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Abstract. Deductive verification is about proving that a piece of code
conforms to a given requirement specification. For legacy code, this task
is notoriously hard for three reasons: (1) writing specifications post-
hoc is much more difficult than producing code and its specification
simultaneously, (2) verification does not scale as legacy code is often
badly modularized, (3) legacy code may be written in a way such that
verification requires frequent user interaction.
We give examples for which characteristics of (imperative) legacy code
impede the specification and verification effort. We also discuss how to
handle the challenges of legacy code verification and suggest a strategy
for post-hoc verification, together with possible improvements to existing
verification approaches. We draw our experience from two case studies
for verification of imperative implementations (in Java and C) in which
we verified legacy software, i.e., code that was provided by a third party
and was not designed to be verified.

1 Introduction

Formal software verification is the art of proving that a given implementation
conforms to a specification on all possible inputs. Here, we consider deductive
program verification at source code level, which is a precise verification technique
for properties given in an expressive specification language. High precision means
that neither false positive nor false negatives occur; there are no bounds on the
domain; and no approximations or abstractions are needed to apply the technique.

Despite the considerable advances of verification technologies and improve-
ments in the automation of theorem proving throughout the past decade, these
tools are still highly dependent on user interaction to complete proofs.

One interaction paradigm, used by ‘auto-active’ [28] tools, is based on the
user adding the information needed by the prover to the source code: the imple-
mentation is annotated with requirement and auxiliary specifications (e.g., loop
invariants). If the auxiliary annotations are sufficient, this allows the tool to find a
proof automatically (provided that the program actually meets its requirements).

There is a wide range of software verification tools users may choose from,
depending on, e.g., the target programming and specification language, the kind of
properties to be verified and, not least, the interaction paradigm that is followed:
from (mainly) manual proof interaction in tools like Isabelle [30] or HOL4 [32],
to purely auto-active tools such as Dafny [27] or VCC [9]. Taking the middle
ground, tools like Why3 [6] or KeY [1] can be both used in an auto-active fashion
and by manual interaction during the proof process.



Independently of whether an auto-active or an interactive verification style
is used, the need to write formal (auxiliary) specifications has turned out to be
the major bottle-neck (cf. [3]). The amount of specification typically outsizes
the executable code: the ratio is reported to be 3:1 in [2] (measured in tokens),
4:1 in [7] (measured in lines of code), and almost 11:1 in [23] (measured in lines of
proof script). In the light of these case studies, it becomes obvious why post-hoc
verification is often unreasonably expensive: Writing specifications is a major
part of the verification effort anyways, and that part is made more difficult and
laborious if the program was not implemented with verification in mind.

The contribution of this paper is two-fold. Firstly, in Section 2, we discuss
which characteristics of legacy code impede the verification effort and give
examples. Secondly, we discuss how to handle the challenges of legacy code
verification and suggest a strategy for post-hoc verification in Section 3, together
with possible improvements to existing verification tools and methodologies.

Our observations are based on software written in imperative/object-oriented
programming languages (C and Java). The conclusions drawn regarding the
verification of legacy code are thus mainly relevant for other imperative imple-
mentations and only partially applicable to other paradigms like declarative or
functional programming – e.g., while the difficulty to understand legacy systems
applies to both imperative and functional programs, the need to handle shared,
mutable state in specification differs between programming paradigms.

We argue that naive specification strategies that work either purely in a
bottom-up or purely in a top-down fashion are ineffective: A too weak specification
for some module M results in failure to prove properties about client modules in-
voking M ; a too strong specification raises the verification effort beyond necessity.

We claim that, instead, a specification and verification process for legacy
systems must be incremental and iterative. Also, using only a single verification
tool and its methodology predetermines and often unnecessarily restricts the
possible approaches to solve the legacy-verification problem. Instead, a good
verification process supports proof exploration and construction with different
tools; it lets the user apply different analysis and verification techniques for
the various parts of a program and its specification. This choice is particularly
important for legacy verification as the code has not been designed with a
particular verification method or tool in mind.

We draw our experience from two case studies in which we verified (parts
of) legacy software: the PikeOS microkernel [22] (using the VCC tool) and
the sElect voting system [26] (verified with KeY). The PikeOS microkernel is
part of a virtualization concept targeted at embedded real-time systems. It acts
as a paravirtualizing hypervisor to support safety-critical and security-critical
applications and is deployed in industry. The features of PikeOS – being part of
highly safety-critical applications and having a manageable code size – made it a
good choice for deductive verification.

The sElect e-voting system was developed by the group of Ralf Küsters at
the University of Trier [26]. In this distributed system, a remote voter can cast
one single vote for some candidate. The vote is sent through a secure channel



to a tallying server. The server only publishes a result – the sum of all votes for
each candidate – once all voters have cast their vote. The verification goal is to
show that no confidential information (i.e., votes) is leaked to the public.

Although both systems feature concurrent computations, here, we restrict our
considerations to sequential programs. Concurrency poses particular challenges
that are out of the scope of this paper.

2 Why is Deductive Verification of Legacy Code Hard?

In the following we will illustrate some characteristics of legacy systems that
contribute to the difficulty of post-hoc software verification, adding to the inherent
complexity of any deductive verification task. We argue that coming up with the
right specification is difficult already at the level of a single module. Specification
is even more difficult when the right modularization (including any interface
specification) has to be identified based on the legacy implementation. We also
claim that current verification tools and methodologies, when each is used on its
own, are often insufficient for large post-hoc verification tasks, because legacy
code has not been written with a particular verification technique in mind. Thus,
legacy code verification requires choosing appropriate tools and techniques on
a per module basis and for individual specification parts, depending on the
characteristics of the module and the property to be proven.

2.1 Legacy Code is Often Unsuitable for Verification

As part of our verification case studies we identified three causes why legacy
code is hard to verify: (1) legacy code is difficult to understand; (2) the existing
modularization of legacy systems is inadequate for verification and the right
modules are hard to find; (3) implementations of single modules use programming
language features or programming styles that are inherently difficult to verify,
and the code is not written according to best practice of software development.

Both the structure of legacy systems and the implementation of single modules
are often unsuitable for verification. It helps if the system was developed following
best practices for software development; but that does not always lead to verifiable
code. Rather, verifiability has to be considered explicitly when writing software –
if not sufficiently taken into account, the following issues arise.

Legacy code is difficult to understand. As a prerequisite of most of the
tasks in the verification process, the verification engineer has to understand the
problem that the legacy system is trying to solve – in addition to the requirements
to be verified. Understanding the problem at a level of detail needed for producing
a formal requirement specification is often non-trivial.

For both the requirement specification and the auxiliary specification (respec-
tively the user interaction with the prover in an interactive verification tool),
information has to be extracted from (1) existing documentation, which is often
only informal, incomplete or imprecise, or (2) the source code.



Although the source code contains the information needed, this knowledge is
implicit and has to be made explicit by the verification engineer (e.g., in form of
invariants) to be of use for the prover. Determining which information is crucial
for the verification task that cannot be deduced automatically by the prover and
how to adequately formalize the discovered properties is non-trivial.

An example for implicit knowledge in existing, informal documentation is the
description of the effects of a system call in PikeOS that changes the priority of
a thread (up to a bound named MCP), taken from the kernel reference manual:

“This function sets the current thread’s priority to newprio. Invalid or too
high priorities are limited to the caller’s task MCP. Upon success, a call to this
function returns the current thread’s priority before setting it to newprio.”

This description keeps effects caused by concurrency implicit: the system call
is preemptible and another thread may change the thread’s priority before the
function’s return value is assigned. The “old priority” returned thus might not be
what a naive observer might expect who neglects that the system is concurrent.

Establishing the right system modularization is complicated. Ideally,
real-world software would consist of modules that each have a single, clearly
defined purpose, which would separate different concerns and lead to maintainable
code. In reality, maintainability and elegance of an implementation is often not
the first priority but also other quality metrics apply (e.g., efficiency). Software
that is not developed according to best practices is often hard to maintain, more
difficult to understand and analyze, hence also more work for formal verification.

Even if the system was developed according to best practices, the given
modularization of the legacy system (given syntactically by the structure of
methods, classes, etc., or described in the documentation) does often not coincide
with a modularization that is optimal for verification purposes. One of the
subtasks when verifying legacy systems is thus to find a better modularization
for the implementation – this is a complex, iterative process.

Also, for post-hoc verification, the verification engineer can only change and
optimize the modularization within boundaries given by the structure of the
legacy system. Solutions of the modularisation problem are hence mostly stuck at
a local optimum, which limits the suitability for verification that can be obtained.

When a reasonable division of the system into modules is found, the user still
has to come up with the interface specification for each module. As a consequence
of the (globally) suboptimal modularization of the system, the resulting interfaces
and their specification become unnecessarily complicated in contrast to systems
written for verification with a well-chosen structure.

Consider two components that together provide a single functionality to the
rest of the system. If those components are treated for verification as separate
modules, an additional interface is exposed that may be awkward to specify
compared to the specification of a single module containing both components.
In the other direction, combining two separate components that have almost no
interaction on common state leads to specification overhead for describing the
absence of interaction to modularize the verification task (frame problem).



Today, several approaches exist to tackle this problem, among them dynamic
frames, ownership and separation logic. However, these approaches produce
a considerable overhead in both specification and verification. In contrast, if
components can be split into sub-components each operating on disjoint state,
separating them already in the design and implementation phase diminishes the
issue of framing overhead in the proof process.

The problem of writing interface specifications for legacy code is aggravated
by interdependencies between modules. The specification and verification effort
does not scale linearly with the number of modules due to interactions via shared
data structures and common parts of the program states.

For example, in the PikeOS microkernel, implementations of single C functions
are deliberately kept simple to facilitate maintainability and certifiability. The
overall functionality of the kernel is implemented by interaction of many of these
small functions, operating on common data structures (cf. [24]). More generally,
all operating systems have to keep track of the system’s overall state, resulting
in relatively large and complex data structures on which many of the kernel
functions operate conjointly. That this is not an exclusive property of system
software but usual in non-trivial software projects in general is demonstrated by
empirical studies on software complexity metrics (see, e.g., [5]).

As a consequence, interface specifications may have strong dependencies on
each other – namely the joint data structures and their invariants. Finding the
right auxiliary annotations for a single module requires the verification engineer
to consider several modules at once, due to these dependencies.

For legacy systems, the (locally) optimal module structure established for post-
hoc verification is more complicated and, thus, also the interface specification is
more complex compared to systems written for verification. Therefore, each single
attempt to find a suitable interface specification for a single module is also more
complicated for legacy systems. The iterative nature of the specification process
which is needed in case of highly interdependent modules acts as a multiplying
factor for the disparity in specification effort at this local module level.

Single modules are badly written for verification. In the worst case,
real-world code is produced with little care and low quality, resulting in buggy
programs that not only fail to meet their requirements but are also difficult to
analyze. Bugs in programs further increase the complexity of program verification
as they introduce the uncertainty whether a proof cannot be completed due to a
bug in the program or because of missing annotations or ineffective proof search.

Even if a program serves its purpose, the issue that this kind of code is often
barely legible and badly maintainable remains. But even if code is well written in
the sense that it is maintainable and adaptable, it is not necessarily easy to verify.
A typical case is the frequent use of (standard) libraries, because the library
functions may be hard to specify (e.g., string operations). Also, certain language
constructs are notoriously difficult to specify and verify and should be avoided,
e.g., the use of Java’s reflection capabilities.



1 private byte[] getResult() {
2 if (!resultReady()) return null;
3 int[] _result = new int[numberOfCandidates];
4 for (int i=0; i<numberOfCandidates; ++i)
5 _result[i] = votesForCandidates[i];
6 return formatResult(_result);
7 }
8

9 private static byte[] formatResult(int[] _result) {
10 String s = "Result of the election:\n";
11 for( int i=0; i<_result.length; ++i )
12 s += "Number of votes for candidate " + i + ": " + _result[i] + "\n";
13 return s.getBytes();
14 }

Listing 1. Code example from the sElect e-voting system.

Another issue with legacy programs are overly general and flexible imple-
mentations which can be used in a broad range of scenarios – which in the
real system are then actually only used for a single, well-defined purpose (e.g.,
software product lines). If the verification engineer is unaware of this, a complex
specification for the general functionality has to be provided instead of a more
specific variant that clearly communicates the intended purpose of the module.

As an example for code that is written in a way that it is hard to verify,
consider the implementation from the original e-voting system [26] that retrieves
the election result in the server (Listing 1). Several issues are to be noted: (a) The
method getResult() returns a null reference in case it is called in an illegal state
(Line 2). (b) The array containing the number of votes for each candidate is copied
to a fresh instance (Line 5). (c) The result is embedded into a string (Line 12) and
encoded into an array of bytes (Line 13). Item (a) represents a common modeling
pattern, even though in good object-oriented design, it is preferable to raise
an exception. Returning null (or any other error element) does not complicate
verification, but must be reflected in the specification. Item (b) is just superfluous
code – we could pass the original array reference. Both the allocation of a fresh
array and copying the values invokes unnecessary complexity in verification –
and also in the specification since we need an invariant for the loop. Item (c) is
the most serious: The encoding in strings effectively makes verification extremely
difficult, even when support for reasoning about strings is available.

2.2 Lack in Tool Support for Post-hoc Verification

We argue that the issues pointed out so far are not sufficiently mitigated by
supporting measures in most deductive verification tools and methodologies.

Handling large software systems is supported by modular specification and
verification. Modular verification is one of the advantages of deductive verification.
But at the same time, modularity is also essential for deductive verification tools



to scale at all. The need for auxiliary specifications that comes with modularity
can be a drawback. For instance, while KeY supports inlining of method calls –
which is suitable at least for smaller methods – VCC does not provide that option
and the verification engineer has to provide method contracts for all methods.

There is often no good support for inspecting and understanding the interplay
between different modules of a given program, as current deductive verification
tools and methodologies tend to focus on specifying and verifying a single module
at a time. Instead, verification tools should provide a view on dependencies of
module specifications and make effects of local specification changes to the rest of
the system explicit. Already the task of determining which previously completed
proofs have to be re-run after a change to an auxiliary specification that is exported
to other modules is often not sufficiently supported by verification tools. To assist
the user, the integration of KeY into the Eclipse IDE [20] tracks dependencies be-
tween proofs for a system, automatically tries to re-run proofs affected by a change
in either the program or specification and notifies the user of the proof result.

To reduce the effort needed to verify interdependent modules, techniques such
as abstract operation contracts [8] or lazy behavioral subtyping [12] can be used:
The former approach allows to compute and cache parts of the proofs that are
independent of a given concrete specification, while the latter approach simplifies
verification of object-oriented programs by reducing contracts of overriding meth-
ods to those properties actually needed at the call sites of the superclass methods.

Abstraction is another important instrument to handle verification of large
systems. Good abstraction of the behavior of a system helps to focus on important
details of the functionality, and allows for clear and succinct specifications. Poorly
chosen abstractions may complicate verification up to making it impossible. Which
abstraction is appropriate depends on both the system properties to be verified
and on how well the verification tool is able to reason about the abstraction.

To find the right abstraction for a data structure, analyzing its implementation
alone is often not sufficient. Rather, one has to find out which properties of the data
structure are important for verifying the modules using it. While techniques exist
that may help in some cases in finding the right abstractions (such as CEGAR),
these methods are not sufficiently supported in current annotation-based systems.

Moreover, specification-language support for abstractions is often not flexible
enough. For data abstraction, most verification systems feature some kind of
user-defined abstract data types – however, there is a large amount of established
formalisms, like CASL, that should be taken into further consideration when
extending the specification language. For control abstraction, many established
formalisms exist that could be used for one of the abstraction layers on top of the
code, e.g., CSP or abstract state machines. Also, a built-in refinement mechanism
is needed to connect the different abstraction levels.

3 Ways to Successful Post-Hoc Verification

Given the difficulties one faces when applying deductive verification to legacy
code, one may consider a re-implementation of the verification target from scratch



with formal verification in mind. In particular, if full functional verification of
the whole software system is required, this may well lead to less effort than a
legacy code verification. In practice, re-implementation is rarely the best option,
as several reasons call for verification of existing code in its original context in a
legacy system: (1) To be formally verified is not the only quality the software
is measured against; the newly written code has to be, e.g., as efficient or as
maintainable as the legacy version. (2) Existing knowledge of the development
team about the legacy implementation, and also documentation would be largely
rendered worthless in case the software was written from scratch. (3) Often, full
functional verification of the whole system is not necessary as either a smaller set
of important parts of the system or only specific characteristics of the system is
of interest (e.g., security properties such as absence of certain information flow).

Another important point is that the user’s trust in a system to perform as
expected, which has been developed by extensive testing or long-term use, cannot
simply be replaced by the fact that the system has been formally verified.

3.1 A Verification Process Based on Separation of Concerns

To handle the challenge of verifying complex legacy software, we have to split up
and simplify the specification and verification task by decomposing the verification
problem into parts, which we call verification concerns. A concern consists of
some part of the code together with part of its specification. The main goal is
to arrive at a small set of simple concerns that are easy to specify and verify in
isolation – as multiple verification attempts are often required before successfully
completing a single proof and thus repeated effort in user interaction is the
normal case, this isolation prevents propagation of revisions through the rest of
the program and specification. As explained below, concerns are related to but
not identical to the modules of the program to be verified. Moreover, concerns
within one verification project may be formalised using different specification
methods. And they may be intended for different validation methods, which –
besides verification – may include testing or inspection for some concerns.

There are four main strategies that may be applied to handle a concern
C = (S, P ), consisting of a (requirement) specification S and an implementation
part P : decomposition, abstraction, substitution, and local verification.

Decomposition. To decompose a concern (S, P ), the program P is partitioned
into modules and corresponding interface specifications are added for each of
the resulting modules. For example, if we have a proof sketch for the correctness
of P w.r.t. specification S and have identified how different components of P
contribute to its correct operation, we can use decomposition to get a new set of
concerns with (possibly informal) requirements for smaller parts of P .

A special case is decomposing a program P “in situ” by marking out parts of a
method body with specification constructs without affecting the actual code struc-
ture – e.g., in KeY, the user can enclose parts of a method body in a Java block and
give it a contract; this allows to split large methods into more manageable pieces.



Another possibility to isolate functionality of a system is to extract and
aggregate related methods of the implementation in a trait which can then be
reasoned about using an incremental deductive verification approach [10].

Besides dividing the implementation, also the specification can be split up
into different concerns (e.g., termination, information flow properties, functional
properties) or different cases depending on the input. The different execution
paths in the implementation that fit the specification parts may then also be
isolated by choosing a subset of relevant or interesting statements for further
analysis (resulting in a program slice).

That verifying the decomposed concerns implies validity of the original concern
is either another explicit proof obligation in the verification process (i.e., is a
concern itself) or is entailed by a general argument about the decomposition step.

Abstraction. Simplifying a concern by using control or data abstraction allows
for hiding implementation details irrelevant for the underlying reasons of correct
operation of the concern – any details removed in such a way then only appear in
a separate refinement proof obligation, i.e., as additional concern in the process.

Typical examples include the abstraction of non-trivial implementation of
pointer-based data structures by a suitable data type like sequences or sets,
or providing an interface specification for more involved operations which is
underspecified (e.g., replacing pivot selection in Quicksort by random choice).
Also, producing a prototype is a special case of abstraction.

Substitution. Both the program and the specification part of a concern C can be
replaced by a version C ′ that is optimized for further treatment in the verification
process. In this case, all completed proofs that depend on C are rendered invalid
and have to be reinspected and possibly redone with the new concern C ′. In
contrast to prototype construction, however, this approach does not need to
justify the relation between C and C ′. Instead, C ′ is the result of the process.

Local Verification. At some point, the resulting concerns cannot further decom-
posed, abstracted, or substituted. They then have to be verified correct in a local
verification step with a suitable technique. Verification techniques range from
interactive deductive verification, more lightweight automatic static checkers,
up to testing and run-time checking – or simply adding the correctness of the
concern to the set of assumptions made for correct operation of the whole system.

As a prerequisite for verification, the concern has to be prepared (e.g., by trans-
lating the specification S to another specification language – one special case is
formalizing an informal requirement specification of the concern). Lastly, auxiliary
specifications for the concern have to be added and a verification attempt is made.

3.2 Activities in the Concern-centric Verification Process

The defining concepts for a concern-centric verification process are: (1) different
verification and validation methods are used for different types of concerns within



one project; and (2) different operations on the set of concerns are applied in an it-
erative and incremental fashion. How to find the right concerns and how to handle
each concern depends on the program to be verified and the methodology used.

Identify and verify concerns by lightweight techniques. In many cases,
program correctness (or incorrectness) can be judged by automated light-weight
approaches. These approaches are very efficient (in comparison with deductive
verification), but cannot be sound and complete at the same time. Combining
deductive verification with one of these in a hybrid approach allows us to cut
the cost of verification while maintaining soundness and completeness. Suitable
technologies include bounded software verification [13], runtime checking [11]
and testing, as well as program slicing [17], or invariant generation.

Not only can we make use of these techniques to verify particular concerns,
they also allow us to identify components resp. concerns in the first place.

In the e-voting case study, the critical code for counting votes is interleaved
with calls to a logger. Intuitively, logging does not interfere with computing the
result. However, it does change the global state. Deductive verification (with
the KeY tool) thus includes the concern of proving that logging does indeed not
affect the election result, which is expensive. We successfully used decomposition
based on a slicing to compute a (smaller) critical slice within the actual code
[25], which does not include the logging concern. This allowed us to verify the
original code under the assumption that logging does not change the global state,
which is justified at the meta-level (correctness of the slicing technique).

Refactor the implementation to simplify verification. Precise instructions
on how to refactor a program to ease the verification task can only be given
w.r.t. a particular verification technique and a particular target program. An
easy to verify module is simple w.r.t. control flow and data flow. In general, the
target modules should be implemented in a way such that they only provide
functionality that is necessary for the overall system functionality.

For an example of how to improve existing code that is not written for
verification, reconsider the code shown in Listing 1 and its shortcomings described
in Section 2.1. In our prototype, we have drastically simplified the functionality:

private int[] getResult()
{ return resultReady() ? votesForCandidates : null; }

We omit the copying and the encoding in string format, which are separate verifica-
tion concerns, and return the original array. However, we retain the error reporting
through returning null in order not to deviate too far from the original design.

Another local optimization is to decouple control flow and data flow, where
possible. For example, the program fragments if (b) a = x; else a = y; and
a = b? x: y; are equivalent, yet the first one combines control flow and data
flow, whereas in the second one, only data flow occurs. For the latter version, in
KeY’s symbolic execution engine, the location a is assigned a symbolic value that
depends on the value of b but the proof does not branch.



Produce prototypes to understand a verification concern. Sometimes,
the measures presented so far are not enough and we need even more invasive
changes to enable verifiability. With the e-voting case study, we pursued an
approach in which we produced a series of gradually more complex prototypes,
which were verified one after another [16, Chap. 9] – similar to a refinement-based
development style to produce verified code. In this way, there is quick feedback on
the validity of the more abstract specifications. While the code change between
each version was rather small, the specification grew significantly. Still, we have
found that it is harder to develop the complete specification for the final prototype
in one step (or even the actual implementation) than to refine it on every iteration.

3.3 Where to Start the Process?

Given a software system to be verified, an important question is whether to
attack the verification problem in a top-down or in a bottom-up manner.

In a top-down approach, we start with the (usually informal) high-level
requirements and see how they distribute to single modules. This approach bears
the advantage that we focus on the overall goal. On the other hand, it comes
with a danger that the formalization of requirements is not well adapted to the
modules. Typically, too weak preconditions are derived where side-conditions – in
particular implementation-related – were not considered on the higher abstraction
level, e.g., size restrictions of data structures. The unpleasant consequence is that
we have to refine many module specifications and to repeat all affected proofs.

In a bottom-up approach, we start by specifying and verifying the most
elementary modules (i.e., leaves in the call graph). Then, specifications of larger
modules are derived by composing the specification of constituents. An obvious
benefit of this approach is that elementary modules are of little complexity,
hence it is not too difficult to develop a precise specification. We can make post-
conditions strong enough that we can reuse the contracts of these components
without the danger of having to repeat its correctness proof. This insight is
particularly important for (helper) modules that are called often in the system
under investigation. However, a bottom-up approach tends to be expensive.
Firstly, there is a high human effort in exhaustively specifying the modules.
Secondly, the resulting contracts may not be effectively usable, because a precise
specification may consider more cases than are necessary in the given verification
context. In particular, all corner case are specified, instead of excluding them
from consideration through the pre-condition, e.g., it is easier to require that an
array access is within bounds than to specify the effect of an illegal access.

Besides the logical strength of a contract, also its syntactic form is important
for its utility in conducting a proof. Consider the two alternative postconditions
for a function sqrt computing the integer square root of x:
(a) \result2 ≤ x < (\result+1)2

(b) (∀y. 0 ≤ y ≤ \result ⇒ y2 ≤ x) ∧ (∀z. z > \result ⇒ z2 > x)
While both contracts specify the same behavior of sqrt, one contract may be

much more useful than the other, depending on the verification tool used and
the properties that are needed in the verification of a caller of sqrt.



For these reasons, we claim that pure top-down nor pure bottom-up approaches
are seldom effective. Instead, we have to start at several points simultaneously
and have to refine our specification in short iterations. In this way, higher-level
requirements and lower-level guarantees can converge. Choosing the concrete
approach depends on the program structure. Analyzing the connectivity in the call
graph first, gives a good heuristic. Strongly connected components in the call graph
are recursion groups. Within them, a bottom-up approach is not possible at all, but
a top-down approach can start at the node with the highest incoming connections.

For our considerations, loops behave similarly to internal nodes in the call
graph with indegree and outdegree of one: while it is possible to start with
the specification of a loop with invariants before writing the contract of the
surrounding method, often the loop invariant is not of interest on its own as part
of a requirement, but simply an auxiliary specification that enables verification
of the method contract. As such, an invariant has to fit to this contract both
regarding the logical strength and its syntactical structure, as shown in the
sqrt example above. Consequently, you do not start with writing down the loop
invariant, but derive it from the surrounding method’s contract while abstracting.

In the e-voting case study, the modules are arranged hierarchically – without
recursive method calls. This allows developing specifications, including class
invariants, mostly bottom-up. However, we find it useful to have a good control
over when invariants are applied within a proof. Many verification systems offer
little user control over how invariants are processed. In contrast, KeY represents
class invariants using a symbol in the proof obligation which can be replaced
with the actual contents of the invariant only if and when needed.

This allows using the abstraction provided by invariants not only in specifi-
cation, but also in the proof, since it is often enough to refer to ‘the invariant’
without knowing its exact contents. A similar concept exists in Dafny with
opaque functions [18], where the user can decide when to make the body of such
a function available to the prover. These mechanisms are helpful in cases where
the contents of an invariant or the function body are complex, e.g., if an invariant
contains existential quantification.

3.4 How to Improve Tool Support for Post-Hoc Verification?

Effective verification requires good feedback to the user. In a purely interactive
proof, the user has full control, but the amount of available information may be
too much to handle and is sometimes not given at the right abstraction level (e.g.,
showing open proof goals instead of notifying the user about which specification
is violated in the source code). Several techniques may improve user experience:

High-level user interaction. Constructing a proof interactively without any
automation is infeasible for practical verification problems. In the e-voting case
study, we encountered single proofs with over 200 000 proof rule applications,
where single formulas in the proof goal could fill several screen pages.

Instead of fine-grained manual interaction, user input relevant for proof search
and construction should be given in a way that is close to the problem description



respectively the implementation. One possibility is to follow the auto-active
verification paradigm, giving auxiliary annotations at source-code level.

Another approach is to provide an interaction concept that matches an
abstract proof outline of the user more closely, e.g., by using proof scripts – this
well-established interaction paradigm is the basis of many interactive provers, e.g.,
HOL4 [32] or Isabelle [30] with “tactic-based” proof interaction. One example of
a more declarative interaction style compared to the procedural style is the Isar
formal proof language offered in the Isabelle/Isar system [33].

Similar to these established script-based interaction approaches, proof scripts
in KeY serve as a high-level interface to the proof object as the user does not
apply concrete single rules, but sketches the proof structure. One use case is
a long proof with only a few steps that need interaction. Scripts can often be
replayed when a verification concern is modified, as they are robust against
smaller changes in the code or its specification.

Better feedback. One of the main issues in verifying large systems are the complex
dependencies between verification concerns and the associated correctness proofs.
To simplify the task of keeping track of the overall proof state, as well as updating
this information in case a verification concern has been changed and proofs have
to be redone, the KeY tool has been integrated into the Eclipse IDE [20].

Identifying errors in the specification or implementation during the verification
process is another frequent issue, in particular when large proof obligations arise
in interactive provers which require manual inspection or user interaction – often,
only a small part of the information presented in the proof obligation is relevant
for revealing the error. To automatically get quick feedback on the validity of such
a proof obligation, a bounded analysis technique has been implemented for the
KeY tool, giving concrete counterexamples for single KeY proof obligations [21].
Support for pinpointing the reason for incomplete proof attempts is also provided
by another component of KeY’s integration into the Eclipse IDE mentioned
previously, by giving a view on KeY’s proof goals that shows the truth status of
subformulas as inferred by KeY in the current proof state [19].

For auto-active verification tools, the situation is often the opposite: too little
information is available to pinpoint possible errors or missing specifications. The
insight that these tools often do not produce enough feedback for failed verifica-
tion attempts is not new [28,31]. To improve this situation, tools like VCC, which
already show the exact annotation that could not be verified, are usually comple-
mented with tools like the Boogie Verification Debugger (BVD) [15], presenting
counterexamples for the proof obligations on the level of the original program.

Still, due to the modular verification methodology of the deductive verification
tools, these counterexamples are often not sufficient to retrace the concrete
program execution leading to the violated specification (if there is any). This
shortcoming has been identified and is addressed by many approaches. To give
early and precise feedback beyond the local module currently being verified,
we proposed a combination of software bounded model checking and deductive
verification [4]. Other techniques allow for generating a program reproducing a



concrete trace through the original code from a failed verification attempt [29,31],
allowing the user to identify mismatches between program and specification.

Regression verification is an instance of relational program analysis [14]. Instead of
asserting that a program conforms to its contract, we prove that two programs are
functionally equivalent (or more generally, that they expose congruent behavior).
While, in general, relational verification is as hard as functional verification, regres-
sion verification works well for programs that are of a similar (syntactical) shape
with only minor local differences. Proof complexity does not stem from the overall
program/specification complexity, but only from the difference between the two
versions. This allows reducing the effort of repeating a proof for a module with only
minor changes. We can use this property to verify a prototype implementation P
first, and then prove that a refined version P ′ of the code matches the behavior of
the prototype, which proves that P ′ conforms to the specification. This approach
is particularly helpful in case where the actual legacy code must not be changed.

4 Conclusion

A pure post-hoc deductive verification approach for full functional requirement
specifications is often unreasonably expensive, despite recent advancements of
specification methodologies and verification tools.

It is thus crucial to identify and separate different concerns (i.e., parts of the
property to be proven and portions of the implementation) to take advantage of
different program analysis techniques – in the best case discharging otherwise
complex deductive proof obligations automatically, e.g., by syntactic analysis
such as program slicing. These analysis techniques not only play a crucial role in
proving system properties, but also help with the identification of concerns as
part of an iterative specification and verification process.

Any remaining concern that can only be proven correct using deductive
verification tools like KeY or VCC, which often requires extensive user interac-
tion, should be preprocessed and rewritten to ease verification: examples are
property-preserving program refactorings, writing more abstract variants of the
implementation and proving refinement between the different versions – or, if
necessary, re-implement relevant parts of the system from scratch.

At times, also implementations that follow best practices of software engi-
neering are needlessly complex from the point of view of software verification.
Raising awareness of these issues for program verification would allow improving
the state of implementations w.r.t. verifiability when legacy code is changed
or new modules are implemented. In addition, verification complexity metrics
or implementation and design patterns adapted to program verification could
provide guidelines for how to produce code that is easier to analyze and verify
using formal methods.
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