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Abstract: Logic calculi, and Gentzen-type calculi in particular, can be categorised
into two types: search-oriented and interaction-oriented calculi. Both these types have
certain inherent characteristics stemming from the purpose for which they are designed.
In this paper, we give a general characterisation of the two types and present two
calculi that are typical representatives of their respective class. We introduce a method
for transforming proofs in the search-oriented calculus into proofs in the interaction-
oriented calculus, and we demonstrate that the difficulties arising with devising such a
transformation do not pertain to the specific calculi we have chosen as examples but
are general. We also give examples for the application of our transformation procedure.
Key Words: Automated deduction, tableau calculi, proof transformation, proof pre-
sentation, proof search.
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1 Introduction

Historically, tableaux and other Gentzen-type calculi were developed as proof
theoretic tools. Since then they have been improved in many ways and for dif-
ferent purposes, in particular proof search and automated deduction on the one
hand and proof presentation and user interaction on the other hand.

In this paper we describe and discuss the two classes of calculi in general
[Section 2] and present a proof transformation from a search-oriented calculus
into an interaction-oriented calculus—both calculi are typical representatives of
their classes. The two calculi—a Smullyan-style ground tableau calculus aug-
mented by a non-analytic cut rule and a free variable tableau calculus using
the universal variable technique—are defined in [Sections 3 and 4], respectively.
In [Sections 5 and 6] we describe the transformation and give examples, with a
particular focus on the translation of (multiple) instantiations of free variables.
Our transformation has been implemented in Prolog [Stenz, 97] as part of the
theorem prover sTAP [Beckert et al., 96].

The main application of transformations between search-oriented and inter-
action-oriented calculi is the integration of automated and interactive theorem
proving; recent years have seen new efforts to bring these two braids of com-
puter supported reasoning back together to combine the advantages of both



approaches [Ahrendt et al., 98, Bjgrner et al., 98]. Other applications include
(1) the translation of proofs into natural language, for which the transformation
into an interaction-oriented calculus is an intermediate step; and (2) checking
proof correctness, because interaction-oriented proofs are typically easier to
check by a machine for the same reasons that they are easier to understand
and validate by a human user.

Applications of our proof transformation are described in [Section 7]; and
finally, in [Section 8] we draw conclusions from our work.

To place our work in the general context of proof transformations, we briefly
classify different types of transformations. The first type are translations between
inherently different calculi—for example, between semantic tableaux and reso-
lution [Wolf, 94] or between natural deduction and resolution [Pfenning, 84].!
[Eder, 92] addresses the question of p-simulation between different first-order
calculi. Such transformations between different calculi are relevant for the rela-
tion between automated proof search and human interaction in case the calculi
are well suited for these different purposes [Miller, 84, Pfenning, 84]. A second
type of transformations are normalisation and optimisation of proofs within the
same calculus (without changing the set of available rules). A further type of
transformations—one of the most important fields in proof theory—is the elim-
ination or introduction of rules (resp. their applications) such as, for example,
cut elimination. In the context of presenting automatically generated proofs to
humans, the introduction of cuts (or lemmata [Pfenning and Nesmith, 90]) is of
interest,.

In this paper, we present a transformation of a different kind. It is a transla-
tion between different members of the same family of calculi (semantic tableaux).
One calculus can be seen as a refinement of the other, but it is not just a sub-
oder a superset. To make proofs easier to understand for humans, refinements
tailor-made for automated search are eliminated.

2 The Two Paradigms

2.1 Enhancements and Improvements of Tableau Calculi

Below, the two main classes of techniques for improving tableau calculi are de-
scribed in general. Only those techniques are considered that require the calculus
to actually be changed; heuristics and techniques for organising the proof search
are not discussed as they do not affect the form of the constructed proofs and,
thus, do not affect their transformation.

Strengthening the calculus. A calculus is strengthened if it is changed in such a
way that shorter proofs for at least some formulae exist. In most cases, strength-
ening adds non-determinism to a calculus, i.e., there are more possibilities to
proceed at each tableau expansion step. Thus, there is a trade-off between the
advantage of shorter proofs and the disadvantage that these short proofs may
be harder to find as there are more choice points in the search space.

! [Pfenning, 84] actually uses ezpansion trees, which can be seen as an abstraction

of resolution proofs. [Miller, 84] describes a translation in the other direction, from
expansion trees into natural deduction (but in the framework of higher order logic).



Post-poning choice points. Often, it is possible to uniformly represent different
tableaux—and thus different parts of the search space—by a single tableau using
additional syntactical devices. A typical example is the rigid variable technique
[see Section 4.1], where tableaux that are identical up to the replacement of
terms by other terms are all represented by a single tableau in which a free (or
dummy) variable is used as a place holder for the different terms.

2.2 Interaction-oriented Calculi

Interaction-oriented calculi are used if a deduction system has to interact with
a human user, where the reason for interaction may either be that the system is
not (fully) automated or that a proof is communicated to the user.

Humans prefer calculi with simple rules. Rule applications should be syn-
tactically (not necessarily semantically) simple, i.e., each application should be
easy to validate, the pre-conditions should be easy to check, and effects of a rule
application easy to understand.? In particular, rule applications should not have
any non-local side effects, as humans tend to modularise a problem and focus
on proving one sub-problem at a time.

On the other hand, a human user’s intuition and meta-knowledge about the
problem domain eliminates the need to minimise the search space. Highly non-
deterministic rules may be used—as long as they are simple in the sense that
their applications are easy to validate; an example is the non-analytic cut rule
that imposes no restrictions on the cut formulae that can be introduced.

Techniques for post-poning choice points are often not suitable for enhancing
interaction-oriented calculi as they typically result in rules that are syntactically
more complicated inference rules and have non-local side effects (such as, for
example, the instantiation of rigid variables).

2.3 Search-oriented Calculi

For automated deduction, minimising the size of the search space is the main
objective in designing a calculus. To achieve this goal, non-determinism is elim-
inated whenever possible. Though short proofs are in general easier to find than
long proofs, the possibility of finding short proofs may be sacrificed for the sake
of a smaller search space. Consequently, because strengthening a calculus often
increases its non-determinism, weaker versions with fewer choice points are often
preferable for automated deduction.?

Strengthening the calculus by adding a non-analytic cut rule, which allows
to deduce the conclusion “¢ or —¢” from the empty premiss for all formulae ¢,

% Calculi for interactive higher order theorem proving often have rules that are not
simple in that sense. The reason why these rules are acceptable for a human user—
despite their complexity—is that they constitute comparatively large proof steps.
But even in these higher-order calculi, at least the rules for handling the first-order
part of the logic are simple.

In search-oriented tableau calculi, techniques are frequently used that restrict the
search space without affecting the form of the constructed proofs—such as ordering
and connectedness conditions [Beckert and Hihnle, 98, Letz, 98]. They sacrifice the
possibility to find shorter proofs for the sake of less non-determinism. Such techniques
are not considered here, as using them means changing the proof search without
changing the calculus itself.



is a typical example where the disadvantage of additional non-determinism out-
weighs the advantage of the existence of shorter proofs. Therefore, in automated
deduction systems the cut rule is never used unrestrictedly. There are, however,
restricted versions of the cut rule, such as the generation of local lemmata [see
Section 4.3], that still can reduce the size of the smallest proofs exponentially
but do not lead to too many additional choice points.

A method for strengthening tableau calculi that is very useful for proof search
is the introduction of universal variables [see Section 4.2]; this technique can lead
to considerably smaller proofs, and adds only very few additional choice points.

Techniques that postpone choice points are always of advantage for proof
search if the only measure considered is the number of expansion steps that
have to be executed to find a tableau proof. The disadvantage is that additional
syntactical devices and bookkeeping mechanisms are required, which can be
difficult to implement and lead to computational overhead.

In a certain sense, post-poning choice points leads to a breadth-first search
where different parts of the search space are investigated simultaneously, until
additional information has been gathered that allows to make an informed de-
cision about which part of the search space should be further investigated. For
example, if closing a tableau branch requires a rigid variable X to be instantiated
with a certain term ¢, then the decision to instantiate X with ¢ is informed in
the sense that the instantiation is known to be useful as a branch closure exists
which is not possible without the instantiation.

Note that, in contrary to interaction-oriented calculi, it is acceptable for
search-oriented calculi to have many specialised inference rules, (syntactically)
complex rules, and rules with non-local side effects (such as the instantiation of
rigid variables).

3 An Interaction-oriented Tableau Calculus

In this section, we define a ground tableau calculus for first-order predicate logic,
which is a typical representative of the class of interaction-oriented calculi. This
version of tableaux is called ground because universally quantified variables are
instantiated by ground terms when the ~-rule is applied. Except for a more
sophisticated d-rule for handling existential quantification (see below), we use
the standard ground tableau rules (as defined by [Smullyan, 68]). As the calculus
is meant to be used interactively and not automatically, an unrestricted cut rule
is included.

The definition of the tableau expansion rules makes use of the unifying no-
tation given in [Tab. 1], where the left-most columns assign the types a, 3, 7,
and ¢ to formula patterns.

[Tab. 2] contains the rule schemata for our interaction-oriented calculus (pre-
misses and conclusions are separated by a horizontal bar, while vertical bars in
the conclusion denote different extensions). The right-most schema is the non-
analytic cut rule, in which ¢ can be any formula.

Both the y-rule and the cut rule are highly non-deterministic, which is typ-
ical for an interaction-oriented calculus and allows the user to make use of his
intuition and domain knowledge.

The expansion rule schemata in [Tab. 2] all have a very simple form and are
easy to understand. Moreover, they can be seen as defining the calculus com-
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Table 2: Rule schemata for the ground version of tableaux.

pletely; no additional explanations are needed (in particular, closing a branch
does not change the tableau). This makes the calculus very user-friendly. Defini-
tion 1 merely formalises the definition of tableaux for a given set @ of formulae
that is implicitly already contained in [Tab. 2].

Definition 1. A tableau is a finitely branching tree whose nodes are first-order
formulae. A branch in a tableau T is a maximal path in T. Given a set & of
sentences®, the tableaux for ® are (recursively) defined by:

1. The tree consisting of the one branch @ is a tableau for & (initialisation).?

2. Let T be a tableau for ¢, B a branch of T', and 1 a formula in B. If the tree
T' is constructed by extending B by as many new branches as the tableau
expansion rule corresponding to ¢ has extensions, where the nodes of the
branches are labelled with the formulae in the extensions, then 7" is a tableau
for & (a-, 5-, y-, d-expansion).

3. Let T be a tableau for ¢, B a branch of T, and ¢ an arbitrary formula. If
the tree T" is constructed by extending B by two new single node branches,
one containing the formula ¢ and the other containing the formula —¢, then
T’ is a tableau for ¢ (cut-expansion).

Definition 2. Given a tableau T, a branch B of T is closed iff B contains a pair
¢, ¢ of complementary formulae; otherwise it is open. A tableau is closed if all
its branches are closed.

Definition 3. A tableau proof for (the unsatisfiability of) a set & of sentences
consists of a tableau T for @ that is closed.

* A sentence is a first-order formula not containing any free variables.
® We identify the set ¢ with a branch whose nodes are the formulae in &.



So far we have not explained the meaning of the operator sko used in the
é-rule schema. For skolemisation, we use symbols from a special infinite set Fgy,
of Skolem constant symbols, which is disjoint from the set Fs; of function sym-
bols for any given first-order signature X = (Px, Fx). The extended signature
(Py, Fx; U Fy,) is denoted by X*.

Definition 4. Given a signature ¥ = (Py;, F'y), the function sko assigns to each
d-formula § over X* a symbol sko(d) € Fyo such that sko(d) > ¢ for all ¢ € Fy,
occurring in §, where > is an arbitrary but fixed ordering on Fj,.

Note, that the symbol ¢ = sko(d§) may already occur in the context (on the
tableau branch) where our d-rule is applied to replace an existentially quanti-
fied variable with ¢. In contrast to that, the Skolem symbol introduced by an
application of the classical (ground) é-rule is always new w.r.t. the context. The
intuitive reason why our d-rule is sound although the Skolem symbol ¢ may not
be new is the following: In general, a (ground) d-rule is sound if it guarantees
the dependency relation between Skolem symbols is acyclic. That dependency
relation is the transitive closure of the relation ~» defined by: For all Skolem
symbols ¢ and d, ¢ ~ d iff ¢ = sko(¢(d)). An easy (though not optimal) way to
ensure that the dependency relation is acyclic, is to demand that each Skolem
symbol is new w.r.t. the context where it is used by the §-rule. Our improved
d-rule is more liberal but ensures nevertheless that the dependency relation is
acyclic.

Such more liberal rules were first used in free variable calculi [see Section 4.1],
but they are useful for ground calculi as well. Our d-rule may not be as syntac-
tically simple as the classical rule; that disadvantage is, however, made up for
by the fact that our rule is strictly local (whereas the concept of a “new” sym-
bol is inherently global). An additional benefit of using an improved rule in
the ground calculus as well is that the transformation between the free variable
(search-oriented) and the ground (interaction-oriented) calculus gets easier.

4 A Search-oriented Tableau Calculus

Here, we introduce a tableau calculus that is designed for automated proof
search. We use the concepts of rigid variables, universal variables, and local lem-
mata. For an overview of these and other advanced techniques for tableau-based
automated deduction we refer to [Beckert and Hihnle, 98].

4.1 Rigid Variables

The concept of rigid variables® is based on the fact that the y-rule allows to derive
conclusions of the form +, (¢) for all terms t¢. Therefore, instead of guessing terms
when they are introduced, they can be represented by a rigid variable X . Later,
when the proof procedure has good reason to use a particular instance ¢, the
variable X is instantiated “on demand”; that means, all occurrences of X are
replaced by t. Usually, this is done when at least one branch can be closed (in

6 In the literature—in particular on calculi for first-order predicate logic—, several
other names have been used for free and, in particular, for rigid variables, including
parameter, dummy variable, and meta variable.



the sense of Definition 2) provided that X is replaced by ¢. Unification is used
to find a most general substitution that allows to close a branch. Using rigid
variables reduces the number of choice points in the construction of a tableau
proof and thus the size of the search space.

Intuitively, a formula containing a rigid variable X stands for a single (but
unknown) element of the set of all formulae that are the result of replacing X by
some term. All occurrences of a rigid variable in a tableau have to be instantiated
by the same term (which is why these variables are called “rigid”).

The possibility to instantiate rigid variables with Skolem symbols leads to
difficulties if a d-rule is used whose soundness is based on demanding the Skolem
symbol that is introduced to be new. Consider, for example, the tableau shown on
the left in [Fig. 1]. The last expansion rule applied has been a d-rule (introducing
the Skolem symbol ¢).” When the closing substitution {X/c} is applied, the
tableau becomes ground (shown on the right in [Fig. 1]. This ground tableau
cannot be constructed using a ground calculus with the classical d-rule that
demands Skolem symbols to be new. But it can be constructed using the ground
calculus defined in [Section 3|, which has a more liberal d-rule. This example
illustrates why a tableau proof transformation from a rigid variable calculus into
a ground calculus using a liberal §-rule is easier than a transformation into a
calculus using the classical d-rule.

(Vz)(p(z) A (Fy)-p(y)) (Vz)(p(z) A (Fy)-p(y))
p(X) A (Iﬂy)ﬂp(y) p(c) A (ﬁly)ﬂp(y)
p(IX ) P(IC)
(ﬂy)Tp(y) (Hy)Tp(y)

—p(c) —p(c)

*

closed by {X/c}

Figure 1: A tableau that cannot be constructed using the classical ground §-rule.

4.2 TUniversal Variables

Under certain conditions, there is an alternative use of free variables for strength-
ening a tableau calculus. Instead of using a free variable to represent a single but
unknown term, it can be used as well to represent all terms. Then, a formula
containing such a free variable X stands for the set of all formulae that are the
result of replacing X by some term. Intuitively, these free variables can be seen
as being universally quantified on the meta-level; accordingly they are called
universal variables. The advantage of using universal variables is the following:

 For this example, it is not important exactly which d-rule is used. It can be the
rule we define below, but earlier versions of the d-rule [Hihnle and Schmitt, 94,
Fitting, 96] lead to the same result (however, the rule given in the first edition
of [Fitting, 96] leads to a different tableau).



Often several different instances of a tableau formula containing free variables
have to be used to close a branch (or a sub-tableau). In rigid variable tableaux,
the mechanism to do so is to apply the y-rule more than once to the same pre-
miss, introducing new rigid variables to generate variants of a formula. Suppose
a tableau branch B contains a formula ¢(X). When X is instantiated in the
tableau (to close a branch), then ¢(X) is instantiated as well. In particular sit-
uations, however, it is possible to protect X in ¢(X) from being instantiated.
This is sound whenever ¢(t) is a logical consequence of the formulae on B for
all terms ¢t. This is undecidable in general, but many of the protectable free
variables can be recognised easily. For this purpose we introduce the notion of
decorated formulae.

Definition 5. A decorated formula U : @ consists of a set U of free variables and
a formula ¢. The variables in U/ are called the universal variables of ¢; and the
variables in Free(¢) \ U are called the rigid variables of ¢ (where Free(¢) is the
set of all free variables in ¢).

In the search-oriented calculus defined below, the tableau nodes are decorated
formulae. Intuitively, i : ¢(X) represents the different instances ¢(t) provided
that X € U; they can all be used without first generating variants of ¢(X).
Using the concept of universal variables yields shorter tableau proofs, and in
most cases reduces the search space. If both universal and rigid variables are used
in a calculus, then closing substitutions are only applied to the rigid occurrences
of a variable.

Before defining our search-oriented calculus formally, we give simple examples
that demonstrate the usefulness of universal variables.

Ezample 1. We consider tableaux for the set @ = {(Vz)(p(z)), —p(a) vV -p(b)}
of formulae. The top left tree in [Fig. 2] is a rigid variable tableau for ¢ that
cannot be closed immediately as no single substitution for X allows to close
both branches. To find a proof, the expansion rule has to be applied again to the
~-formula (Vz)(p(z)) to add a variant p(X') of p(X). Then, the closed tableau
(top right in the figure) can be deduced.

The bottom left tableau in the figure is a mized variable tableau for & (only
universal variables are used in this example). It contains the decorated formula
{X}:p(X) instead of p(X). This tableau can be expanded to a closed tableau
(bottom right in the figure) without applying a substitution, because { X} : p(X)
represents all formulae of the form p(¢), including p(a) and p(b).

An additional advantage of universal variables is that they help to avoid
redundancies inherent to rigid variable calculi. If, for example, a rigid variable
tableau branch contains the formulae p(X;), p(X2), =p(a), and —p(b), then there
are four different possibilities to close the branch. If, however, the branch contains
the decorated formula {X}: p(X) instead of p(X7) and p(X>), then there is only
one possibility, namely closing the branch without instantiating any variable.

The concept of universal variables was first described in [Beckert and Hahnle,
92]; it has later been improved [Beckert, 98, Beckert and Hihnle, 98].

4.3 Local Lemmata

A simple and in many cases useful way of strengthening a tableau calculus is
to make sure that the extensions of a conclusion do not intersect semantically.
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Figure 2: Tableaux for Example 1

For example, the two extensions p and ¢ of the conclusion for the premiss pV ¢
intersect semantically, as p and ¢ can both be satisfied by a single interpretation.

The application of an expansion rule using a conclusion with semantically
intersecting extensions adds, in some sense, less information to the tableau. In-
tuitively, to close a tableau, one has to show that no interpretation satisfies any
of its branches. If there are branches that may be satisfied by the same inter-
pretation, then such an interpretation has to be considered and excluded more
than once. Extensions can be made intersection-free by adding tableau formulae;
this may require the use of additional extensions, and one has to be careful to
preserve soundness.

The S-rule of the interaction-oriented calculus from [Section 3] allows to de-
rive conclusions that are not intersection-free. An alternative S-rule schema is

B
Bi| B2
=

which produces intersection-free conclusions (the formula =3, that is added to
the right extension can be considered to be a local lemma). Using this new
schema leads to a non-elementary reduction in the size of the shortest proofs for
certain classes of formulae [Egly, 98].

The unrestricted cut rule of the interaction-oriented calculus [see Section 3]
is also an intersection-free rule. However, for reasons discussed in [Section 2.3],
it is not included in our search-oriented calculus.

4.4 The Calculus

We now have everything at hand to define our search-oriented tableau calculus.
It is a mized variable calculus, i.e., it is working with both rigid and universal



variables. For this purpose, we use the decorated formulae from Definition 5.
The calculus also uses the g-rule schema from [Section 4.3], which generates
local lemmata. The rule schemata are given in [Tab. 3]. The square brackets in
the B-rule schema indicate that adding the local lemma is optional.

U:« Uu:p U:~ U:é
UNFree(ar): a1 0:61] 0:3 UU{X}:y(X) U:0(f(X1,..., Xy))
U N Free(as) : as [0:=01]

where X is a new  where f = sko(d) and
free variable. {X1,..., X} = Free(9).

Table 3: Rule schemata for the mixed variable version of tableaux.

For the free variable version of the é-rule, the definition of the operator sko
must be changed slightly. Now, Fgy, is an infinite set of Skolem function symbols.

Definition 6. Given a signature ¥ = (Px, Fx), the function sko assigns to each
d-formula ¢ over X* a function symbol sko(d) € Fyo such that (a) sko(d) > f for
all f € Fy, occurring in §, where > is an arbitrary but fixed ordering on Fyy,,
and (b) for all é-formulae 4, §" over X*, the symbols sko(d) and sko(d') are iden-
tical if and only if § and §' are identical up to renaming of free variables.

In mixed variable tableaux, rigid variables are instantiated by substitutions
that result from unifying pairs of potentially complementary formulae. Universal
variables are protected from being instantiated, reflecting the fact that every
possible instance of the corresponding formula could be derived. Accordingly,
universal variables can be renamed to avoid occur check clashes when formulae
containing the same universal variables are unified. However, instead of actually
renaming universal variables in tableaux, we define the unification of decorated
formulae appropriately.

Definition 7. A substitution o is a unifier of decorated formulae i : ¢ and U' : ¢’
in a tableau T if it is the restriction of a substitution 7 with the property
(¢m)T = (¢'p)7 to the set Free(¢p) \ U) U (Free(¢’) \U' of variables where 7 is
a renaming of the variables in I/ and p is a renaming of the variables in &’ with
variables new to T'.

Definition 8. Let X be a first-order signature. A tableau (over X') is a finitely
branching tree whose nodes are decorated formulae over ¥*. A branch in a
tableau T is a maximal path in T'. Given a set & of sentences over X, the tableauz
for & are (recursively) defined by:

1. The single branch consisting of the decorated formulae in {(:¢) | ¢ € #} is a
tableau for @ (initialisation).

2. Let T be a tableau for &, B a branch of T, and U : ¢ a decorated formula
in B. If the tree T' is constructed by extending B by as many new branches
as the tableau expansion rule corresponding to I/ :1¢) has extensions, where
the nodes of the branches are labeled with the decorated formulae in the
extensions, then 7" is a tableau for ¢ (expansion).



3. Let T be a tableau for ¢, B a branch of T, and U :¢ and U’ : =)’ literals
in B. If o is a unifier of /:v¢ and U’ :¢' (according to Definition 7), and
T'=To,i.e., T' is constructed by applying o to all formulae in T', then 7"
is a tableau for & (closure).

5 The Transformation of Free Variable Instantiations

A transformation from one calculus into another often results in a proof con-
taining additional redundancies. It is desirable to minimise these redundancies
while preserving the original proof structure as much as possible. In this section
the technique for avoiding the introduction of redundant proof parts is described
that is part of our transformation.

The main difficulty in transforming proofs from the search-oriented calculus
from [Section 4] into the interaction represented calculus from [Section 3] is that
the former uses free variables (both rigid and universal), whereas the latter is a
ground calculus without free variables.

Assume, for example, that in a free variable tableau proof the formula ¢(X)
is derived applying the v-rule to the formula (Vz)(¢(z)) and that later a suc-
cessor formula (X)) of ¢(X) is used to close a branch B unifying it with some
formula —)(a). Then, in the corresponding ground proof, the formula ¢(a) has
to be derived from (Vz)(¢(z)) using the ground v-rule, and subsequently (a)
has to be derived from ¢(a) mimicking the derivation of ¢ (X) from ¢(X), which
then finally allows to close the branch in the ground tableau that corresponds
to B. Of course, the situation is in general much more complex—in particular
because universal variables can be instantiated multiply. Mechanisms for ex-
tensive bookkeeping are needed to keep track of how formulae are derived and
which instances are needed (to derive an instance ¢ (a) in the ground calculus,
the instance ¢(a) of the predecessor formula has to be derived first).

In addition, to minimise the number of formulae that are generated in the
ground version of a proof, the order in which different free variables occurring
in a formula have been introduced by -rule applications has to be taken into
account. This order induces a dependency relation between free variables, as the
following example illustrates (a similar situation is described in Example 4):

Ezample 2. Assume that two instances p(a,b) and p(a,c) of some decorated for-
mula {X,Y}:p(X,Y) are used in a free variable tableau proof to close branches.

If this formula has been derived from the vy-formula ¢ = (Vz)(Yy)(p(z,v)),
i.e., if X has been introduced first, then in the ground calculus one can derive
the formula ¢ = (Vy)(p(a,y)) and with two y-rule applications to 3 the ground
instances p(a, b) and p(a,c). In that case, one can make use of the fact that the
ground instances coincide in the instantiation of X by applying the y-rule only
once to ¢.

If, however, the y-formula is of the form ¢ = (Vy)(Vz)(p(z,y)), i.e., if Y has
been introduced first and X depends on Y, then in the ground calculus one has
to derive both ¢} = (Vz)(p(z, b)) and ¢ = (Vz)(p(x,c)), from which then the
two ground instances can be derived. In that case, the fact that the ground
instances coincide in the instantiation of X does not lead to a reduction in the
number of generated formulae.



In the following, we use (sets of) instantiation trees to represent (sets of)
instantiations of the free variables occurring in a formula. The order that is
inherent to the trees reflects the dependency relation between the free variables
(the instantiations of the variable introduced first are contained in the roots of
the trees). The instantiation trees corresponding to the instantiations described
in Example 2 are depicted in [Fig. 3].

X a a X a Y b ¢

R | /\ |

Y b ¢ Y b ¢ X a a
(a) (b) (c)

Figure 3: (a) A set of instantiation tree that can be merged. (b) The result of merging
these instantiation trees. (c) A set of instantiation tree that cannot be merged (see
Example 2).

Ezample 3. In this example, we consider a slightly more complicated case where
instantiation trees are merged that consist of more than one branch. Assume
that instantiations of some decorated formula ¢ = {X,Y,Z}:p(X,Y,Z) have
already been collected and are represented by the instantiation tree shown in
[Fig. 4 (a)]. Assume further that the instance p(a,b,c) is later used to close a
tableau branch, i.e., the instantiation tree has to be merged with the one shown
in [Fig. 4 (b)]. The result of the merging process is shown in [Fig. 4 (c)]. In the
ground tableau proof, a total number of six «-rule applications is needed to
generate the three required ground instances of ¢ (a naive transformation would
generate nine 7-rule applications).

X a a X a
| I\ | | | /\
Y boe Y b Y b e
| | | | | AT
Z df Z ¢ Z cdf
(a) (b) (c)

Figure 4: The instantiation tree (c) is the result of merging the trees (a) and (b) (Ex-
ample 3).

Our transformation algorithm, which has been implemented in Prolog as part
of the tableau-based theorem prover 74P, works in three steps:

1. Compute and collect all instantiations of free variables (both rigid and uni-
versal) required to close all branches of the given free variable tableau proof;



in this first step only the instantiations of variables occurring in literals
actually used for branch closure are considered. The instantiations are rep-
resented by instantiation trees attached to these literals.

2. Compute the necessary instantiations of the free variables in all formulae, in-
cluding the non-literal formulae. The set of instantiation trees of a formula ¢
is computed by merging the sets of instantiation trees of all successor for-
mulae of ¢.

3. Construct the ground proof. It contains one formula for each path in any
of the instantiation trees computed in Step 2 (it may contain additional
redundant formulae). In addition, at this stage, the complex Skolem terms
of the free variable proof are replaced by Skolem constants.

The size of the ground tableau proof that is the result of this transformation
is polynomial in the size of the original free variable proof. However, since the in-
crease in proof size heavily depends on the nesting level of universal quantifiers in
the proof, the increase in proof size is in practice only slightly super-linear. Note
that our transformation does not make use of the cut rule—which is available in
the ground calculus—to translate multiple instantiations of universal variables.
A different transformation that makes use of the cut rule was suggested by [Egly,
98]. Tt can lead to shorter ground proofs (which depending on the purpose of
the proof transformation can be important); however, it changes the structure
of the proof drastically. Such a change of the proof structure may be tolerable
in certain environments, but as our aim was to preserve the proof structure as
much as possible for the benefit of a human user, Egly’s method is not suitable
for our purpose.

Due to space limitations we cannot describe the transformation algorithm
in more detail here (a detailed description [in German] is available [Stenz, 97]).
Instead we give three examples to illustrate the difficulties arising with the trans-
formation and how they are solved by our method.

Ezample 4. [Fig. 5 (a)] shows a free variable tableau proof after the first step of
the transformation, i.e., instantiation trees have been computed for all literals
used to close one of the branches. Only the instantiation trees of the non-ground
literal p(X,Y") are depicted in the figure; they correspond to its instances p(a, b),
p(a,d), and p(c,d), which are used to close the three branches of the tableau
(p(X,Y) can be used with different instantiations for the variables X and Y as
they are universal in this literal). All other literals in this tableau are ground (the
empty instantiation tree is implicitly attached to ground literals). Also, in this
and the following figures, the lists of free variables being universal in a formula
are not shown for ground formulae (for which the list is always empty).

The result of the second step of the transformation is shown in [Fig. 5 (b)].
The two instantiation trees of p(X,Y’) with root a have been merged into one
tree. Note, that it is not possible to merge the two trees with the identical leaf d
as they have incompatible roots a and c. In addition, the set of instantiation
trees for the non-literal formula (Vy)(p(X,y)) has been computed.

In [Fig. 5 (c)] the final result of the transformation (a ground tableau proof)
is shown. The dotted arrows indicate the correspondence between the paths of
the instantiation trees in [Fig. 5 (b)] and the ground formulae in [Fig. 5 (c)].



(VwXVy¥p@zy»
{X}wv%ame»

Xaac
(X, v}ipx,v) || ]|
Ybdd
Gyl (00 Do) A9 ) j/ e
( ~plah) A d) (e
ww(ab)  opa,d) —— B/
(a)
(V) (V) (p(x, y)) <Vx><vm|<p<x,y>>
................... > (V a,
(X} X)) [X_a el (i)
............... ’WW%@W»
S T >p(a,b)
X ‘a .c |
{X,Yyip(X,Y) | L /N Lo T >p(a,d)
Vb dd |
""" >M?®
~((p(a,b) A pla, d)) A p(c,d)) ~((p(a,b) A pla, d)) A p(c,d))
— —
~(p(a,b) A pla, d)) ~p(c,d) ﬂu@)w(a,d)) ~p(c,d)
_'p(f” b) _'p(g’ d) _'p(f” b) _'p(gv d)
(b) (c)

Figure 5: An example for the transformation where instantiation trees contain only
ground terms (Example 4).

Ezample 5. The free variable tableau proofs shown in [Figs. 7 (a) and 8 (a)] illus-
trate the difficulties arising if instantiation trees contain non-ground terms. The
symbol ® occurring in instantiation trees represents an arbitrary instantiation
(note that this is different from the empty instantiation tree).

The free variable tableau proofs in these two figures are very similar. The
main difference is that in the first case [see Fig. 7] the two instantiations f(a) and
f(Y) of the variable X can easily be merged, because the variable Y has to be
instantiated with a anyway. In the second case [see Fig. 8], however, there is no
single optimal result of the transformation. In this case, the instantiations f(a)
and f(Y) of X are not merged by our algorithm. It generates the instance g(b)
of ¢(Y) and the instances p(f(a)) and p(f(b)) of p(X) [see Figure 8 (b)]. The
result of the transformation using these instantiations is shown in [Fig. 8 (c)].

One could as well generate the two instances ¢(a) and ¢(b) of ¢(Y"), in which
case the two instantiations of X can be merged and generating the single in-



stance p(f(a)) of p(X) is sufficient. Then, the resulting ground proof would be
different from the one shown in [Fig. 8 (c)] but it would be of the same size.

The main reason for introducing instantiation trees was to avoid the intro-
duction of redundancies into the resulting ground proof. However, as the follow-
ing example demonstrates, our transformation does not always find an optimal
solution (for which all instantiations in the whole tableau would have to be
considered simultaneously).

Ezample 6. Assume that two instances of a decorated formula {X}:p(X) have
been used for branch closure: p(a) and p(Y) where YV is a free variable also
occurring on some other branch of the tableau. Our transformation does not
merge the two instantiations of X although that is useful if Y is instantiated
with a to close other branches of the tableau (this situation is shown in [Fig. 6].

7 ~N
7 ~N

(xX1:p(X)[Xay | q)

S

Figure 6: The situation described in Example 6.
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Example 7. The problem illustrated by the final example is that closing a tableau
branch may require to instantiate a free variable Y with a term g(Y") contain-
ing Y. That does not cause problems if the universal variable technique is used
(and Y is universal). However, special care has to be taken when a free variable
tableau containing such an instantiation is transformed into a ground tableau;
the instantiation has to be split into two separate instantiations. This situation
arises in the free variable tableau proof shown in [Fig. 9 (a)]. In this proof, g is
a Skolem function symbol for which g = sko(d) where § = =(Vz)(f(Y) D f(x)).

In [Fig. 9 (b)], which shows the result of the second step of the transforma-
tion, the constant ¢ has been chosen to be the arbitrary term that is represented
by ® in [Fig. 9 (a)]. Note, that two instantiation trees are attached to each of
the non-literal formulae, indicating that two separate instances of these formulae
have to be generated in the ground version of the proof.

The ground proof, which is shown in [Fig. 9 (c)], contains two different in-
stances of the d-formula ¥(Y) = =(Vz)(f(Y) D f(2)), namely ¢(c) and ¢(d);
accordingly, two different Skolem constants are introduced. The first of these
constants is d = sko(y(c)) (which corresponds to the term g(c¢) in the free vari-
able proof) and the second constant is e = sko(¢(d)) (which corresponds to the
term g(g(c)) in the free variable proof). Since e “depends” on d, we have e > d
where > is the ordering on Fgi, that ensures the dependency relation on Skolem
constants to be acyclic (Def. 4).

Since d already occurs in the proof at the time it is used as a Skolem constant
in a d§-rule application, this proof could not be constructed using the classical
ground d-rule that demands Skolem constants to be new.
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Figure 7: The first example for the transformation where instantiation trees contain
free variables (Example 5).

A translation of the ground proof into natural language is shown in [Sec-
tion 7.2].

6 The Transformation of Local Lemmata

Applications of the S-rule in the search-oriented calculus [see Tab. 3], which may
introduce local lemmata, require attention when they are transformed, because
the S-rule of the target calculus [see Tab. 2] does not generate lemmata.
Fortunately, the introduction of local lemmata can be seen as a restricted
cut rule application and can therefore easily be simulated since the cut rule is
available in the target calculus. A B-rule application that generates a local lemma
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Figure 8: The second example for the transformation where instantiation trees contain
free variables (Example 5).

is replaced by a cut rule application and a subsequent 3-rule application (which
results in a redundant branch that can immediately be closed); see [Fig. 10] for
an example.

In the implementation of our transformation as part of the prover sTAP, a
simple language for defining translation patterns is made available, that allows to
describe in which way applications of rules that do not exist in the target calculus
are to be replaced by new sub-proofs consisting of one or several applications
of the available rules. The translation of local lemmata (as described above) is
an application of this flexible mechanism. Another example is the simulation of
special rules in 374P’s search-oriented calculus that, for example, allow to derive
from the premiss false V ¢ the conclusion ¢ in a single step.
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Figure 9: An example for the transformation where a (universal) variable Y is instan-
tiated with a term containing ¥V (Example 7).

7 Applications

In this section, we present three applications of the transformation described in
the previous sections to demonstrate its usefulness in practice. All these appli-
cations are based on the implementation of our transformation as part of the
tableau-based automated deduction system 5T4P.

7.1 Integrating Automated and Interactive Theorem Proving

The first application of our proof transformation is the integration of the auto-
mated theorem prover sT4P [Beckert et al., 96] and the interactive software ver-
ification system KIV (Karlsruhe Interactive Verifier) [Reif, 95] to form a single
proof system as shown in [Fig. 11]. In this cooperation the KIV system handles
all user interaction for constructing proofs, while sTAP acts as a background rea-
soner for solving first-order sub-problems that have been isolated by KIV. Our
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Figure 10: Simulating the introduction of a local lemma using the cut rule.

goal was to pass proofs found by s74P back to KIV, instead of only simple mes-
sages such as “success” or "no success”. This has two main advantages. Firstly,
the proof can be presented to the user and, secondly, KIV can integrate the re-
sults of 74P into its extensive proof management system, thus eliminating a lot
of redundant work. The automated theorem prover sTAP uses a search-oriented
calculus that is nearly identical to the one described in [Section 4], while the
interactive system KIV uses a sequent calculus for dynamic logic, the first-order
fragment of which is similar to the interaction-oriented calculus presented in
[Section 3].

Deduction System

: Automated Interactive !
i| Theorem — Theorem — User
| Prover Prover
|
L _1 ____________ _1_ p———
Search- Interaction-
oriented oriented
Calculus Calculus

Figure 11: The integration of automated and interactive theorem proving.

7.2 Proof Presentation in Natural Language

Another integrated deduction system (as shown in [Fig. 11] has been developed
in the framework of the ILF project [Dahn et al., 97]. The ILF system has been
designed as a generic interactive prover environment for integrating the abilities
of human users on the one hand and any sort of automated deduction system
on the other hand; sT4P is one of the provers able to cooperate with ILF.

The ability to translate proofs from a calculus such as the interaction-oriented
target calculus of our transformation into natural language is one of the main
features of ILF [Dahn and Wolf, 96, Wolf, 98]. Therefore, the implementation of
the proof transformation described in this paper permits the output of proofs
found by sTAP to be translated by ILF into natural language.



Ezample 8. ILF’s translation of the ground tableau proof from Example 7 [see
Fig. 9] into natural language is shown in [Fig. 12].

Proof. We show indirectly that
@) (vz)(f(y) D f(x)) (1)

Let us assume that

(Fy)(Vz)(f(y) D f(x)) does not hold. (2)

We chose an arbitrary constant ¢i for y in (2) and obtain that (Vz)(f(c1) D
f(z)) does not hold. Hence we can introduce co for x. This gives that

f(c1) D f(c2) does not hold. (3)

We chose an arbitrary constant c3 for y in (2) and obtain that (Vz)(f(c3) D
f(z)) does not hold. Hence we can replace = by the arbitrarily chosen c¢1 and
assume that f(c3) D f(c1) does not hold. Hence f(ci) does not hold. By (3)
f(c1). Therefore we have a contradiction. Thus we have completed the proof

of (1).

Figure 12: A tableau proof translated by ILF into natural language (Example 8).

Note that, in the last paragraph of the proof, the constant ¢; replaces the
(implicitly) existentially quantified variable z in “f(ec3) D f(z) does not hold”
although ¢; already occurs. That is allowed because (1) ¢; was “arbitrarily cho-
sen” when it was first used and because (2) the other constant ¢z occurring in
the formula does not depend on ¢; (the dependency between Skolem constants is
discussed in Section 3 below Definition 4). The (satisfied) dependency condition
is not pointed out by ILF (it is arguable whether it should be mentioned in a
natural language proof presentation).

7.3 Proof Checking

A further application for proof transformations is the possibility to check the
correctness of proofs more easily.

Since automated theorem provers use complicated heuristics and proof pro-
cedures, their implementations are very complex. Therefore, the proofs that are
constructed may not be sound in all cases, and it is highly desirable to be able
to check the correctness of these proofs. This is made difficult by the fact that
search-oriented calculi often employ tableau rules that are difficult to validate
and that have non-local side effects [see Section 2.3].

The rules of an interaction-oriented calculus, however, are syntactically sim-
ple; for the same reasons that proofs in interaction-oriented calculus are easier
to understand and validate for humans [see Section 2.2], they are easier to check
for a computer. The proof checker can be implemented as a small and simple
program and is therefore more trustworthy. Therefore, the proof transformation
procedure is useful for generating the input for a proof checker.



Based on the implementation of our proof transformation as part of sTAP, we
implemented a compact proof checker, which has been very helpful in detecting
bugs in both s74P and the implementation of the proof transformation.

8 Conclusion

We have categorised logic calculi into two types according to the purpose they
serve in theorem proving, either proof search or user interaction. Furthermore we
have explained the inherent characteristics of such calculi and how these relate
to the designated role of a calculus.

As examples we have defined one tableau calculus from each of those two
categories, a search-oriented free variable calculus and an interaction-oriented
ground calculus, and we have established a proof transformation procedure from
proofs in the former into proofs in the latter calculus.

We believe that the problems we encountered in devising such a transfor-
mation procedure are not particular to our calculi but are invariably caused by
the need to translate between a calculus placing the greatest emphasis on search
space minimisation and a calculus designed with the syntactical simplicity of
its rules as the main objective. Similar phenomena may, for example, occur if a
resolution proof is transformed into a ground resolution proof, i.e., a proof where
first a set of ground instances of the input clauses are listed, from which in a
second step the empty clause is derived.

This work exemplifies and supports the fact that there is a non-trivial gap
between calculi that serve different purposes even if they belong to the same
family. Bridging this gap and thus bringing proofs back to the user requires
considerable effort.

Such transformations are not only of theoretical value but they have appli-
cations and our implementation shows that they are indeed of practical value.

References

[Ahrendt et al., 98] Wolfgang Ahrendt, Bernhard Beckert, Reiner Hihnle, Wolfram
Menzel, Wolfgang Reif, Gerhard Schellhorn, and Peter H. Schmitt. Integrating au-
tomated and interactive theorem proving. In Wolfgang Bibel and Peter H. Schmitt,
editors, Automated Deduction — A Basis for Applications, volume II: Systems and
Implementation Techniques, pages 97-116. Kluwer, Dordrecht, 1998.

[Beckert and Hihnle, 92] Bernhard Beckert and Reiner Hahnle. An improved method
for adding equality to free variable semantic tableaux. In Depak Kapur, editor, Pro-
ceedings, 11th International Conference on Automated Deduction (CADE), Saratoga
Springs, NY, USA, LNCS 607, pages 507-521. Springer, 1992.

[Beckert and Hihnle, 98] Bernhard Beckert and Reiner Hahnle. Analytic tableaux. In
Wolfgang Bibel and Peter H. Schmitt, editors, Automated Deduction — A Basis for
Applications, volume I: Foundations, pages 11-41. Kluwer, Dordrecht, 1998.

[Beckert et al., 96] Bernhard Beckert, Reiner Hihnle, Peter Oel, and Martin Sulzmann.
The tableau-based theorem prover 3TAP, version 4.0. In Proceedings, 13th Inter-
national Conference on Automated Deduction (CADE), New Brunswick, NJ, USA,
LNCS 1104, pages 303-307. Springer, 1996.

[Beckert, 98] Bernhard Beckert. Integration und Uniformierung von Methoden des
tableau-basierten Theorembeweisens. PhD thesis, Universitat Karlsruhe, Fakultat
fiir Informatik, 1998.



[Bjgrner et al., 98] Nikolaj S. Bjgrner, Reiner Hiihnle, Wolfram Menzel, Wolfgang Reif,
and Peter H. Schmitt, editors. Proceedings, Integration of Deductive Systems, Work-
shop at the International Conference on Automated Deduction (CADE), Lindau, Ger-
many, 1998.

[Dahn and Wolf, 96] Bernd I. Dahn and Andreas Wolf. Natural language presentation
and combination of automatically generated proofs. In Proceedings, Conference on
Frontiers of Combining Systems (FroCos), Miinchen, Germany. Kluwer, 1996.

[Dahn et al., 97] Bernd I. Dahn, Jiirgen Gehne, Thomas Honigmann, and Andreas
Wolf. Integration of automated and interactive theorem proving in ILF. In
W. McCune, editor, Proceedings, 14th International Conference on Automated De-
duction (CADE), LNCS 1249, pages 57-60. Springer, 1997.

[Eder, 92] Elmar Eder. Relative complexities of first order calculi. Vieweg, 1992.

[Egly, 98] Uwe Egly. Cuts in tableaux. In Wolfgang Bibel and Peter H. Schmitt,
editors, Automated Deduction — A Basis for Applications, volume I: Foundations,
pages 103-131. Kluwer, Dordrecht, 1998.

[Fitting, 96] Melvin C. Fitting. First-Order Logic and Automated Theorem Proving.
Springer, second edition, 1996.

[Hiahnle and Schmitt, 94] Reiner Hihnle and Peter H. Schmitt. The liberalized §-rule
in free variable semantic tableaux. J. of Automated Reasoning, 13(2):211-222, 1994.

[Letz, 98] Reinhold Letz. Clausal tableaux. In Wolfgang Bibel and Peter H. Schmitt,
editors, Automated Deduction — A Basis for Applications, volume I: Foundations,
pages 43-72. Kluwer, Dordrecht, 1998.

[Miller, 84] Dale A. Miller. Expansion tree proofs and their conversion to natural
deduction proofs. In R. E. Shostak, editor, Proceedings, 7th International Conference
on Automated Deduction (CADE), Napa, USA, LNCS 170. Springer, 1984.

[Pfenning and Nesmith, 90] Frank Pfenning and Daniel Nesmith. Presenting intuitive
deductions via symmetric simplification. In M. Stickel, editor, Proceedings, 10th In-
ternational Conference on Automated Deduction (CADE), Kaiserslautern, Germany,
LNCS 449, pages 336-350. Springer, 1990.

[Pfenning, 84] Frank Pfenning. Analytic and non-analytic proofs. In R. E. Shostak,
editor, Proceedings, Tth International Conference on Automated Deduction (CADE),
Napa, USA, LNCS 170, pages 394-413. Springer, 1984.

[Reif, 95] Wolfgang Reif. The KIV-approach to software verification. In M. Broy and
S. Jahnichen, editors, KORSO: Methods, Languages, and Tools for the Construction
of Correct Software — Final Report, LNCS 1009. Springer, 1995.

[Smullyan, 68] Raymond M. Smullyan. First-Order Logic. Springer, Heidelberg, 1968.
Second corrected edition published in 1995 by Dover Publications, New York.

[Stenz, 97] Gernot Stenz. Beweistransformation in Gentzenkalkiilen. Diplomarbeit,
Fakultat fiir Informatik, Universitat Karlsruhe, August 1997.

[Wolf, 94] Andreas Wolf. Optimization and translation of tableau-proofs into resolu-
tion. J. of Information Processing and Cybernetics (EIK), 30(5-6):311-325, 1994.
[Wolf, 98] Andreas Wolf. A step towards a better understanding of automatically gen-
erated model elimination proofs. In J. Cuena, editor, Information Technologies and
Knowledge Systems (ITEKNOWS’98) — Proceedings of the XV. IFIP World Com-
puter Congress, pages 415-428. Austrian Computer Society/International Federation

for Information Processing, 1998.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) within
the Schwerpunktprogramm Deduktion. We would like to thank Ingo Dahn, Uwe
Egly, and Reiner Hihnle for fruitful discussions, anonymous referees for useful
comments on an earlier version of this paper, and Thomas Honigmann for his
help in implementing an interface to the ILF system.



