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Abstract

This paper reports on the ongoing KeY project aimed at bridging the
gap between (a) object-oriented software engineering methods and tools and
(b) deductive verification for the development of JAVA CARD programs. In
particular, we describe a Dynamic Logic for JAVA CARD and outline a sequent
calculus for this logic that axiomatises JAVA CARD and is used in the verifica-
tion component of the KeY system.

1 Introduction

The goal of the KR¥ project! (read “key”) is to enhance a commercial CASE tool with
functionality for formal specification and deductive verification and, thus, to inte-
grate formal methods into real-world software development processes. Accordingly,
the design principles for the software verification component of the KeY system are:

e The programs to be verified should be written in a “real” object-oriented (OO)
programming language.

e The logical formalism should be as easy as possible to use for software devel-
opers (that do not have years of training in formal methods).

We decided to use JAVA CARD as our target language. Since it is a “real”
OO language, it has features that are difficult to handle in a software verifica-
tion system, such as dynamic data structures, exceptions, and initialisation. But,
on the other hand, JAVA CARD lacks some crucial complications of the full Java
language such as threads and dynamic loading of classes. JAVA smart cards are an
extremely suitable application for software verification: (a) JAvVA CARD applications
are small; (b) at the same time, they are embedded into larger program systems
or business processes which should be modeled (though not necessarily formally

1The KeY project was launched in November 1998. It is supported by the Deutsche Forschungs-
gemeinschaft (grant no. Ha 2617/2-1).



verified); (c) JAva CARD applications are often security-critical, giving incentive to
apply formal methods; (d) the high number of deployed smart cards constitutes a
new motivation for formal verification, as arbitrary updates are not feasible.

The ultimate goal of the KeY project is to facilitate and promote the use of
formal verification as an integral part of the development process of JAVA CARD
applications in an industrial context.

2 Analysis of the Current Situation

While formal methods are by now well established in hardware and system design,
usage of formal methods in software development is still (and in spite of excep-
tions [7, 8]) more or less confined to academic research. This is true though case
studies clearly demonstrate that computer-aided specification and verification of
realistic software is feasible [11]. The real problem lies in the excessive demand
imposed by current tools on the skills of prospective users: (1) Tools for formal
software specification and verification are not integrated into industrial software
engineering processes. (2) User interfaces of verification tools are not ergonomic:
they are complex, idiosyncratic, and are often without graphical support. (3) Users
of verification tools are expected to know syntax and semantics of one or more com-
plex formal languages. Typically, at least a tactical programming language and a
logical language are involved. And even worse, to make serious use of many tools,
intimate knowledge of employed logic calculi and proof search strategies is necessary.

Successful specification and verification of larger projects, therefore, is done
separately from software development by academic specialists with several years of
training in formal methods, in many cases by the tool developers themselves. It
is unlikely that formal software specification and verification will become a routine
task in industry under these circumstances.

The future challenge for formal methods is to make their considerable potential
feasible to use in an industrial environment. This leads to the requirements:

1. Tools for formal software specification and verification must be integrated into
industrial software engineering procedures.

2. User interfaces of these tools must comply with state-of-the-art software en-
gineering tools.

3. The necessary amount of training in formal methods must be minimized.
Moreover, techniques involving formal software specification and verification
must be teachable in a structured manner. They should be integrated in
courses on software engineering topics.

To be sure, the thought that full formal software verification might be possible
without any background in formal methods is utopian. An industrial verification
tool should, however, allow for gradual verification so that software engineers at
any (including low) experience level with formal methods may benefit. In addition,
an integrated tool with well-defined interfaces facilitates “outsourcing” those parts
of the modeling process that require special skills.

Another important motivation to integrate design, development, and verification
of software is provided by modern software development methodologies which are
iterative and incremental. Post mortem verification would enforce the antiquated
waterfall model. Even worse, in a linear model the extra effort needed for verification
cannot be parallelized and thus compensated by greater work force.



3 The K3¥ Approach

The KeY project addresses the goals outlined in the previous section (here, we can
only give a brief overview of the KeY project; a detailed description can be found
in [1]).

In the principal use case of the KeY system there are actors who want to imple-
ment a software system that complies with given requirements and formally verify
its correctness (typically a smart card application). In this scenario, the KeY system
is responsible for adding formal detail to the analysis model, for creating conditions
that ensure the correctness of refinement steps (called proof obligations), for finding
proofs showing that these conditions are satisfied by the model, and for generating
counter examples if they are not. Special features of KeY are:

e We concentrate on object-oriented analysis and design methods (OOAD)—
because of their key role in today’s software development practice—, and on
Java CARD as the target language. In particular, we use the Unified Modeling
Language (UML) [18] for visual modeling of designs and specifications and
the Object Constraint Language (OCL) for adding further restrictions. This
choice is supported by the fact, that the UML (which contains OCL) is not
only an OMG standard, but has been adopted by all major OOAD software
vendors and is featured in recent OOAD textbooks [16].

e We use a commercial CASE tool as starting point and enhance it by additional
functionality for formal specification and verification. The tool of our choice
is TogetherSoft LLC’s TOGETHERJ.

e Formal verification is based on an axiomatic semantics of JAvA CARD (see
Section 6).

e As a case study to evaluate the usability of our approach we develop a scenario
using smart cards with JAVA CARD as programming language.

e Through direct contacts with software companies we check the soundness of
our approach for real world applications (some of the experiences from these
contacts are reported in [3]).

4 The KE” System

A first KeY system prototype has been implemented, integrating the CASE tool To-
GETHERJ and a deductive component (it has only limited capabilities and lacks the
verification manager component). Work on the full KeY system is under progress.

Although consisting of different components, the KeY system is going to be
fully integrated with a uniform user interface. The main components are described
below.

4.1 The Modeling Component

This component is based on the CASE tool and is responsible for all user interactions
(except interactive deduction). It is used to generate and refine models, and to store
and process them. The extensions for precise modeling contains, e.g., editor and
parser for the OCL. Additional functionality for the verification process is provided,
e.g., for writing proof obligations.



4.2 The Verification Manager

This is the link between the modeling component and the deduction component. It
generates proof obligations expressed in formal logic from the refinement relations
in the model. It stores and processes partial and completed proofs; and it is re-
sponsible for correctness management (to make sure, e.g., that there are no cyclic
dependencies in proofs).

4.3 The Deduction Component

The KeY system comprises a deductive component that can handle Dynamic Logic
for JavAa CARD (see Section 6). It is used to actually construct proofs—or counter
examples—for proof obligations generated by the verification manager. It is based
on an interactive verification system combined with powerful automated deduc-
tion techniques that increase the degree of automation; it also contains a part for
automatically generating counter examples from failed proof attempts. The inter-
active and automated techniques and those for finding counter examples are fully
integrated and operate on the same data structures.

For interactive proof search, a technique of schematic theory specific rules is
used, which combine purely logical knowledge, information on how this knowledge
should be used, and information on when and where this knowledge should be
presented for interactive use.2.

Both automated and interactive deduction use the same data structures and
proof rules [10].

5 The Modeling Process

Software development is generally divided into four activities: analysis, design, im-
plementation, and test. The KeY approach embraces verification as a fifth category.
The way in which the development activities are arranged in a sequential order over
time is called software development process. It consists of different phases. The
end of each phase is defined by certain criteria the actual model should meet (mile-
stones).

In some older process models like the waterfall model or Boehm’s spiral model no
difference is made between the main activities—analysis, design, implementation,
test—and the process phases. More recent process models distinguish between
phases and activities very carefully; for example, the Rational Unified Process [14]
uses the phases inception, elaboration, construction, and transition along with the
above activities.

The KeY system does neither support nor require the usage of a particular pro-
cess. However, it is taken into account that most modern processes have two prin-
ciples in common. They are iterative and incremental. The design of an iteration is
often regarded as the refinement of the design developed in the previous iteration.
This has an influence on the way in which the KeY system treats UML models and
additional verification tasks. The verification activities are spread across all phases
in software development. They are often carried out after test activities.

The diagrams of the Unified Modeling Language provide, in principle, an easy
and concise way to formulate various aspects of a specification, however [24, fore-
word]: “[ ... ] there are many subtleties and nuances of meaning diagrams cannot
convey by themselves.” This was a main source of motivation for the development

2This technique has been implemented in the interactive proof system IBIJa (more information
on IBLJa is available at illwww.ira.uka.de/ ibija).



of the Object Constraint Language (OCL), part of the UML since version 1.3. Con-
straints written in this language are understood in the context of a UML model,
they never stand by themselves. The OCL allows to attach preconditions, postcon-
ditions, invariants, and guards to elements of a UML model.

When designing a system with KeY, one develops a UML model that is enriched
by OCL constraints to make it more precise. This is done using the CASE tool
integrated into the KeY system. To assist the user, the KeY system provides menu
and dialog driven input possibility. Certain standard tasks, for example, generation
of formal specifications of inductive data structures (including the common ones
such as lists, stacks, trees) in the UML and the OCL can be done in a fully au-
tomated way, while the user simply supplies names of constructors and selectors.
Even if formal specifications cannot fully be composed in such a schematic way,
considerable parts usually can.

In addition, we have developed a method supporting the extension of a UML
model by OCL constraints that is based on enriched design patterns. In the KeY
system we will provide common patterns that come complete with predefined con-
straint schemata. These schemata are formulated in a language that is a slight
extension of OCL. They are flexible and allow the user to easily generate well-
adapted constraints for the different instances of a pattern [4]. Thus, the user needs
not write formal specifications from scratch.

6 Verification of Java Card Programs

6.1 Dynamic Logic

We use Dynamic Logic (DL) [15]—an extension of Hoare logic [2]—as the logical
basis of the KeY system’s software verification component. We believe that this is a
good choice as deduction in DL is based on symbolic program execution and simple
program transformations and is, thus, close to a programmer’s understanding of
JAVA CARD. In this section, we give a short account of our JAVA CARD DL; see [5]
for a more detailed description.

DL is successfully used in the KIV software verification system [20] for a pro-
gramming language that is not object-oriented; and Poetzsch-Heffter and Miiller’s
definition of a Hoare logic for a JAVA subset [19] shows that there are no principal
obstacles to adapting the DL/Hoare approach to OO languages.

DL can be seen as a modal predicate logic with a modality (p) for every pro-
gram p (we allow p to be any legal JAvA CARD program); (p) refers to the suc-
cessor worlds (called states in the DL framework) that are reachable by running
the program p. In classical DL there can be several such states (worlds) because
the programs can be non-deterministic; but here, since JAVA CARD programs are
deterministic, there is exactly one such world (if p terminates) or there is no such
world (if p does not terminate). The formula (p)¢ expresses that the program p
terminates in a state in which ¢ holds. A formula ¢ — (p) is valid if for every
state s satisfying precondition ¢ a run of the program p starting in s terminates,
and in the terminating state the postcondition ¢ holds.

Thus, the formula ¢ — (p)y is similar to the Hoare triple {¢}p{e}. But in
contrast to Hoare logic, the set of formulas of DL is closed under the usual logi-
cal operators: In Hoare logic, the formulas ¢ and 1 are pure first-order formulas,
whereas in DL they can contain programs. DL allows to involve programs in the
descriptions ¢ resp. 1 of states. For example, using a program, it is easy to specify
that a data structure is not cyclic, which is impossible in pure first-order logic.
Also, all JAVA constructs (e.g., instanceof) are available in DL for the description
of states. It is, therefore, not necessary to define an abstract data type state and



to represent states as terms of that type (as has, for example, been done in [19]);
instead DL formulas can be used to give a (partial) description of states, which is
a more flexible technique and allows to concentrate on the relevant properties of a
state.

In comparison to classical DL (that uses a simple “artificial” programming lan-
guage), a DL for a “real” OO programming language like JAvA CARD has to cope
with the following complications: (1) A program state does not only depend on
the value of (local) program variables but also on the values of the attributes of
all existing objects. (2) The evaluation of a JAVA expression may have side effects;
thus, there is a difference between an expression and a logical term. (3) Language
features such as built-in data types, exception handling, and object initialisation
have to be handled.

6.2 Syntax of Java Card DL

We do not allow class definitions in the programs that are part of DL formulas, but
define syntax and semantics of DL formulas w.r.t. a given JAVA CARD program (the
context), i.e., a sequence of class definitions. The programs in DL formulas are exe-
cutable code. The (basic) programs are all the legal JAvA CARD statements, includ-
ing: (a) expression statements such as assignments, method calls, new-statements,
etc.; (b) blocks and compound statements built with if-else, switch, for, while,
and do-while; (c) statements with exception handling using try-catch-finally;
and (d) statements that abruptly redirect the control flow (continue, return,
break, throw).

We allow programs in DL formulas (not in the context) to contain logical terms.
Wherever a JAVA CARD expression can be used, a term of the same type as the
expression can be used as well. Accordingly, expressions can contain terms (but not
vice versa).

Formulas are built as usual from the (logical) terms, the predicate symbols (in-
cluding the equality predicate =), the logical connectives =, A, V, —, the quantifiers
V and 3 (that can be applied to logical variables but not to program variables), and
the modal operator (p), i.e., if p is a program and ¢ is a formula, then {p)¢ is a
formula as well.

6.3 Semantics of Java Card DL

The models of DL consist of program states. These states share the same universe
containing a sufficient number of elements of each type. In each state a (possibly
different) value (an element of the universe) of the appropriate type is assigned to:
(a) the program variables, (b) the attributes (fields) of all objects, (¢) the class
attributes (static fields) of all classes in the context, and (d) the special object
variable this. Variables and attributes of object types can be assigned the special
value null. States do not contain any information on control flow such as a program
counter or the fact that an exception has been thrown.

The semantics of a program p is a state transition, i.e., it assigns to each state s
the set of all states that can be reached by running p starting in s. Since JAVA CARD
is deterministic, that set either contains exactly one state or is empty. The set of
states of a model must be closed under the reachability relation for all programs p,
i.e., all states that are reachable must exist in a model (other models are not con-
sidered).

We consider programs that terminate abnormally to be non-terminating, such
that nothing can be said about their final state. Examples are a program that throws
an uncaught exception and a return statement that is not within the boundaries



T F cnd = true I + (x prg while (cnd) prg w)¢
T F (r while (ecnd) prg w)¢
T + ecnd = false I F (mw)é
I b (r while (cnd) prg w)¢

I + instanceof (ezc,T) I' (7 try{e=ezc; g}finally{r} w)¢
I + (r try{throw ezc; pl}catch(T e){g}finally{r} w)¢

3)

' b —instanceof (exe, T) I' b (7w r; throw ezc; w)¢ 4)
I + (m try{throw ezc; pl}catch(T e){g}finally{r} w)¢

F'F (7w r wo 5)

T + (r try{}catch(T e){g}finally{r} w)¢

Table 1: Some of the rules of our calculus for Java Card DL.

of a method invocation. Thus, for example, (throw x;)¢ is unsatisfiable for all ¢.3

6.4 A Sequent Calculus for Java Card DL

Here, we outline the ideas behind our sequent calculus for JAvA CARD DL, and we
give some of the basic rules.*

The DL rules of our calculus operate on the first active command p of a pro-
gram 7wpw. The non-active prefix 7w consists of an arbitrary sequence of opening
braces “{”, labels, beginnings “try{” of try-catch blocks, etc. The prefix is needed
to keep track of the blocks that the (first) active command is part of, such that the
commands throw, return, break, and continue that abruptly change the control
flow can be handled appropriatly.?

As examples, we present the rules for while loops and for exception han-
dling, respectively. Many more rules are needed to handle all language features
of JAVA CARD.

These rules operate on sequents I' - ¢. The semantics of a sequent is that the
conjunction of the DL formulas in I" implies the DL formula ¢. Sequents are used
to represent proof obligations, proof (sub-)goals, and lemmata.

Rules (1) and (2) in Table 1 allow to “unwind” while loops. These are simplified
versions that only work if (a) the condition cnd is a logical term (and, thus, its
evaluation does not have side effects), and (b) the program prg does not contain a
continue statement. These rules allow to handle loops if used in combination with
induction schemata. Similar rules are defined for do-while and for loops.

Rules (3)—(5) in Table 1 allow to handle try-catch-finally blocks and the
throw statement. Again, these are simplified versions of the actual rules; they
are only applicable if (a) exc is a logical term (e.g., a program variable), and
(b) the statements break, continue, return do not occur. Rule (3) applies if an

3Nevertheless, it is possible to express and (if true) prove the fact that a program p terminates
abnormally using a DL formula. For example, (try{p }catch{Exception e})(—e = null) expresses
that p throws an exception.

4These are simplified versions of the actual rules. In particular, initialisation of objects and
classes is not considered.

51n classical DL, where no prefixes are needed, any formula of the form (p ¢)¢ can be replaced
by (p){g)¢. In our calculus, splitting of (wrpqw)¢ into (mp){qw)¢ is not possible (unless the
prefix 7 is empty) because 7p is not a valid program; and the formula (7pw)(mqw)¢ cannot be
used either because its semantics is in general different from that of (mpqw)¢.



exception ezc is thrown that is an instance of exception class T, i.e., the exception
is caught; otherwise, if the exception is not caught, rule (4) applies. Rule (5) applies
if the try block is empty and, thus, terminates normally.

7 Related Work

There are many projects dealing with formal methods in software engineering in-
cluding several ones aimed at JAVA as a target language; work on the verification
of Java programs includes [19, 13, 12, 17, 23]. There is also work on security of
JAvA CARD and AcCTIVEX applications as well as on secure smart card applications
in general. We are, however, not aware of any project quite like ours. We mention
some of the more closely related projects. The COGITO project [22] resulted in an
integrated formal software development methodology and support system based on
extended Z as specification language and Ada as target language. It is not inte-
grated into a CASE tool, but stand-alone. The FUZE project [9] realized CASE
tool support for integrating the FusioN OOAD process with the formal specifica-
tion language Z (the aim was to formalize OOAD methods and notations such as
the UML). The QUEST project’s [21] goal is to enrich the CASE tool AuTOFOCUS
for description of distributed systems with means for formal specification and sup-
port by model checking. Aim of the SYSLAB project [6] is the development of a
scientifically founded approach for software and systems development. At the core
is a precise and formal notion of hierarchical “documents” consisting of informal
text, message sequence charts, state transition systems, object models, specifica-
tions, and programs. The goal of the PROSPER project® was to provide the means
to deliver the benefits of mechanized formal specification and verification to system
designers in industry. The difference to the KeY project is that the dominant goal
is hardware verification.
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