s (we assume there is always exactly one such i, cf. Note 1)
(3) q is the atomic sub-program at position i in p
(4) s |= path(i, p, tid),
(5) (s,s′′) ∈ ρ1(q∗(tid)) for a state s′′
(6) (s′′Jpos(i) := pos(i)\{tid}||pos(i+1) := pos(i+1)∪{tid}K,s′) ∈ ρ(p)
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(a) concrete data (b) symbolic data

Fig. 2 Explored thread trajectories in a program

– (s,s′) ∈ ρ(p) if some thread of p is enabled in s , and
(1)-(3) as above
(4) s 6|= path(i, p, tid),
(5) there is a state s′′ = sJpos(i) := pos(i)\{tid}||pos(i+1) := pos(i+1)∪{tid}K
(6) (s′′,s′) ∈ ρ(p)

5 A More Verification-Friendly Version of MODL

The logic presented so far already gives a complete account of multi-threading for the chosen language frag-
ment and even allows symbolic execution of programs. It has two deficiencies though:

– The threads involved have to be explicitly enumerated. Configurations are sets of thread ids, even though
the concrete ids are actually not important. This circumstance makes it impossible to make statements
about an unbounded (fixed but unknown) number of threads.

– Transitions are always totally ordered (resulting in proof branching), even if they are independent. Con-
sider two threads τ1 and τ2 that are ready to be scheduled at the same position. We have no choice but
to perform a case distinction which one will run first, even if this choice is not important. Since we are
dealing with symbolic data, this distinction is seldom important. Nonetheless, we have to choose, which
prevents us from verifying programs with an unbounded number of threads.

To overcome these deficiencies, we have developed a more refined logic where configurations are not enumer-
ated, but described algebraically. Efficient laws for reasoning about these descriptions complete the picture.
The basis for the efficiency gain is symbolic thread symmetry.

5.1 Extending Symmetry Reduction

Symmetry reduction is a well-known idea that different threads with the same properties (which boil down
to local data and program counter) need not be distinguished. Most model-checking frameworks use some
sort of symmetry reduction to prune the state space. This is described prominently, for instance, in [32] (the
Bogor tool) and [36] (on-the-fly model-checking with TVLA). Due to their nature, these approaches only
apply symmetry reduction to threads with exactly the same concrete local data (inapplicable in Figure 2a). In
a deductive verification system we can give this idea a new twist.

We know that proofs about a program have significantly fewer cases than the program possible inputs. In
other words, even threads with different local data will exhibit the same behavior in terms of their execution
path through the code. The number of different paths is, furthermore, finite and relatively small; it is bounded
by the shape of the program text.7

Since we are executing programs symbolically, we are already exploring more paths than indicated by any
concrete execution. Having paid the price in case distinctions, we might as well reap the benefits and identify
threads with different local data (Figure 2b). With this technique, we can in many cases eliminate the necessity
of considering different orderings of threads that have reached the same position within the program. Together
with exploiting atomic and independent code, this makes deductive verification of concurrent systems feasible.

7 Remember that we only consider atomic loops, which can be compressed into a single (complex) computation step.
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5.2 Expressing Unbounded Concurrency

We “force” each thread to linearly traverse the program: There is no jumping back (except within an atomic
loop, cf. Note 2), and each thread visits each position at most once (never, if it gets stuck along the way in an
atomic loop, or upon lock acquisition).8 Assuming threads with tids 1, . . . ,n, it is clear that for every position i,
there is a permutation πi : {1 . . .n} → {1 . . .n}, which describes the order in which the threads are scheduled
at this position (should they reach it).

Given these permutations, it is sufficient to know how many threads are at each position, to fix the ex-
act thread configuration as defined so far in Def. 5. Configurations with m positions can be now written as
(π0,π1:k1, . . . ,πm−1:km−1,km), where π0, . . . ,πm−1 are terms representing the permutations and k1, . . . ,km are
terms representing the number of threads. We give the details of how the two notations are related in the
following.

5.3 Describing Thread Configurations

Definition 16 (Thread configuration) Configurations with explicit tids were introduced in Def. 5. We now
overload this term with the following definition. Unless explicitly stated otherwise, in the following, all con-
figurations refer to this formulation.

A thread configuration for a program p is a family of non-rigid functions

π
p
i : N→T for i ∈ {0, . . . ,size(p)−1}

together with a non-rigid function
posp : {1, . . . ,size(p)}→ N .

πi is a permutation of the set of tids T , encapsulating the scheduler decisions at position i.9 pos(i) is the
number of threads currently available for scheduling at position i.

In order not to clutter notation, we will omit the program index and just write πi and pos. The program
they refer to is always clear from the context. As before, we also often present configurations as inlined within
programs. This time we limit ourselves to the values of pos. Since we never deal with concrete values of πi,
we omit them when stating configurations and simply imply their existence.

Example 7 Consider a program of size four with 2, 3, 5 and 7 threads waiting at each position respectively.
The thread configuration of this program consists of the non-rigid function pos (with pos(1) = 2, pos(2) = 3,
pos(3) = 5, pos(4) = 7), and the four non-rigid “permutation” functions π0, . . . ,π3 (whose values we do not
know). Altogether there are 17 threads.

If we concentrate on position 1, we can see that 3+5+7 = 15 threads have already passed this position
and the next one to execute will be the 16th in count. If we now concentrate on position 2, we can see that
5+7 = 12 threads have already passed this position and the next one to execute will be the 13th in count.

Definition 17 (Post(·)) For a given (implied) program p and a position i ≤ size(p), we define a predefined
non-rigid function Post(i) with the semantics fixed by:

Post(i) =

{
pos(i) if i = size(p), or if the statement at position i in p is stop
pos(i)+Post(i+1) otherwise.

Post(i) is the number of threads in p that have already passed position i in the current state; though only
threads in the thread class associated with i are counted. If there is only one thread class, the situation is
simpler:

Post(i) = pos(i+1)+ . . .+pos(size(p)) .

8 This does mean that threads can end up in “wrong” parts of if-then-else statements. To preserve the original semantics of
the program, we define that the state is not changed by the program while its control flow is in the “wrong” part.

9 The “ghost position” 0 will be explained later.
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Example 8 (Example 7 continued) So, in our example Post(2) = 5+7 = 12. The next thread scheduled at po-
sition 2 is the (Post(2)+1) = 13th thread. But exactly which one is the 13th? Here the permutation functions
come into play. The exact tid of the thread scheduled to run next at position 2 is given by π2(Post(2)+1) =
π2(13). This way we can talk concisely about thread orderings even if we do not know them exactly.

The same way we can write configurations where the number of threads is not a concrete number but
a variable. This very expressive form of writing allows us to formulate rules that are mostly agnostic of
scheduler decisions, as they are hidden inside the permutation functions. What we need for a complete calculus
are then the usual algebraic properties of permutations and axioms of their interplay.

As mentioned above, the pos and the πi functions completely fix the thread lineup. We now state exactly
how, by defining the function posγ which in any given state produces an enumerative configuration in the
sense of Def. 5.

Definition 18 (Configuration concretization) A concretization function (of size n) is a predefined non-rigid
function

posγ : {1, . . . ,n}→ 2T

with the semantics fixed by

posγ(i) =
{

πi−1(1), . . . ,πi−1(Post(i−1))
}
\
{

πi(1), . . . ,πi(Post(i))
}

.

If i is the last position in a thread class, then the subtrahend (second term) is omitted.

The intuition behind this definition is the following. The threads waiting at position i are exactly those that
have already passed the position i−1, but excluding those that have already moved on past i.

At this point, the necessity for a ghost position number zero becomes apparent. While we never need to
know pos(0), the permutation function π0 is needed to give identity to the threads waiting at position one.
In some sense, it provides for canonical ids for all threads in a configuration, regardless of their position. In
Example 7, the seventeen threads present in the system draw their ids from the set {π0(1), . . . ,π0(17)}.

Example 9 (Example 7 continued) We now translate the four integers and the four permutations from above
into an enumerative 4-set configuration:


posγ(1),
posγ(2),
posγ(3),
posγ(4)

=



{
π0(1), . . . ,π0(17)

}
\
{

π1(1), . . . ,π1(15)
}
,{

π1(1), . . . ,π1(15)
}
\
{

π2(1), . . . ,π2(12)
}
,{

π2(1), . . . ,π2(12)
}
\
{

π3(1), . . . ,π3(7)
}
,{

π3(1), . . . ,π3(7)
}



5.4 New Scheduler Formalization

Since we are aiming towards identifying all threads that have reached a certain position within the program,
we wish to decompose the scheduling function into two components: the position choice function P and the
thread choice functions πi. In the following we will be restating the important definitions of concrete MODL
primarily in terms of positions instead of in terms of threads.

The main component of the new scheduler formalization is the position choice function P . It returns
the position from which the next thread will be scheduled in the current state—or ⊥, if no enabled posi-
tions (⇒ Def. 19) remain.

Putting P together with the permutations introduced in the previous section, we obtain the following
decomposition of the scheduler function (for non-disabled configurations):

sched = πP(Post(P)+1) . (4)
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Position choice function characterization In this section we state axioms about the position choice function,
but first we need to define when a position is enabled. Informally, position i is enabled in a configuration iff
its tid set is not empty and its statement is enabled (⇒ Def. 8) for some thread at this position.

Definition 19 (Position enabledness) We introduce a non-rigid predicate enabledp(i) capturing when a po-
sition i is enabled in a program p (which we will omit, as it is clear from the context). We declare the predicate
predefined, and its semantics is given by the following equality:

enabled(i) = ∃t.
(

t ∈ posγ(i)∧
(
path(i, p, t)→ enabled(p(i), t)

))
.

Note 3 In many cases the existential quantifier can be trivially eliminated. A stop statement is never enabled,
while for assignments, atomic blocks, and lock releases, the statement is always enabled (⇒ Def. 8), and the
above equality simplifies to

enabled(i) = ∃t. t ∈ posγ(i) ,

which means nothing else than
enabled(i) = pos(i)> 0 .

A similar simplification applies when all threads compete for the same lock o (assuming absence of reentrant
locking and the same path condition). Then enabled(i) becomes

pos(i)> 0∧o.<lockcount>= 0 .

These are exactly the cases of full symmetry between threads.

Having defined position enabledness, we now axiomatize the position choice function. To achieve an
adequate scheduler representation, the position choice function is subject to the following axioms:

– Only valid positions (or ⊥) are returned:

P =⊥ ∨ 1≤P < size(p). (5)

This axiom effectively amounts to a disjunction over the positions of p, which during the proof gives rise
to a case distinction. Note that size(p) is never returned, since the last position must be a stop, which is
never enabled.

– The non-⊥ values of P are further restricted to the positions enabled in a given configuration:

P 6=⊥→ enabled(P) . (6)

– P may only return ⊥ if no position is enabled:

P =⊥→
∀i.
(
1≤ i < size(p)→¬enabled(i)

)
.

(7)

Thread choice function characterization Each thread choice function πi is in every state an injective mapping
from N to the set of tids T (we assume there are infinitely many thread ids). The injectivity is based on the
fact that no thread can pass the same position twice as we have ruled out non-atomic loops. Formally:

πk(i) = πk( j) iff i = j . (8)

While it is our goal to assume as little about the thread choice functions as possible, in reality they are
not completely arbitrary. The thread choice function at position i can only choose threads available at this
position.

πi(Post(i)+1) ∈ posγ(i) (9)

This constraint ties the choice at position i to the choices made at previous positions. Our calculus uses the
axioms presented here to gather a constraint on the scheduler as it explores the behavior of the program.
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Note 4 For efficient reasoning, the formula πi(Post(i)+1) ∈ posγ(i), which is shorthand for

πi(Post(i)+1) ∈
{

πi−1(1), . . . ,πi−1(Post(i−1))
}
\
{

πi(1), . . . ,πi(Post(i))
}

,

can be simplified. The subtracted term can be safely dropped if we recall injectivity of πi. Together with (8) it
is sufficient to demand that:

πi(Post(i)+1) ∈
{

πi−1(1), . . . ,πi−1(Post(i−1))
}

.

Finally, the threads of different thread classes are never confused. If there is a stop statement at position b
in a program, then

∀i, j,x,y.
(
i < b∧ j ≥ b → πi(x) 6= π j(y)

)
.

New definition of program semantics In parallel to Def. 15, we now state a new definition of program seman-
tics.

Definition 20 (Semantics of concurrent programs) The semantics ρ(p) of a concurrent program p is in-
ductively defined as the smallest relation such that:

– (s,s) ∈ ρ(p) if no position of p is enabled in s, i.e., P =⊥ in s.
– (s,s′) ∈ ρ(p) if some position of p is enabled in s , and

(1) tid = πP(Post(P)+1) in s
(2) q is the atomic sub-program at position P in p
(3) s |= path(P, p, tid),
(4) (s,s′′) ∈ ρ1(q∗(tid)) for a state s′′
(5) (s′′Jpos(P) := pos(P)−1 ||pos(P +1) := pos(P +1)+1K,s′) ∈ ρ(p)

– (s,s′) ∈ ρ(p) if some position of p is enabled in s , and
(1)-(2) as above
(3) s 6|= path(P, p, tid),
(4) there is a state s′′ = sJpos(P) := pos(P)−1 ||pos(P +1) := pos(P +1)+1K
(5) (s′′,s′) ∈ ρ(p)

6 A Calculus for MODL

6.1 Calculus Overview

To prove formulas of MODL, we developed a sequent calculus. A sequent is of the form Γ =⇒ ∆ , where Γ

and ∆ are sets of formulas. Its informal semantics is the same as that of the formula
∧

φ∈Γ φ →
∨

ψ∈∆ ψ .
A rule schema is of the form

P1 P2 · · · Pk

C
(k ≥ 0)

where P1, . . . ,Pk and C are schematic sequents, i.e., sequents containing schema variables. As common in
sequent calculus, the direction of entailment in the rules is from premisses (sequents above the bar) to the
conclusion (sequent below), while reasoning in practice happens the other way round: by matching the con-
clusion to the goal.

The invariant rule in Section 6.6 has to be applied exactly as shown. From all other rules we have omitted
the usual context Γ and ∆ , as well as a sequence of updates U , which can preceed the formulas involved. The
modality 〈[·]〉 can mean both a diamond and a box, as long as this choice is consistent within a rule.

The calculus is built from the following newly-developed components:

A. rules for symbolic execution of concurrent programs (interleaving and symmetry reduction) (⇒ Sect. 6.3)
B. rules for reasoning about scheduling functions (permutations) produced by Component A (presented as

axioms in Sect. 5.4)
C. concurrent invariant rule (not needed for completeness) (⇒ Sect. 6.6)
D. unfolding rules for translating Java to MODL (⇒ Sect. 6.2)
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Java statement unfolded form

o.a=u.a++; v=u.a; u.a=v+1; o.a=v;

if (o.a>1) {α} else {β} v=o.a>1; if (v) {α ′} else {β ′}

while (o.a>1) {α} v=o.a>1; while (v) {α ′ v=o.a>1;}

synchronized(o) { α }† o.<lock>(); α ′ o.<unlock>();

v is in each case a fresh local variable of appropriate type

† The correct way to unfold a synchronized block is actually try {o.<lock>(); α} finally {o.<unlock>();},
but since we do not allow catching exceptions at the moment, we are using a simpler version.

Table 2 Examples of unfolding Java programs

as well as the pre-existing components of the sequential KeY calculus:

1. FOL rules, reasoning about equality and arithmetics, induction
2. rules for symbolic execution of atomic sequential program fragments produced by Component A
3. invariant rule for sequential loops
4. method contract rules (further modularization)
5. rules for simplification and application of updates, which are produced by Component 2 (efficient aliasing

treatment)

The Components 1–5 have been borrowed (with very minor modifications) from the stock KeY system.

6.2 Program Unfolding: Translating Java to MODL

Our calculus is designed for verification of MODL programs. In the following we sketch a mapping from Java
programs satisfying the requirements given in the introduction to MODL. The mapping is such that the Java
program and its counterpart in MODL perform the same state transition: if started in the same state both will
either terminate in the same state or not terminate at all. Thus, if the MODL program can be verified, then the
original Java program is correct as well.

The mapping is such that the Java program and the result in MODL have the same input/output relation.
If the MODL program can be verified, then the same can be assumed about the Java program.

Translating Java to MODL is a two-step process. First, we completely unfold the Java program using a
special rule set in KeY. The result is a more fine-grained Java program that is semantically equivalent to the
original. Then, we use a simple transformation from the unfolded program into MODL.

Unfolding the Java program For a concurrent Java program α , the unfolded Java program α ′ satisfies the
following conditions:

1. α ′ is trace-equivalent to α (w.r.t. vocabulary of α)
2. all occurring expressions are in normal form, i.e., it is no longer possible to factor out subexpressions by

means of fresh local variables
3. each assignment is atomic (i.e., updates at most one heap location)
4. the conditions of if-statements and loops are fresh local variables
5. the conditions of if-statements do not occur in the then- or else-part of the statement
6. method calls are inlined, if necessary together with extra conditionals to simulate dynamic binding.

Examples of concurrent program unfolding are given in Table 2. To achieve this effect, we utilize the rules
that are already part of the sequential KeY calculus. These rules introduce fresh local variables and additional
assignments. Furthermore, instance creation is already modeled by assignment to ghost fields in the KeY
calculus, and method implementations are inlined.

We have manually inspected the KeY rule base identifying the rules that perform unfolding. Syntactically,
this set of rules can be very closely approximated as a set of rules that match programs, but do not produce
updates or case distinctions. Minor fine-tuning was subsequently performed to ensure the atomicity condition
of assignments. We have also checked that no rules “swallow” intermediate states, i.e., perform optimizations
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step

=⇒P = i
path(i, p, tid) =⇒ 〈[S∗(tid)]〉〈[α{n−1}S{k+1}ω]〉φ
¬path(i, p, tid) =⇒ 〈[α{n−1}S{k+1}ω]〉φ

=⇒ 〈[α{n}S
↑

position i in p

{k}ω]〉φ

Fig. 3 The concurrent symbolic execution rule

like replacing i++;i--; by a NOP. The resulting rules were then pooled in a special unfolding strategy of the
prover.

Translating unfolded Java into MODL After the program has been completely unfolded, it almost satisfies
the syntax requirements of MODL. The biggest missing piece is the atomicity requirement for loops. The
user must declare code sections containing loops as atomic. More atomic sections can be introduced in order
to improve proof performance. In both cases, one needs to carry out further justification (see Section 8.3 for
an example). Finally, it remains to compose different thread classes by means of stop statements, add initial
thread configurations and, in general, formulate the proof obligation.

6.3 The Basic Rules of Concurrent Execution

The calculus presented in the following makes extensive use of the axioms given previously. The axioms are
the constraints on the interpretation of predefined functions and predicates given in their definitions. These
axioms can be added to the antecedent of a proof goal at any time. Among symbols subject to axioms are
enabledness predicates (⇒ Def. 19), path conditions (⇒ Def. 14), scheduler functions (⇒ Sect. 5.4), etc.

Figure 3 shows the main rule of MODL calculus. The rule shows how to symbolically execute any atomic
statement that is not a lock acquisition or release. In the rule, α and ω denote unchanged program parts,
and i is the position of the executed atomic statement S (in the overall program p). S∗(tid) is the sequential
instantiation (⇒ Def. 4) of S for the currently running thread tid, which is an abbreviation for:

tid = πi(Post(i)+1) .

The formula path(i, p, tid) is the path condition (⇒ Def. 14) of the statement S in p for thread tid. P is the
position choice function, and the first premiss encodes the scheduler decision to schedule a thread at position i
next. Since the scheduler behavior is in general unknown, this rule is usually applied after a case distinction
over possible values of P . These are, in turn, dictated by the scheduler axioms (⇒ Sect. 5.4).

After applying the step rule, the sequential program S∗(tid) has to be tackled by the rules of the sequential
KeY calculus. Eventually, it will be reduced to a series of updates and case distinctions.

Finally, if no position is enabled in a configuration, the program does nothing and the modality can be
removed altogether. The following rule applies:

empty-program
=⇒P =⊥ =⇒ φ

=⇒ 〈[p]〉φ

6.4 A Simple but Complete Verification Example

The following example is popular in the field (e.g., [1]), since it already exhibits a large part of the issues
inherent to thread-based concurrency.

Example 10 Consider a financial transaction system that processes concurrent incoming payments for an
account. We wish to establish that all payments end up deposited, regardless of their number and the order
in which the threads are scheduled. This can be expressed by the following proof obligation, where sum is a
static variable and e is a thread-local variable containing the payment amount.

∀n. {sum := 0}〈{n}�sum=sum+e;�{}〉(sum=
n

∑
i=1

e(π0(i))) (10)
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Note that for presentation purposes we have abused the programming language by writing an assignment
with two heap accesses. This shorthand is permissible here, since the assignment is protected by an atomic
block. This protection ensures that the assignment a=sum+e;sum=a; (as the above is properly written) does
not lead to an atomicity failure (sometimes known as “race”).

As the first step of the proof, we eliminate the universal quantifier from the conjecture, replacing n by a
Skolem constant n0. Then we apply induction. The induction hypothesis is that n0− k transactions have been
completed, while k remain (k is the induction variable, 0≤ k ≤ n0):

{sum :=
n0−k

∑
i=1

e(π1(i))}〈{k}�sum=sum+e;�{n0−k}〉(sum=
n0

∑
i=1

e(π0(i)))

Step case Now we have to prove that the above holds for k+1 transactions, i.e.:

{sum :=
n0−k−1

∑
i=1

e(π1(i))}〈{k+1}�sum=sum+e;�{n0−k−1}〉(sum=
n0

∑
i=1

e(π0(i)))

We apply the step rule once. There is only one position and thus one relevant permutation, namely π1. The
position is enabled (as k+ 1 > 0), and there is indeed only one possible choice P = 1 (per Axioms (5) and
(6) on page 18). Since there are no if-statements, the path condition is simply true. The only remaining goal
is thus:

{sum :=
n0−k−1

∑
i=1

e(π1(i))}〈sum=sum+e;∗(π1(n0−k))〉〈{k}�sum=sum+e;�{n0−k}〉(sum=
n0

∑
i=1

e(π0(i)))

We expand the definition of sequential instantiation. Only the thread-local variable e is affected:

{sum :=
n0−k−1

∑
i=1

e(π1(i))}〈sum=sum+e(π1(n0− k));〉〈{k}�sum=sum+e;�{n0−k}〉(sum=
n0

∑
i=1

e(π0(i)))

We execute the sequential instantiation of the assignment symbolically using the sequential assignment rule.
This generates the update {sum := sum+e(π1(n0− k))}. We have:

{sum :=
n0−k−1

∑
i=1

e(π1(i))}{sum := sum+e(π1(n0− k))}〈{k}�sum=sum+e;�{n0−k}〉(sum=
n0

∑
i=1

e(π0(i)))

Update simplification yields:

{sum :=
n0−k

∑
i=1

e(π1(i))}〈{k}�sum=sum+e;�{n0−k}〉(sum=
n0

∑
i=1

e(π0(i)))

Now, the induction hypothesis for k applies, and the step case of the induction is closed.

Base case The base case k = 0 looks like this:

{sum :=
n0

∑
i=1

e(π1(i))}〈{0}�sum=sum+e;�{n0}〉(sum=
n0

∑
i=1

e(π0(i)))

There are no enabled threads left, so the modality with the program can be removed (rule empty-program),
leaving to prove:

{pos(1) := 0 ||pos(2) := n0}{sum :=
n0

∑
i=1

e(π1(i))}(sum=
n0

∑
i=1

e(π0(i)))

After applying the inner update the goal is:

{pos(1) := 0 ||pos(2) := n0}(
n0

∑
i=1

e(π1(i)) =
n0

∑
i=1

e(π0(i)))
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lock

=⇒P = i

o∗(tid).<lockcount>= 0∨o∗(tid).<lockedby>= tid,
path(i, p, tid) =⇒{o∗(tid).<lockcount> := o∗(tid).<lockcount>+1}

{o∗(tid).<lockedby> := tid}
〈[α {n−1}o.<lock>(){k+1} ω]〉φ

¬path(i, p, tid) =⇒ 〈[α {n−1}o.<lock>(){k+1} ω]〉φ
=⇒ 〈[α {n}o.<lock>()︸ ︷︷ ︸

at position i in p

{k} ω]〉φ

Fig. 4 The rule for lock acquisition

The sum equality follows from commutativity of addition, the injectivity of πi (Axiom 8), and the fact that
{π0(1), . . . ,π0(n0)} = {π1(1), . . . ,π1(n0)}. The latter follows from the definition of position concretization
for position 1 (⇒ Def. 18):

posγ(1) =
{

π0(1), . . . ,π0(n0)

}
\
{

π1(1), . . . ,π1(n0)

}
.

Taking into account that posγ(1) = /0 (as pos(1) = 0), we obtain the desired set equality:{
π0(1), . . . ,π0(n0)

}
=

{
π1(1), . . . ,π1(n0)

}
.

This completes the base case proof.

Use case By this argument we have established the hypothesis for any k ≤ n0. Instantiating k with n0 yields:

{sum :=
0

∑
i=1

e(π1(i))}〈{n0}�sum=sum+e;�{0}〉(sum=
n0

∑
i=1

e(π0(i)))

The sum in the update collapses yielding the Skolemized version of the original conjecture (10).
The lessons learned from the example are: We have verified the transaction mechanism for an arbitrary

number of threads. This is important, since it is easy to devise code that works for n but not for n+1 threads.
The state explosion caused by the potentially different ordering of transactions is efficiently controlled, even
without further knowledge of concrete data. The scheduling-independence of the system does not require a
separate proof before the functional properties can be addressed. Furthermore, it is possible to apply the full
power of deductive reasoning about unbounded data and its implementations (e.g., overflow control for the
integer variables [6]).

6.5 Treating Locking

The lock acquisition method is symbolically executed by applying the rule shown in Figure 4. The structure
of this rule is similar to the step rule for handling normal assignments. Execution is successful if the path
condition is satisfied and the statement is enabled (remember, P = i implies enabled(i)). As before, the
thread performing the acquire has the id tid = πi(Post(i)+1).

Note that the mutual-exclusion semantics of locking does not appear in the rule directly. Rather, it is
hidden in the definition of enabledness (⇒ Def. 19, 8), which in its turn is part of the axiomatization of
position choice P .

A similar rule exists for the <unlock>() method (⇒ Fig. 5), which decreases the lock count and clears
the locked-by status when the count reaches zero. For simplicity we do not clear the <lockedby> flag in the
calculus, since it does not prevent further acquisition of the lock once <lockcount> has reached zero.

Programmers use locking protocols (besides thread-local data) to enforce atomicity of code sections. The
easiest way to prove lock-based atomicity with our calculus is by using the invariant rule. An example of this
is given in Section 8.3.
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unlock

=⇒P = i

path(i, p, tid) =⇒{o∗(tid).<lockcount> := o∗(tid).<lockcount>−1}
〈[α {n−1}o.<unlock>(){k+1} ω]〉φ

¬path(i, p, tid) =⇒ 〈[α {n−1}o.<unlock>(){k+1} ω]〉φ
=⇒ 〈[α {n}o.<unlock>()︸ ︷︷ ︸

at position i in p

{k} ω]〉φ

Fig. 5 The rule for lock release

Recognizing deadlock The presence of locking opens a possibility for deadlock. This can be modeled in the
logic either as “normal” termination (the successor state is the current state) or as non-termination (there is
no successor state). We have decided to model deadlock as normal termination. Nonetheless, it is still very
easy to discern a deadlocked state from a run to completion by checking the final program configuration in
the proof. In case of deadlock, the desired postcondition would also still have to hold, even if the program
becomes disabled prematurely.

6.6 An Invariant Rule

So far, we have used induction for verifying full programs. In the following we present a complementary
rule invariant, which allows tackling each potentially enabled statement separately. Instead of an induction
hypothesis, the user has to state (and then prove) a suitable invariant INV of the system. The rule is:

invariant

Γ =⇒U INV, ∆

INV, P =⊥=⇒ φ

INV, path(1, p, tid(1)), enabled(1) =⇒
〈[p∗(tid(1))1 ]〉{pos(1) := pos(1)−1}{pos(2) := pos(2)+1}INV

...
INV, path(q, p, tid(q)), enabled(q) =⇒
〈[p∗(tid(q))q ]〉{pos(q) := pos(q)−1}{pos(q+1) := pos(q+1)+1}INV

Γ =⇒U 〈[p]〉φ , ∆

(∗)

We assume that the program p has q positions, and p∗(tid(i))i is the sequential instantiation (⇒ Def. 4) of
the atomic program at position i in p. The id of the thread executing the instantiation is as usual: tid(i) =
πi(Post(i)+1).

The first premiss of the rule states that the systems satisfies the invariant in its initial configuration. The
second premiss states that the invariant implies the desired property, once no thread is longer enabled. What
follows are q premisses—one for each position in the program—stating that the “sequential” execution of
the atomic statement at this position preserves the invariant. For each position we can assume its enabledness
predicate and the corresponding path condition.

Comparison to loop invariants At this point it is natural to compare invariant to the standard loop invariant
rule. First, while a loop only has one degree of freedom (the execution of the loop body), a concurrent pro-
gram has one degree of freedom for each potentially enabled position. Every executed statement brings the
system into a new state, and, thus, has to be shown as invariant-preserving. Second, the concurrent invari-
ant formula can—and most probably will—contain control variables, which correspond to the loop counter.
Third, our invariant rule is sound for the diamond modality even without a special termination argument. The
only potential sources of non-termination are loops, which we assume as atomic, and the sequential calculus
fragment is sound and complete for these. For this reason, the above invariant rule is also not needed for the
completeness of the concurrent calculus.
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6.7 Remarks on Calculus Soundness

The soundness of a verification calculus—together with the adequacy of the underlying programming lan-
guage theory—is an issue of great importance. We have validated our calculus (and its implementation) by
testing it as explained below. As with the sequential calculus of KeY, we have not performed a formal or even
mechanized soundness proof. The reason for this decision is an effort trade-off, which we explain in detail
in [24].

We did, however, state a formal semantics of the logic. Among other things, the semantics defines the
scheduler axioms, which are used by the calculus. In fact, we stated two versions of semantics: one with
explicit thread ids (⇒ Sect. 3) and one with permutations (⇒ Sect. 5). This approach has helped us to separate
concerns present in developing a general program logic with a deterministic scheduler and, later, a logic with
symmetry reduction. It is an interesting question why the latter logic correctly simulates the former.

The key to answering this question is the configuration concretization function (⇒Def. 18) and the sched-
uler decomposition equality (4). The configuration concretization function explains how every configuration
with permutations can be translated into a configuration with concrete tids. The scheduler decomposition ex-
plains the same for the scheduler function. Both translations are quite simple, and allow us to fall back on
many common definitions in both logics.

Ultimately, of course, there can be no formal proof that any of these semantics is adequate w.r.t. the
Java Language Specification or the implementation of any given compiler and JVM. In this light, testing is
necessary for obtaining a reliable reasoning system. The sequential KeY calculus is automatically tested with
the compiler test suite Jacks [16] on a regular basis. The suite is a collection of intricate programs covering
many difficult features of the Java language. These programs are executed with the symbolic execution engine
of KeY and the output is compared to the reference provided by the suite.

For reasons probably related to nondeterminism, such test suites do not include multi-threaded programs.
We are testing MODL on our own collection of very simple programs capturing typical multi-threading situ-
ations (threads competing for the same lock, for different locks, in a deadlock, etc.). We are using programs
exhibiting both desired and undesired outcomes from a programmer’s point of view. The programs are sym-
bolically executed in KeY and the proof attempts are manually inspected. Since the calculus is based on
symbolic execution, the results are significant even with minimal specifications.

It would be interesting to investigate how to automate such tests. An automated test suite of concurrency
microbenchmarks would be a very useful tool for ensuring reliability of verification systems and a great
benefit to the field.10

7 Implementation

The changes w.r.t. a stock KeY system amount to about 3200 lines of code in 56 files. The greatest technical
difficulty by far was a generalization of the rule application engine. From the very beginning the KeY system
was designed to apply program-manipulating rules only at the beginning of a program. This limitation had to
be lifted in order to support multi-threaded execution.

Specification Verification problems are specified in Dynamic Logic and input to the prover as so-called dot-
key files [7]. The new keyword \local distinguishes thread-local from static variables in declarations. Thread
configurations are specified with updates to the non-rigid function pos.

The calculus rules For efficiency reasons, the step rule is implemented slightly differently from the formu-
lation shown in Section 6.3. There is no premiss =⇒P = k. Instead the implementation follows the pattern
of the invariant rule and automatically performs a case distinction over all positions. The rule is shown in
Figure 6. Per position at least two subgoals are generated: one for the positive and one for the negative path
condition. In the positive case, a rule from the sequential calculus is matched to the position. The rule de-
scribes the effect on the state resulting from executing this position. This effect may include generating an
update or producing further case distinctions, e.g., to check for a null reference. An additional subgoal is
added for the case that no position is enabled.

10 The existing catalogs and samplers of multi-threading bug patterns such as [8, 11] have a related but slightly different focus.
They are targeted primarily towards testing the efficiency of bug-finding tools.



26 Bernhard Beckert, Vladimir Klebanov

step (impl.)

∀i. (1≤ i≤ q→¬enabled(i)) =⇒ φ

path(1, p, tid(1)), enabled(1) =⇒
〈[p∗(tid(1))1 ]〉{pos(1) := pos(1)−1}{pos(2) := pos(2)+1}〈[p]〉φ

¬path(1, p, tid(1)), enabled(1) =⇒
{pos(1) := pos(1)−1}{pos(2) := pos(2)+1}〈[p]〉φ

...
path(q, p, tid(q)), enabled(q) =⇒

〈[p∗(tid(q))q ]〉{pos(q) := pos(q)−1}{pos(q+1) := pos(q+1)+1}〈[p]〉φ

¬path(q, p, tid(q)), enabled(q) =⇒
{pos(q) := pos(q)−1}{pos(q+1) := pos(q+1)+1}〈[p]〉φ

=⇒ 〈[p]〉φ

Fig. 6 Implementation of the step rule

Automation Proof search is automated by the usual strategies of the KeY prover. We have extended the main
strategy with a further parameter controlling when the step rule is to be applied automatically:

– never
– until some thread becomes disabled
– without limitation.

The second setting is especially useful when performing induction proofs. In all cases, step is executed with
very low priority, i.e., only after no other rules are applicable and the state description has been simplified as
far as possible.

We have also implemented an unfolding strategy that pools all rules for program unfolding (⇒ Sect. 6.2).
This strategy is only used for preparing proof obligations and is not active during proof search.

8 Verifying Full Functional Correctness of Appending to a StringBuffer

We have applied our system to verify the full functional correctness of a method of the StringBuffer class in
the presence of unbounded concurrency. The class java.lang.StringBuffer is a key class of the standard
Java library that represents a mutable character sequence. Its central method is append(char c), which
appends the character c to the end of the sequence.

We have used the original source code shipped by SUN with the JDK 1.4.2 (shown in Figure 7). The
StringBuffer implementation is backed by a char array, which is initially 16 elements long. Should the
array become full, a new, longer array is allocated and the contents copied. This happens transparently for the
user.

We now describe the verification process as carried out with KeY.

8.1 Specification

A functional specification of the append method can be given as:

〈strb = new StringBuffer();〉 ∀n.(
n > 0→ 〈{n}strb.append(c);{0}〉strb.count= n∧

∀k.
(
0≤ k < n→ strb.value[k]= c(π1(k+1))

))
,

where strb is a static variable of type StringBuffer11 and c is a thread-local char variable.

11 The MODL program definition calls for a local variable here, but the calculus is more liberal in this regard. We used this
liberty to write a simpler proof obligation while still achieving the same effect.
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private char value [];
private int count;

public synchronized StringBuffer append(char c) {
int newcount = count + 1;
if (newcount > value.length)

expandCapacity(newcount );
value[count ++] = c;
return this;

}

private void expandCapacity(int minimumCapacity) {
int newCapacity = (value.length + 1) * 2;
if (newCapacity < 0) {

newCapacity = Integer.MAX_VALUE;
} else if (minimumCapacity > newCapacity) {

newCapacity = minimumCapacity;
}

char newValue [] = new char[newCapacity ];
System.arraycopy(value , 0, newValue , 0, count );
value = newValue;
shared = false;

}

strb.<lock >();
newcount=strb.count +1;
j_1=strb.value.length;
b=newcount >j_1;
if (b) {

j_2=strb.value.length;
j_3=j_2 +1;
newCapacity=j_3 *2;
b_1=newCapacity_ <0;
if (b_1) {

newCapacity=Integer.MAX_VALUE;
} else {

b_2=newcount >newCapacity;
if (b_2) {

newCapacity=newcount;
}

}
b_3=newCapacity <0;
if (b_3) throw new

NegativeArraySizeException ();
newObject=new char[newCapacity ];
src_1=strb.value;
len_2=strb.count;
System.arraycopy(

src_1 ,0,newObject ,0,len_2);
strb.value=newObject;

}
val_1=strb.value;
j_4=strb.count;
strb.count=j_4 +1;
val_1[j_4]=c;
strb.<unlock >();

Fig. 7 Excerpt from the StringBuffer class Fig. 8 Method append(char c) unfolded

Plainly speaking: if n threads are concurrently performing an append on a freshly created shared String-
Buffer object, then all threads will eventually run to completion, and the StringBuffer will contain exactly
the characters deposited by the threads. Furthermore, the characters will fill the backing array in the “natural”
order, i.e., the order induced by the thread scheduling.

After symbolic execution of the StringBuffer creation (in the sequential diamond) and Skolemization,
KeY has reduced the original conjecture to:

Init∧n0 > 0→ 〈{n0}strb.append(c);{0}〉strb.count= n0∧
∀k.
(
0≤ k < n0→ strb.value[k]= c(π1(k+1))

)
, (11)

where n0 is a fresh integer constant and Init is a formula capturing the state after StringBuffer creation. Init
is shorthand for:

strb 6= null∧strb.<lockcount>= 0∧strb.count= 0∧
strb.value 6= null∧strb.value.length= 16∧
strb.value 6= jchar[]::<get>(jchar[].<nextToCreate>) .

The cryptic last conjunct states that the current value array is not aliased to the next char array to be created
and is owed to the way KeY deals with instance creation.

8.2 Unfolding

To proceed with verification, we apply the unfolding strategy (⇒ Sect. 6.2) to the append() call. The imple-
mentation is inlined (together with the expandCapacity() method), and fresh local variables are introduced
to eliminate side effects and make explicit the atomicity granularity of the code. The result is shown in Fig-
ure 8, though exceptions and array creation are still in their folded state for brevity.
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The code also shows a call to System.arraycopy(), which cannot be unfolded. This native method call
can be seen as one big parallel assignment, which is sound under the atomicity proviso proven below. During
symbolic execution, the KeY system translates a call like arraycopy(src,srcPos,dest,destPos,len) into a
quantified update

{for l; 0≤ l < len; dest[srcDest + l] := src[srcPos+ l]} ,

which is a concise way to express a number of updates at once.

8.3 Establishing Atomicity

A method or code block is atomic if its execution is not affected by and does not interfere with concurrently-
executing threads. More formally, a code block β is atomic if for every program execution with final state s,
there is some equivalent (i.e., also ending in s) execution, where β is executed without interruption [12].

There are two main reasons for us wanting to establish atomicity of code sections:

– One reason roots in the limitation of the MODL calculus that all loops must be atomic (i.e., appear within
atomic blocks). In real Java programs, atomicity of code sections is implemented implicitly with locking
or thread-local data encapsulation. Thus, it is necessary to prove that every such implementation is indeed
correct, and no unsoundness is introduced by putting loops into explicit atomic blocks.

– The second reason is to coarsen the interference granularity of programs and simplify reasoning about their
concurrent behavior. It is often useful to separate concerns, i.e., to establish atomicity of code sections first,
and then use this fact in further proof of functional correctness.

In MODL, we prove a sufficient condition for atomicity. A code block β is atomic, if the following holds
throughout program execution:

0≤∑
i∈C(β )

pos(i)≤ 1 , (12)

where C(β ) is the set containing at least (a) all program positions of β and (b) all positions that access
the same shared state as β 12. This condition ensures that whenever some thread could execute a statement
potentially interfering with β , β has either not yet started or has already finished.

We now use the invariant rule to show that append() can only be executed by one thread at a time (on the
same StringBuffer object) and thus establish its atomicity. We want to show that the configuration never
has more than one thread between its second and the last but one position:

0≤ N ≤ 1, where N =
q

∑
i=2

pos(i) .

For the proof to succeed, the above has to be strengthened to13

INV ≡ 0≤ N ≤ 1∧
(
N > 0↔ strb.<lockcount>> 0

)
.

This invariant clearly holds in the initial state, since both N and <lockcount> are zero. Statements at
positions 2 . . .q preserve the invariant, since they cannot increase the value of N, as only the statement at
position 1 can. Finally, the locking statement at position 1 also preserves the invariant. To show this, we prove

INV, path(1, p, tid(1)), enabled(1) =⇒
〈[strb.<lock>();∗(tid(1))]〉{pos(1) := pos(1)−1}{pos(2) := pos(2)+1}INV .

We perform a case split:

– If the lock is available (i.e., strb.<lockcount> = 0), then INV in the antecedent simplifies to N = 0.
After the symbolic execution of lock acquisition and update application, both N and strb.<lockcount>
are equal to 1, and thus INV holds again.

– If the lock is not available, then we get a contradiction in the antecedent between strb.<lockcount>> 0
and enabled(1). The goal is discharged.

12 This information is typically available in form of modifies/reads clauses for methods.
13 For clarity, we elide the irrelevant details related to potentially reentrant locking.
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Per this invariant, once a thread has entered the method it will run to completion without interference.
Thus, the method is atomic, and we can elide locking, replacing it by an atomic block. Our conjecture be-
comes:

Init∧n0 > 0→ 〈{n0}�strb.append1(c);�{0}〉strb.count= n0∧
∀k.
(
0≤ k < n0→ strb.value[k]= c(π1(k+1))

)
, (13)

where the method append1(c) (shown here folded) is identical to append(c) save for the removed locking
operations.

8.4 Establishing Functional Correctness

So far, we know that the method is correctly synchronized, but is it also functionally correct? Using the Java-
faithful bounded integer semantics of KeY, we have, of course, discovered that the specification shown above
is not quite right, as it holds true only for n0 < 231. Trying to insert more characters into a StringBuffer
results in an ArrayIndexOutOfBoundsException. This bound may seem of little practical importance, but
it is an instance of a general problem. Concurrent access to bounded data structures is likely to result in subtle
bugs, even in the presence of proper synchronization.

Since there is no way to fix the method, we have to amend the conjecture with a pre-condition limiting the
value of n0. Please note that this is not due to a limitation of our proof method. We now prove full functional
correctness with the following, quite natural invariant:14

INV ≡ pos(1)+pos(2) = n0∧n0 < 231∧pos(2)≥ 0∧
strb.count= pos(2)∧
∀k. (0≤ k∧ k < pos(2)→ strb.value[k]= c(π1(k+1)))∧
strb 6= null∧strb.value 6= null∧
strb.value.length≥ strb.count∧
strb.value 6= jchar[]::<get>(jchar[].<nextToCreate>) .

Applying the invariant rule to (13) produces three premisses.

Premiss 1: invariant initially valid In this premiss we need to prove the sequent Γ =⇒U INV, ∆ . Here, Γ

contains just Init∧ (n0 > 0)∧ (n0 < 231), and ∆ is empty. The update U is given by the thread configuration
of the original program. The formula 〈{n0}�strb.append1(c);�{0}〉φ is shorthand for

{pos(1) := n0 ||pos(2) := 0} 〈�strb.append1(c);�〉φ .

The proof obligation is thus:

Init∧n0 > 0∧n0 < 231 =⇒
{pos(1) := n0 ||pos(2) := 0}

(
pos(1)+pos(2) = n0∧n0 < 231∧pos(2)≥ 0∧
strb.count= pos(2)∧
∀k. (0≤ k∧ k < pos(2)→ strb.value[k]= c(π1(k+1)))∧
strb 6= null∧strb.value 6= null∧
strb.value.length≥ strb.count∧
strb.value 6= jchar[]::<get>(jchar[].<nextToCreate>)

)
The quantifier in the succedent has an empty range (due to the update pos(2) := 0), and further basic rewriting
renders the sequent proved. The KeY system finds the proof automatically in 67 steps.

14 It is also possible to use induction in a manner similar to Example 10.
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1 public synchronized StringBuffer append(StringBuffer sb) {
2 if (sb == null) {
3 sb = NULL;
4 }
5
6 int len = sb.length (); // (A)
7 int newcount = count + len;
8 if (newcount > value.length)
9 expandCapacity(newcount );

10 sb.getChars(0, len , value , count); // (B)
11 count = newcount;
12 return this;
13 }

Fig. 9 Atomicity failure in StringBuffer

Premiss 2: invariant implies postcondition upon termination In this premiss we need to prove the sequent
INV, P =⊥=⇒ φ , where φ is the postcondition. Since the atomic block is the only position, P =⊥ is equiv-
alent to pos(1) = 0 (per Axiom (7)). The proof obligation is thus:

pos(1)+pos(2) = n0∧n0 < 231∧pos(2)≥ 0∧
strb.count= pos(2)∧
∀k. (0≤ k∧ k < pos(2)→ strb.value[k]= c(π1(k+1)))∧ . . . ,
pos(1) = 0 =⇒

strb.count= n0∧
∀k.
(
0≤ k < n0→ strb.value[k]= c(π1(k+1))

)
,

This sequent is easily discharged, since pos(1)+pos(2) = n0 together with pos(1) = 0 implies pos(2) = n0.
The KeY system finds the proof automatically in 108 steps.

Premiss 3: invariant preservation In this premiss we need to prove

INV, path(1, p, tid(1)), enabled(1) =⇒ 〈[p∗(tid(1))1 ]〉{pos(1) := pos(1)−1}{pos(2) := pos(2)+1}INV

which is a purely sequential proof obligation. After expanding the definitions, the path condition simplifies
to true and the predicate enabled(1) to pos(1) > 0. We also expand the definition of sequential program
instantiation, obtaining the goal

INV, pos(1)> 0 =⇒
〈[�strb.append1(c(π1(pos(2)+1)));�]〉{pos(1) := pos(1)−1}{pos(2) := pos(2)+1}INV

This goal is the most difficult to prove, since it requires symbolic execution of the method, reasoning about
Java-faithful arithmetics, and quantifier instantiation. The KeY system finds the 2898-step long proof auto-
matically in about 30 seconds.

8.5 Towards Thread-Modularity and Further Issues with java.lang.StringBuffer

In this section we show that MODL can be combined with rely-guarantee-style [19] reasoning to achieve
thread-modular verification. We demonstrate the approach using another example from the StringBuffer
class.

The example The StringBuffer class contains another method, append(StringBuffer sb), for append-
ing the content of the StringBuffer sb to the current StringBuffer. The code of this method is shown in
Figure 9. In a closed-world setting, a specification similar to (11) can be verified for this method as well.

The method has two critical points: when the length of sb is queried at (A) and when the characters are
actually copied at (B). The problem with the code is that nothing prevents some other thread operating on sb
to be scheduled between the execution of (A) and (B). The intruding thread may end up removing characters
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step-env

∀i. (1≤ i≤ q→¬enabled(i)),Φ(ē, ē′) =⇒{ē := ē′}φ

Φ(ē, ē′) =⇒{ē := ē′}〈[p]〉φ

path(1, p, tid(1)), enabled(1) =⇒
〈[p∗(tid(1))1 ]〉{pos(1) := pos(1)−1}{pos(2) := pos(2)+1}〈[p]〉φ

¬path(1, p, tid(1)), enabled(1) =⇒
{pos(1) := pos(1)−1}{pos(2) := pos(2)+1}〈[p]〉φ

...
path(q, p, tid(q)), enabled(q) =⇒

〈[p∗(tid(q))q ]〉{pos(q) := pos(q)−1}{pos(q+1) := pos(q+1)+1}〈[p]〉φ

¬path(q, p, tid(q)), enabled(q) =⇒
{pos(q) := pos(q)−1}{pos(q+1) := pos(q+1)+1}〈[p]〉φ

=⇒ 〈[p]〉φ

where ē′ is a fresh symbol

Fig. 10 An environment-aware step-env rule

from sb; the length read at (A) becomes stale and an attempt to copy no-longer-existing characters at (B)
produces an exception.

Note that this scenario does not constitute a data race. The methods length(), getChars(...), and
delete(...) (potentially invoked by another thread) are synchronized, and thus, all access to shared data
of sb is protected by locks. The problem is rather that the lock is released and then re-acquired within
append(sb), violating the application-specific atomicity policy. One can speculate that this was done for
performance reasons.

A step rule for thread-modular verification We let an MODL program be accompanied by an environment.
The environment is specified by its signature ē, which is a vector of program variables that the environment
may modify, as well as a rely condition Φ , which is a formula restricting the actions that the environment may
perform. We require that the rely condition is transitive. This way a single environment “step” can model an
arbitrary number of subsequent environment actions.

We extend the step (impl.) rule from Figure 6 as shown in Figure 10. We have added a new (second here)
premiss capturing interference from the environment. We have also extended the first premiss, demanding that
φ is preserved by the environment once all threads have run to completion.

The example: specification For our example, we start with an environment that allows almost arbitrary mod-
ifications to the StringBuffer objects referenced by the thread-local parameters sb. The rely condition

∀i.(sb(i).<lockcount>= 0∧ sb′(i) 6= null∧ sb′(i).<lockcount>= 0) (14)

specifies that StringBuffer objects may only be mutated when their lock is free, the new value of the sb
reference must be non-null and the object lock is available after the mutation.

The example: atomicity In the presence of an environment, the append method can no longer be modeled
as a single atomic block. Instead, we can split the method body into two atomic blocks encompassing the
statements in the lines 2–6, and 7–12 respectively. The soundness of such coarsening can be proven in a
fashion analogous to (12).

For the atomicity proof, the environment can be modeled as an always-enabled “abstract” thread, whose
updates we split into two parts. One part manipulates the StringBuffer of the “current” thread while respecting
the locking discipline (as specified in the rely condition). The other part manipulates only the objects not
reachable from the current thread. To ensure this separation, we strengthen the precondition of the program to
demand that to-be-appended StringBuffer objects are not aliased. We note that the obtained atomic blocks are
larger than the scope of full synchronization (line 6 and line 10 resp.), as the other statements only operate on
thread-local data.

The fact that the method must be split into two atomic blocks already represents a red flag for its correct-
ness.
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The example: symbolic execution After atomicity coarsening, we can perform symbolic execution in the pres-
ence of environment. This promptly uncovers the problem of the stale length causing an exception. To avoid
the crash, it is necessary either to fix append() by extending the scope of locking sb, or to limit the actions
of the environment, e.g., forbidding removal of characters from StringBuffer objects. Then, it is possible to
verify the program using the invariant rule or induction just as in Section 8.4. The exact property that can be
verified depends, of course, on the strength of the environment specification: the resulting StringBuffer may
contain character sequences originating from the environment.

9 Conclusion and Future Work

We have shown that it is possible to execute multi-threaded programs symbolically while taking full data into
account. This was made possible by an extension of the technique of symmetry reduction. By employing an
explicit scheduler function, our calculus can track full information about state quite efficiently, but permits
abstraction for further improvement. Nondeterministic scheduler choice is adequately modeled by a deter-
ministic function that has a fixed but unknown value. This formalization enables efficient deduction. Relating
different runs of the scheduler is possible by incorporating different “don’t-knows.”

We have performed a mechanized proof of full functional correctness of a piece of real production code.
The proof demonstrates how multi-threading can result in subtle bugs even in correctly synchronized pro-
grams. Currently, we are working on extending the covered Java fragment, in particular on lifting the loop
atomicity limitation. Incorporating the iteration counter as a parameter of the thread choice functions seems
promising in this regard.

It is known that the efficiency of a verification system is bounded to a great degree by the compositionality
of reasoning it offers. We have shown how to combine MODL with rely-guarantee-style reasoning to achieve
thread-modular verification. We also expect no problems in incorporating standard techniques (e.g., [14, 33])
for method-modular verification of multi-threaded Java programs.
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Selected Symbols

Symbol Meaning See

(∗) indicates rules from which the sequent context cannot be omitted Sect. 6.1
⊥ no thread or no position enabled
[·] box modality Def. 10, 11
〈·〉 diamond modality Def. 10, 11
〈[·]〉 schematic modality standing for either a diamond or a box Sect. 6.1
enabled(i) position enabledness Def. 19
enabled(s) statement enabledness Def. 8
enabled(s, t) statement enabledness for a thread Def. 9
K Kripke structure Sect. 4.1
P position choice function (scheduler component) Sect. 5.4
path(k, p, tid) path condition of position k in program p for thread tid Def. 14
πi thread choice function at position i (scheduler component) Def. 16
pos(i) (number of) threads currently available for scheduling at position i Def. 5, 16
posγ configuration concretization Def. 18
Post(i) number of threads past position i Def. 17
ρ transition relation for concurrent programs Sect. 4
ρ1 transition relation for sequential programs Sect. 4
S set of states (of a Kripke structure) Sect. 4.1
sJuK state achieved from state s via update u Def. 12
sched scheduler function Def. 7
size(p) total number of positions in a program p Sect. 3.5
T set of thread identifiers Sect. 3.1
U sequence of updates Sect. 6.1


	Introduction
	Related Work
	Syntax of MODL
	Semantics of MODL
	A More Verification-Friendly Version of MODL
	A Calculus for MODL
	Implementation
	Verifying Full Functional Correctness of Appending to a StringBuffer
	Conclusion and Future Work

