
Proof Transformations from Search-oriented intoInteraction-oriented Tableau CalculiGernot Stenz(Munich University of Technology, Germanystenzg@in.tum.de)Wolfgang Ahrendt(University of Karlsruhe, Germanyahrendt@ira.uka.de)Bernhard Beckert(University of Karlsruhe, Germanybeckert@ira.uka.de)Abstract: Logic calculi, and Gentzen-type calculi in particular, can be categorisedinto two types: search-oriented and interaction-oriented calculi. Both these types havecertain inherent characteristics stemming from the purpose for which they are designed.In this paper, we give a general characterisation of the two types and present twocalculi that are typical representatives of their respective class. We introduce a methodfor transforming proofs in the search-oriented calculus into proofs in the interaction-oriented calculus, and we demonstrate that the di�culties arising with devising such atransformation do not pertain to the speci�c calculi we have chosen as examples butare general. We also give examples for the application of our transformation procedure.Key Words: Automated deduction, tableau calculi, proof transformation, proof pre-sentation, proof search.Category: I.2.31 IntroductionHistorically, tableaux and other Gentzen-type calculi were developed as prooftheoretic tools. Since then they have been improved in many ways and for dif-ferent purposes, in particular proof search and automated deduction on the onehand and proof presentation and user interaction on the other hand.In this paper we describe and discuss the two classes of calculi in general[Section 2] and present a proof transformation from a search-oriented calculusinto an interaction-oriented calculus|both calculi are typical representatives oftheir classes. The two calculi|a Smullyan-style ground tableau calculus aug-mented by a non-analytic cut rule and a free variable tableau calculus usingthe universal variable technique|are de�ned in [Sections 3 and 4], respectively.In [Sections 5 and 6] we describe the transformation and give examples, with aparticular focus on the translation of (multiple) instantiations of free variables.Our transformation has been implemented in Prolog [Stenz, 97] as part of thetheorem prover 3TAP [Beckert et al., 96].The main application of transformations between search-oriented and inter-action-oriented calculi is the integration of automated and interactive theoremproving; recent years have seen new e�orts to bring these two braids of com-puter supported reasoning back together to combine the advantages of both



approaches [Ahrendt et al., 98, Bj�rner et al., 98]. Other applications include(1) the translation of proofs into natural language, for which the transformationinto an interaction-oriented calculus is an intermediate step; and (2) checkingproof correctness, because interaction-oriented proofs are typically easier tocheck by a machine for the same reasons that they are easier to understandand validate by a human user.Applications of our proof transformation are described in [Section 7]; and�nally, in [Section 8] we draw conclusions from our work.To place our work in the general context of proof transformations, we brie
yclassify di�erent types of transformations. The �rst type are translations betweeninherently di�erent calculi|for example, between semantic tableaux and reso-lution [Wolf, 94] or between natural deduction and resolution [Pfenning, 84].1[Eder, 92] addresses the question of p-simulation between di�erent �rst-ordercalculi. Such transformations between di�erent calculi are relevant for the rela-tion between automated proof search and human interaction in case the calculiare well suited for these di�erent purposes [Miller, 84, Pfenning, 84]. A secondtype of transformations are normalisation and optimisation of proofs within thesame calculus (without changing the set of available rules). A further type oftransformations|one of the most important �elds in proof theory|is the elim-ination or introduction of rules (resp. their applications) such as, for example,cut elimination. In the context of presenting automatically generated proofs tohumans, the introduction of cuts (or lemmata [Pfenning and Nesmith, 90]) is ofinterest.In this paper, we present a transformation of a di�erent kind. It is a transla-tion between di�erent members of the same family of calculi (semantic tableaux).One calculus can be seen as a re�nement of the other, but it is not just a sub-oder a superset. To make proofs easier to understand for humans, re�nementstailor-made for automated search are eliminated.2 The Two Paradigms2.1 Enhancements and Improvements of Tableau CalculiBelow, the two main classes of techniques for improving tableau calculi are de-scribed in general. Only those techniques are considered that require the calculusto actually be changed; heuristics and techniques for organising the proof searchare not discussed as they do not a�ect the form of the constructed proofs and,thus, do not a�ect their transformation.Strengthening the calculus. A calculus is strengthened if it is changed in such away that shorter proofs for at least some formulae exist. In most cases, strength-ening adds non-determinism to a calculus, i.e., there are more possibilities toproceed at each tableau expansion step. Thus, there is a trade-o� between theadvantage of shorter proofs and the disadvantage that these short proofs maybe harder to �nd as there are more choice points in the search space.1 [Pfenning, 84] actually uses expansion trees, which can be seen as an abstractionof resolution proofs. [Miller, 84] describes a translation in the other direction, fromexpansion trees into natural deduction (but in the framework of higher order logic).



Post-poning choice points. Often, it is possible to uniformly represent di�erenttableaux|and thus di�erent parts of the search space|by a single tableau usingadditional syntactical devices. A typical example is the rigid variable technique[see Section 4.1], where tableaux that are identical up to the replacement ofterms by other terms are all represented by a single tableau in which a free (ordummy) variable is used as a place holder for the di�erent terms.2.2 Interaction-oriented CalculiInteraction-oriented calculi are used if a deduction system has to interact witha human user, where the reason for interaction may either be that the system isnot (fully) automated or that a proof is communicated to the user.Humans prefer calculi with simple rules. Rule applications should be syn-tactically (not necessarily semantically) simple, i.e., each application should beeasy to validate, the pre-conditions should be easy to check, and e�ects of a ruleapplication easy to understand.2 In particular, rule applications should not haveany non-local side e�ects, as humans tend to modularise a problem and focuson proving one sub-problem at a time.On the other hand, a human user's intuition and meta-knowledge about theproblem domain eliminates the need to minimise the search space. Highly non-deterministic rules may be used|as long as they are simple in the sense thattheir applications are easy to validate; an example is the non-analytic cut rulethat imposes no restrictions on the cut formulae that can be introduced.Techniques for post-poning choice points are often not suitable for enhancinginteraction-oriented calculi as they typically result in rules that are syntacticallymore complicated inference rules and have non-local side e�ects (such as, forexample, the instantiation of rigid variables).2.3 Search-oriented CalculiFor automated deduction, minimising the size of the search space is the mainobjective in designing a calculus. To achieve this goal, non-determinism is elim-inated whenever possible. Though short proofs are in general easier to �nd thanlong proofs, the possibility of �nding short proofs may be sacri�ced for the sakeof a smaller search space. Consequently, because strengthening a calculus oftenincreases its non-determinism, weaker versions with fewer choice points are oftenpreferable for automated deduction.3Strengthening the calculus by adding a non-analytic cut rule, which allowsto deduce the conclusion \� or :�" from the empty premiss for all formulae �,2 Calculi for interactive higher order theorem proving often have rules that are notsimple in that sense. The reason why these rules are acceptable for a human user|despite their complexity|is that they constitute comparatively large proof steps.But even in these higher-order calculi, at least the rules for handling the �rst-orderpart of the logic are simple.3 In search-oriented tableau calculi, techniques are frequently used that restrict thesearch space without a�ecting the form of the constructed proofs|such as orderingand connectedness conditions [Beckert and H�ahnle, 98, Letz, 98]. They sacri�ce thepossibility to �nd shorter proofs for the sake of less non-determinism. Such techniquesare not considered here, as using them means changing the proof search withoutchanging the calculus itself.



is a typical example where the disadvantage of additional non-determinism out-weighs the advantage of the existence of shorter proofs. Therefore, in automateddeduction systems the cut rule is never used unrestrictedly. There are, however,restricted versions of the cut rule, such as the generation of local lemmata [seeSection 4.3], that still can reduce the size of the smallest proofs exponentiallybut do not lead to too many additional choice points.A method for strengthening tableau calculi that is very useful for proof searchis the introduction of universal variables [see Section 4.2]; this technique can leadto considerably smaller proofs, and adds only very few additional choice points.Techniques that postpone choice points are always of advantage for proofsearch if the only measure considered is the number of expansion steps thathave to be executed to �nd a tableau proof. The disadvantage is that additionalsyntactical devices and bookkeeping mechanisms are required, which can bedi�cult to implement and lead to computational overhead.In a certain sense, post-poning choice points leads to a breadth-�rst searchwhere di�erent parts of the search space are investigated simultaneously, untiladditional information has been gathered that allows to make an informed de-cision about which part of the search space should be further investigated. Forexample, if closing a tableau branch requires a rigid variable X to be instantiatedwith a certain term t, then the decision to instantiate X with t is informed inthe sense that the instantiation is known to be useful as a branch closure existswhich is not possible without the instantiation.Note that, in contrary to interaction-oriented calculi, it is acceptable forsearch-oriented calculi to have many specialised inference rules, (syntactically)complex rules, and rules with non-local side e�ects (such as the instantiation ofrigid variables).3 An Interaction-oriented Tableau CalculusIn this section, we de�ne a ground tableau calculus for �rst-order predicate logic,which is a typical representative of the class of interaction-oriented calculi. Thisversion of tableaux is called ground because universally quanti�ed variables areinstantiated by ground terms when the 
-rule is applied. Except for a moresophisticated �-rule for handling existential quanti�cation (see below), we usethe standard ground tableau rules (as de�ned by [Smullyan, 68]). As the calculusis meant to be used interactively and not automatically, an unrestricted cut ruleis included.The de�nition of the tableau expansion rules makes use of the unifying no-tation given in [Tab. 1], where the left-most columns assign the types �, �, 
,and � to formula patterns.[Tab. 2] contains the rule schemata for our interaction-oriented calculus (pre-misses and conclusions are separated by a horizontal bar, while vertical bars inthe conclusion denote di�erent extensions). The right-most schema is the non-analytic cut rule, in which � can be any formula.Both the 
-rule and the cut rule are highly non-deterministic, which is typ-ical for an interaction-oriented calculus and allows the user to make use of hisintuition and domain knowledge.The expansion rule schemata in [Tab. 2] all have a very simple form and areeasy to understand. Moreover, they can be seen as de�ning the calculus com-
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1(t)where t is anyground term. ��1(c)where c = sko(�). � :�Table 2: Rule schemata for the ground version of tableaux.pletely; no additional explanations are needed (in particular, closing a branchdoes not change the tableau). This makes the calculus very user-friendly. De�ni-tion 1 merely formalises the de�nition of tableaux for a given set � of formulaethat is implicitly already contained in [Tab. 2].De�nition 1. A tableau is a �nitely branching tree whose nodes are �rst-orderformulae. A branch in a tableau T is a maximal path in T . Given a set � ofsentences4, the tableaux for � are (recursively) de�ned by:1. The tree consisting of the one branch � is a tableau for � (initialisation).52. Let T be a tableau for �, B a branch of T , and  a formula in B. If the treeT 0 is constructed by extending B by as many new branches as the tableauexpansion rule corresponding to  has extensions, where the nodes of thebranches are labelled with the formulae in the extensions, then T 0 is a tableaufor � (�-, �-, 
-, �-expansion).3. Let T be a tableau for �, B a branch of T , and � an arbitrary formula. Ifthe tree T 0 is constructed by extending B by two new single node branches,one containing the formula � and the other containing the formula :�, thenT 0 is a tableau for � (cut-expansion).De�nition 2. Given a tableau T , a branch B of T is closed i� B contains a pair�;:� of complementary formulae; otherwise it is open. A tableau is closed if allits branches are closed.De�nition 3. A tableau proof for (the unsatis�ability of) a set � of sentencesconsists of a tableau T for � that is closed.4 A sentence is a �rst-order formula not containing any free variables.5 We identify the set � with a branch whose nodes are the formulae in �.



So far we have not explained the meaning of the operator sko used in the�-rule schema. For skolemisation, we use symbols from a special in�nite set Fskoof Skolem constant symbols, which is disjoint from the set F� of function sym-bols for any given �rst-order signature � = hP� ; F�i. The extended signaturehP� ; F� [ Fskoi is denoted by ��.De�nition 4. Given a signature � = hP� ; F�i, the function sko assigns to each�-formula � over �� a symbol sko(�) 2 Fsko such that sko(�) > c for all c 2 Fskooccurring in �, where > is an arbitrary but �xed ordering on Fsko.Note, that the symbol c = sko(�) may already occur in the context (on thetableau branch) where our �-rule is applied to replace an existentially quanti-�ed variable with c. In contrast to that, the Skolem symbol introduced by anapplication of the classical (ground) �-rule is always new w.r.t. the context. Theintuitive reason why our �-rule is sound although the Skolem symbol c may notbe new is the following: In general, a (ground) �-rule is sound if it guaranteesthe dependency relation between Skolem symbols is acyclic. That dependencyrelation is the transitive closure of the relation; de�ned by: For all Skolemsymbols c and d, c; d i� c = sko('(d)). An easy (though not optimal) way toensure that the dependency relation is acyclic, is to demand that each Skolemsymbol is new w.r.t. the context where it is used by the �-rule. Our improved�-rule is more liberal but ensures nevertheless that the dependency relation isacyclic.Such more liberal rules were �rst used in free variable calculi [see Section 4.1],but they are useful for ground calculi as well. Our �-rule may not be as syntac-tically simple as the classical rule; that disadvantage is, however, made up forby the fact that our rule is strictly local (whereas the concept of a \new" sym-bol is inherently global). An additional bene�t of using an improved rule inthe ground calculus as well is that the transformation between the free variable(search-oriented) and the ground (interaction-oriented) calculus gets easier.4 A Search-oriented Tableau CalculusHere, we introduce a tableau calculus that is designed for automated proofsearch. We use the concepts of rigid variables, universal variables, and local lem-mata. For an overview of these and other advanced techniques for tableau-basedautomated deduction we refer to [Beckert and H�ahnle, 98].4.1 Rigid VariablesThe concept of rigid variables6 is based on the fact that the 
-rule allows to deriveconclusions of the form 
1(t) for all terms t. Therefore, instead of guessing termswhen they are introduced, they can be represented by a rigid variable X . Later,when the proof procedure has good reason to use a particular instance t, thevariable X is instantiated \on demand"; that means, all occurrences of X arereplaced by t. Usually, this is done when at least one branch can be closed (in6 In the literature|in particular on calculi for �rst-order predicate logic|, severalother names have been used for free and, in particular, for rigid variables, includingparameter, dummy variable, and meta variable.



the sense of De�nition 2) provided that X is replaced by t. Uni�cation is usedto �nd a most general substitution that allows to close a branch. Using rigidvariables reduces the number of choice points in the construction of a tableauproof and thus the size of the search space.Intuitively, a formula containing a rigid variable X stands for a single (butunknown) element of the set of all formulae that are the result of replacing X bysome term. All occurrences of a rigid variable in a tableau have to be instantiatedby the same term (which is why these variables are called \rigid").The possibility to instantiate rigid variables with Skolem symbols leads todi�culties if a �-rule is used whose soundness is based on demanding the Skolemsymbol that is introduced to be new. Consider, for example, the tableau shown onthe left in [Fig. 1]. The last expansion rule applied has been a �-rule (introducingthe Skolem symbol c).7 When the closing substitution fX=cg is applied, thetableau becomes ground (shown on the right in [Fig. 1]. This ground tableaucannot be constructed using a ground calculus with the classical �-rule thatdemands Skolem symbols to be new. But it can be constructed using the groundcalculus de�ned in [Section 3], which has a more liberal �-rule. This exampleillustrates why a tableau proof transformation from a rigid variable calculus intoa ground calculus using a liberal �-rule is easier than a transformation into acalculus using the classical �-rule.(8x)(p(x)^ (9y):p(y))p(X) ^ (9y):p(y)p(X)(9y):p(y):p(c)
(8x)(p(x)^ (9y):p(y))p(c) ^ (9y):p(y)p(c)(9y):p(y):p(c)�closed by fX=cgFigure 1: A tableau that cannot be constructed using the classical ground �-rule.4.2 Universal VariablesUnder certain conditions, there is an alternative use of free variables for strength-ening a tableau calculus. Instead of using a free variable to represent a single butunknown term, it can be used as well to represent all terms. Then, a formulacontaining such a free variable X stands for the set of all formulae that are theresult of replacing X by some term. Intuitively, these free variables can be seenas being universally quanti�ed on the meta-level; accordingly they are calleduniversal variables. The advantage of using universal variables is the following:7 For this example, it is not important exactly which �-rule is used. It can be therule we de�ne below, but earlier versions of the �-rule [H�ahnle and Schmitt, 94,Fitting, 96] lead to the same result (however, the rule given in the �rst editionof [Fitting, 96] leads to a di�erent tableau).



Often several di�erent instances of a tableau formula containing free variableshave to be used to close a branch (or a sub-tableau). In rigid variable tableaux,the mechanism to do so is to apply the 
-rule more than once to the same pre-miss, introducing new rigid variables to generate variants of a formula. Supposea tableau branch B contains a formula �(X). When X is instantiated in thetableau (to close a branch), then �(X) is instantiated as well. In particular sit-uations, however, it is possible to protect X in �(X) from being instantiated.This is sound whenever �(t) is a logical consequence of the formulae on B forall terms t. This is undecidable in general, but many of the protectable freevariables can be recognised easily. For this purpose we introduce the notion ofdecorated formulae.De�nition 5. A decorated formula U :� consists of a set U of free variables anda formula �. The variables in U are called the universal variables of �; and thevariables in Free(�) n U are called the rigid variables of � (where Free(�) is theset of all free variables in �).In the search-oriented calculus de�ned below, the tableau nodes are decoratedformulae. Intuitively, U :�(X) represents the di�erent instances �(t) providedthat X 2 U ; they can all be used without �rst generating variants of �(X).Using the concept of universal variables yields shorter tableau proofs, and inmost cases reduces the search space. If both universal and rigid variables are usedin a calculus, then closing substitutions are only applied to the rigid occurrencesof a variable.Before de�ning our search-oriented calculus formally, we give simple examplesthat demonstrate the usefulness of universal variables.Example 1. We consider tableaux for the set � = f(8x)(p(x)); :p(a) _ :p(b)gof formulae. The top left tree in [Fig. 2] is a rigid variable tableau for � thatcannot be closed immediately as no single substitution for X allows to closeboth branches. To �nd a proof, the expansion rule has to be applied again to the
-formula (8x)(p(x)) to add a variant p(X 0) of p(X). Then, the closed tableau(top right in the �gure) can be deduced.The bottom left tableau in the �gure is a mixed variable tableau for � (onlyuniversal variables are used in this example). It contains the decorated formulafXg : p(X) instead of p(X). This tableau can be expanded to a closed tableau(bottom right in the �gure) without applying a substitution, because fXg : p(X)represents all formulae of the form p(t), including p(a) and p(b).An additional advantage of universal variables is that they help to avoidredundancies inherent to rigid variable calculi. If, for example, a rigid variabletableau branch contains the formulae p(X1); p(X2);:p(a), and :p(b), then thereare four di�erent possibilities to close the branch. If, however, the branch containsthe decorated formula fXg : p(X) instead of p(X1) and p(X2), then there is onlyone possibility, namely closing the branch without instantiating any variable.The concept of universal variables was �rst described in [Beckert and H�ahnle,92]; it has later been improved [Beckert, 98, Beckert and H�ahnle, 98].4.3 Local LemmataA simple and in many cases useful way of strengthening a tableau calculus isto make sure that the extensions of a conclusion do not intersect semantically.



(8x)(p(x))(:p(a) _ :p(b))p(X):p(a) :p(b) (8x)(p(x))(:p(a) _ :p(b))p(X):p(a)� :p(b)p(X 0)�with fX=ag and fX 0=bg applied; : (8x)(p(x)); : (:p(a) _ :p(b))fXg : p(X); ::p(a) ; ::p(b) ; : (8x)(p(x)); : (:p(a) _ :p(b))fXg : p(X); ::p(a)� ; ::p(b)�Figure 2: Tableaux for Example 1For example, the two extensions p and q of the conclusion for the premiss p _ qintersect semantically, as p and q can both be satis�ed by a single interpretation.The application of an expansion rule using a conclusion with semanticallyintersecting extensions adds, in some sense, less information to the tableau. In-tuitively, to close a tableau, one has to show that no interpretation satis�es anyof its branches. If there are branches that may be satis�ed by the same inter-pretation, then such an interpretation has to be considered and excluded morethan once. Extensions can be made intersection-free by adding tableau formulae;this may require the use of additional extensions, and one has to be careful topreserve soundness.The �-rule of the interaction-oriented calculus from [Section 3] allows to de-rive conclusions that are not intersection-free. An alternative �-rule schema is��1 �2:�1which produces intersection-free conclusions (the formula :�1 that is added tothe right extension can be considered to be a local lemma). Using this newschema leads to a non-elementary reduction in the size of the shortest proofs forcertain classes of formulae [Egly, 98].The unrestricted cut rule of the interaction-oriented calculus [see Section 3]is also an intersection-free rule. However, for reasons discussed in [Section 2.3],it is not included in our search-oriented calculus.4.4 The CalculusWe now have everything at hand to de�ne our search-oriented tableau calculus.It is a mixed variable calculus, i.e., it is working with both rigid and universal



variables. For this purpose, we use the decorated formulae from De�nition 5.The calculus also uses the �-rule schema from [Section 4.3], which generateslocal lemmata. The rule schemata are given in [Tab. 3]. The square brackets inthe �-rule schema indicate that adding the local lemma is optional.U :�U \ Free(�1) :�1U \ Free(�2) :�2 U : �; : �1 ; : �2[; ::�1] U : 
U [ fXg : 
1(X)where X is a newfree variable. U : �U : �1(f(X1; : : : ; Xn))where f = sko(�) andfX1; : : : ; Xng = Free(�).Table 3: Rule schemata for the mixed variable version of tableaux.For the free variable version of the �-rule, the de�nition of the operator skomust be changed slightly. Now, Fsko is an in�nite set of Skolem function symbols.De�nition 6. Given a signature � = hP� ; F�i, the function sko assigns to each�-formula � over �� a function symbol sko(�) 2 Fsko such that (a) sko(�) > f forall f 2 Fsko occurring in �, where > is an arbitrary but �xed ordering on Fsko,and (b) for all �-formulae �; �0 over ��, the symbols sko(�) and sko(�0) are iden-tical if and only if � and �0 are identical up to renaming of free variables.In mixed variable tableaux, rigid variables are instantiated by substitutionsthat result from unifying pairs of potentially complementary formulae. Universalvariables are protected from being instantiated, re
ecting the fact that everypossible instance of the corresponding formula could be derived. Accordingly,universal variables can be renamed to avoid occur check clashes when formulaecontaining the same universal variables are uni�ed. However, instead of actuallyrenaming universal variables in tableaux, we de�ne the uni�cation of decoratedformulae appropriately.De�nition 7. A substitution � is a uni�er of decorated formulae U :� and U 0 :�0in a tableau T if it is the restriction of a substitution � with the property(��)� = (�0�)� to the set Free(�) n U) [ (Free(�0) n U 0 of variables where � isa renaming of the variables in U and � is a renaming of the variables in U 0 withvariables new to T .De�nition 8. Let � be a �rst-order signature. A tableau (over �) is a �nitelybranching tree whose nodes are decorated formulae over ��. A branch in atableau T is a maximal path in T . Given a set � of sentences over �, the tableauxfor � are (recursively) de�ned by:1. The single branch consisting of the decorated formulae in f; :� j � 2 �g is atableau for � (initialisation).2. Let T be a tableau for �, B a branch of T , and U : a decorated formulain B. If the tree T 0 is constructed by extending B by as many new branchesas the tableau expansion rule corresponding to U : has extensions, wherethe nodes of the branches are labeled with the decorated formulae in theextensions, then T 0 is a tableau for � (expansion).



3. Let T be a tableau for �, B a branch of T , and U : and U 0 :: 0 literalsin B. If � is a uni�er of U : and U 0 : 0 (according to De�nition 7), andT 0 = T�, i.e., T 0 is constructed by applying � to all formulae in T , then T 0is a tableau for � (closure).5 The Transformation of Free Variable InstantiationsA transformation from one calculus into another often results in a proof con-taining additional redundancies. It is desirable to minimise these redundancieswhile preserving the original proof structure as much as possible. In this sectionthe technique for avoiding the introduction of redundant proof parts is describedthat is part of our transformation.The main di�culty in transforming proofs from the search-oriented calculusfrom [Section 4] into the interaction represented calculus from [Section 3] is thatthe former uses free variables (both rigid and universal), whereas the latter is aground calculus without free variables.Assume, for example, that in a free variable tableau proof the formula �(X)is derived applying the 
-rule to the formula (8x)(�(x)) and that later a suc-cessor formula  (X) of �(X) is used to close a branch B unifying it with someformula : (a). Then, in the corresponding ground proof, the formula �(a) hasto be derived from (8x)(�(x)) using the ground 
-rule, and subsequently  (a)has to be derived from �(a) mimicking the derivation of  (X) from �(X), whichthen �nally allows to close the branch in the ground tableau that correspondsto B. Of course, the situation is in general much more complex|in particularbecause universal variables can be instantiated multiply. Mechanisms for ex-tensive bookkeeping are needed to keep track of how formulae are derived andwhich instances are needed (to derive an instance  (a) in the ground calculus,the instance �(a) of the predecessor formula has to be derived �rst).In addition, to minimise the number of formulae that are generated in theground version of a proof, the order in which di�erent free variables occurringin a formula have been introduced by 
-rule applications has to be taken intoaccount. This order induces a dependency relation between free variables, as thefollowing example illustrates (a similar situation is described in Example 4):Example 2. Assume that two instances p(a; b) and p(a; c) of some decorated for-mula fX;Y g : p(X;Y ) are used in a free variable tableau proof to close branches.If this formula has been derived from the 
-formula � = (8x)(8y)(p(x; y)),i.e., if X has been introduced �rst, then in the ground calculus one can derivethe formula  = (8y)(p(a; y)) and with two 
-rule applications to  the groundinstances p(a; b) and p(a; c). In that case, one can make use of the fact that theground instances coincide in the instantiation of X by applying the 
-rule onlyonce to �.If, however, the 
-formula is of the form �0 = (8y)(8x)(p(x; y)), i.e., if Y hasbeen introduced �rst and X depends on Y , then in the ground calculus one hasto derive both  01 = (8x)(p(x; b)) and  02 = (8x)(p(x; c)), from which then thetwo ground instances can be derived. In that case, the fact that the groundinstances coincide in the instantiation of X does not lead to a reduction in thenumber of generated formulae.



In the following, we use (sets of) instantiation trees to represent (sets of)instantiations of the free variables occurring in a formula. The order that isinherent to the trees re
ects the dependency relation between the free variables(the instantiations of the variable introduced �rst are contained in the roots ofthe trees). The instantiation trees corresponding to the instantiations describedin Example 2 are depicted in [Fig. 3].XY ab ac(a) XY ab c(b) YX ba ca(c)Figure 3: (a) A set of instantiation tree that can be merged. (b) The result of mergingthese instantiation trees. (c) A set of instantiation tree that cannot be merged (seeExample 2).Example 3. In this example, we consider a slightly more complicated case whereinstantiation trees are merged that consist of more than one branch. Assumethat instantiations of some decorated formula � = fX;Y; Zg : p(X;Y; Z) havealready been collected and are represented by the instantiation tree shown in[Fig. 4 (a)]. Assume further that the instance p(a; b; c) is later used to close atableau branch, i.e., the instantiation tree has to be merged with the one shownin [Fig. 4 (b)]. The result of the merging process is shown in [Fig. 4 (c)]. In theground tableau proof, a total number of six 
-rule applications is needed togenerate the three required ground instances of � (a naive transformation wouldgenerate nine 
-rule applications).XYZ abd ef XYZ abc XYZ abc d ef(b)(a) (c)Figure 4: The instantiation tree (c) is the result of merging the trees (a) and (b) (Ex-ample 3).Our transformation algorithm, which has been implemented in Prolog as partof the tableau-based theorem prover 3TAP , works in three steps:1. Compute and collect all instantiations of free variables (both rigid and uni-versal) required to close all branches of the given free variable tableau proof;



in this �rst step only the instantiations of variables occurring in literalsactually used for branch closure are considered. The instantiations are rep-resented by instantiation trees attached to these literals.2. Compute the necessary instantiations of the free variables in all formulae, in-cluding the non-literal formulae. The set of instantiation trees of a formula �is computed by merging the sets of instantiation trees of all successor for-mulae of �.3. Construct the ground proof. It contains one formula for each path in anyof the instantiation trees computed in Step 2 (it may contain additionalredundant formulae). In addition, at this stage, the complex Skolem termsof the free variable proof are replaced by Skolem constants.The size of the ground tableau proof that is the result of this transformationis polynomial in the size of the original free variable proof. However, since the in-crease in proof size heavily depends on the nesting level of universal quanti�ers inthe proof, the increase in proof size is in practice only slightly super-linear. Notethat our transformation does not make use of the cut rule|which is available inthe ground calculus|to translate multiple instantiations of universal variables.A di�erent transformation that makes use of the cut rule was suggested by [Egly,98]. It can lead to shorter ground proofs (which depending on the purpose ofthe proof transformation can be important); however, it changes the structureof the proof drastically. Such a change of the proof structure may be tolerablein certain environments, but as our aim was to preserve the proof structure asmuch as possible for the bene�t of a human user, Egly's method is not suitablefor our purpose.Due to space limitations we cannot describe the transformation algorithmin more detail here (a detailed description [in German] is available [Stenz, 97]).Instead we give three examples to illustrate the di�culties arising with the trans-formation and how they are solved by our method.Example 4. [Fig. 5 (a)] shows a free variable tableau proof after the �rst step ofthe transformation, i.e., instantiation trees have been computed for all literalsused to close one of the branches. Only the instantiation trees of the non-groundliteral p(X;Y ) are depicted in the �gure; they correspond to its instances p(a; b),p(a; d), and p(c; d), which are used to close the three branches of the tableau(p(X;Y ) can be used with di�erent instantiations for the variables X and Y asthey are universal in this literal). All other literals in this tableau are ground (theempty instantiation tree is implicitly attached to ground literals). Also, in thisand the following �gures, the lists of free variables being universal in a formulaare not shown for ground formulae (for which the list is always empty).The result of the second step of the transformation is shown in [Fig. 5 (b)].The two instantiation trees of p(X;Y ) with root a have been merged into onetree. Note, that it is not possible to merge the two trees with the identical leaf das they have incompatible roots a and c. In addition, the set of instantiationtrees for the non-literal formula (8y)(p(X; y)) has been computed.In [Fig. 5 (c)] the �nal result of the transformation (a ground tableau proof)is shown. The dotted arrows indicate the correspondence between the paths ofthe instantiation trees in [Fig. 5 (b)] and the ground formulae in [Fig. 5 (c)].
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XY ab d cdX a c (8x)(8y)(p(x;y))(8y)(p(a; y))(8y)(p(c; y))p(a; b)p(a; d)p(c; d):((p(a; b) ^ p(a; d)) ^ p(c; d)):(p(a; b) ^ p(a; d)):p(a; b)� :p(a; d)� :p(c; d)�(b) (c)Figure 5: An example for the transformation where instantiation trees contain onlyground terms (Example 4).Example 5. The free variable tableau proofs shown in [Figs. 7 (a) and 8 (a)] illus-trate the di�culties arising if instantiation trees contain non-ground terms. Thesymbol 
 occurring in instantiation trees represents an arbitrary instantiation(note that this is di�erent from the empty instantiation tree).The free variable tableau proofs in these two �gures are very similar. Themain di�erence is that in the �rst case [see Fig. 7] the two instantiations f(a) andf(Y ) of the variable X can easily be merged, because the variable Y has to beinstantiated with a anyway. In the second case [see Fig. 8], however, there is nosingle optimal result of the transformation. In this case, the instantiations f(a)and f(Y ) of X are not merged by our algorithm. It generates the instance q(b)of q(Y ) and the instances p(f(a)) and p(f(b)) of p(X) [see Figure 8 (b)]. Theresult of the transformation using these instantiations is shown in [Fig. 8 (c)].One could as well generate the two instances q(a) and q(b) of q(Y ), in whichcase the two instantiations of X can be merged and generating the single in-



stance p(f(a)) of p(X) is su�cient. Then, the resulting ground proof would bedi�erent from the one shown in [Fig. 8 (c)] but it would be of the same size.The main reason for introducing instantiation trees was to avoid the intro-duction of redundancies into the resulting ground proof. However, as the follow-ing example demonstrates, our transformation does not always �nd an optimalsolution (for which all instantiations in the whole tableau would have to beconsidered simultaneously).Example 6. Assume that two instances of a decorated formula fXg : p(X) havebeen used for branch closure: p(a) and p(Y ) where Y is a free variable alsooccurring on some other branch of the tableau. Our transformation does notmerge the two instantiations of X although that is useful if Y is instantiatedwith a to close other branches of the tableau (this situation is shown in [Fig. 6].
fXg : p(X)p(a)� p(Y )� q(Y ):q(a)�X a YFigure 6: The situation described in Example 6.Example 7. The problem illustrated by the �nal example is that closing a tableaubranch may require to instantiate a free variable Y with a term g(Y ) contain-ing Y . That does not cause problems if the universal variable technique is used(and Y is universal). However, special care has to be taken when a free variabletableau containing such an instantiation is transformed into a ground tableau;the instantiation has to be split into two separate instantiations. This situationarises in the free variable tableau proof shown in [Fig. 9 (a)]. In this proof, g isa Skolem function symbol for which g = sko(�) where � = :(8x)(f(Y ) � f(x)).In [Fig. 9 (b)], which shows the result of the second step of the transforma-tion, the constant c has been chosen to be the arbitrary term that is representedby 
 in [Fig. 9 (a)]. Note, that two instantiation trees are attached to each ofthe non-literal formulae, indicating that two separate instances of these formulaehave to be generated in the ground version of the proof.The ground proof, which is shown in [Fig. 9 (c)], contains two di�erent in-stances of the �-formula  (Y ) = :(8x)(f(Y ) � f(x)), namely  (c) and  (d);accordingly, two di�erent Skolem constants are introduced. The �rst of theseconstants is d = sko( (c)) (which corresponds to the term g(c) in the free vari-able proof) and the second constant is e = sko( (d)) (which corresponds to theterm g(g(c)) in the free variable proof). Since e \depends" on d, we have e > dwhere > is the ordering on Fsko that ensures the dependency relation on Skolemconstants to be acyclic (Def. 4).Since d already occurs in the proof at the time it is used as a Skolem constantin a �-rule application, this proof could not be constructed using the classicalground �-rule that demands Skolem constants to be new.
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(8y)(q(y)^ :(p(f(a)) ^ p(f(y))))q(a) ^ :(p(f(a)) ^ p(f(a)))q(a):(p(f(a)) ^ p(f(a))):q(a) _ (8x)(p(x)):q(a)� (8x)(p(x))p(f(a)):p(f(a))� :p(f(a))�(b) (c)Figure 7: The �rst example for the transformation where instantiation trees containfree variables (Example 5).A translation of the ground proof into natural language is shown in [Sec-tion 7.2].6 The Transformation of Local LemmataApplications of the �-rule in the search-oriented calculus [see Tab. 3], which mayintroduce local lemmata, require attention when they are transformed, becausethe �-rule of the target calculus [see Tab. 2] does not generate lemmata.Fortunately, the introduction of local lemmata can be seen as a restrictedcut rule application and can therefore easily be simulated since the cut rule isavailable in the target calculus. A �-rule application that generates a local lemma
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(8y)(q(y)^ :(p(f(a)) ^ p(f(y))))q(b) ^ :(p(f(a)) ^ p(f(b)))q(b):(p(f(a)) ^ p(f(b))):q(b) _ (8x)(p(x)):q(b)� (8x)(p(x))p(f(a))p(f(b)):p(f(a))� :p(f(b))�(b) (c)Figure 8: The second example for the transformation where instantiation trees containfree variables (Example 5).is replaced by a cut rule application and a subsequent �-rule application (whichresults in a redundant branch that can immediately be closed); see [Fig. 10] foran example.In the implementation of our transformation as part of the prover 3TAP , asimple language for de�ning translation patterns is made available, that allows todescribe in which way applications of rules that do not exist in the target calculusare to be replaced by new sub-proofs consisting of one or several applicationsof the available rules. The translation of local lemmata (as described above) isan application of this 
exible mechanism. Another example is the simulation ofspecial rules in 3TAP 's search-oriented calculus that, for example, allow to derivefrom the premiss false _ � the conclusion � in a single step.



:(9y)(8x)(f(y) � f(x))fY g ::(8x)(f(Y ) � f(x))fY g ::(f(Y ) � f(g(Y )))fY g : f(Y )fY g ::(f(g(Y )))� Y g(Y )Y 
fY=g(Y )g (a):(9y)(8x)(f(y) � f(x))fY g ::(8x)(f(Y ) � f(x))fY g ::(f(Y ) � f(g(Y )))fY g : f(Y )fY g ::(f(g(Y )))�
Y g(c) cY g(c) cY g(c)Y c

:(9y)(8x)(f(y) � f(x))):(8x)(f(d) � f(x)):(8x)(f(c) � f(x)):(f(d) � f(e)):(f(c) � f(d))f(d):(f(e))f(c):(f(d))�(b) (c) Closure
Figure 9: An example for the transformation where a (universal) variable Y is instan-tiated with a term containing Y (Example 7).7 ApplicationsIn this section, we present three applications of the transformation described inthe previous sections to demonstrate its usefulness in practice. All these appli-cations are based on the implementation of our transformation as part of thetableau-based automated deduction system 3TAP .7.1 Integrating Automated and Interactive Theorem ProvingThe �rst application of our proof transformation is the integration of the auto-mated theorem prover 3TAP [Beckert et al., 96] and the interactive software ver-i�cation system KIV (Karlsruhe Interactive Veri�er) [Reif, 95] to form a singleproof system as shown in [Fig. 11]. In this cooperation the KIV system handlesall user interaction for constructing proofs, while 3TAP acts as a background rea-soner for solving �rst-order sub-problems that have been isolated by KIV. Our



p _ qp q:p p _ qp :pp� qCutClosure of theredundant branch� �Figure 10: Simulating the introduction of a local lemma using the cut rule.goal was to pass proofs found by 3TAP back to KIV, instead of only simple mes-sages such as \success" or "no success". This has two main advantages. Firstly,the proof can be presented to the user and, secondly, KIV can integrate the re-sults of 3TAP into its extensive proof management system, thus eliminating a lotof redundant work. The automated theorem prover 3TAP uses a search-orientedcalculus that is nearly identical to the one described in [Section 4], while theinteractive system KIV uses a sequent calculus for dynamic logic, the �rst-orderfragment of which is similar to the interaction-oriented calculus presented in[Section 3].AutomatedTheoremProver InteractiveTheoremProverDeduction System
Search-orientedCalculus Interaction-orientedCalculus

User
Figure 11: The integration of automated and interactive theorem proving.7.2 Proof Presentation in Natural LanguageAnother integrated deduction system (as shown in [Fig. 11] has been developedin the framework of the ILF project [Dahn et al., 97]. The ILF system has beendesigned as a generic interactive prover environment for integrating the abilitiesof human users on the one hand and any sort of automated deduction systemon the other hand; 3TAP is one of the provers able to cooperate with ILF.The ability to translate proofs from a calculus such as the interaction-orientedtarget calculus of our transformation into natural language is one of the mainfeatures of ILF [Dahn and Wolf, 96, Wolf, 98]. Therefore, the implementation ofthe proof transformation described in this paper permits the output of proofsfound by 3TAP to be translated by ILF into natural language.



Example 8. ILF's translation of the ground tableau proof from Example 7 [seeFig. 9] into natural language is shown in [Fig. 12].Proof. We show indirectly that(9y)(8x)(f(y) � f(x)) (1)Let us assume that(9y)(8x)(f(y) � f(x)) does not hold: (2)We chose an arbitrary constant c1 for y in (2) and obtain that (8x)(f(c1) �f(x)) does not hold: Hence we can introduce c2 for x. This gives thatf(c1) � f(c2) does not hold: (3)We chose an arbitrary constant c3 for y in (2) and obtain that (8x)(f(c3) �f(x)) does not hold: Hence we can replace x by the arbitrarily chosen c1 andassume that f(c3) � f(c1) does not hold: Hence f(c1) does not hold: By (3)f(c1): Therefore we have a contradiction. Thus we have completed the proofof (1).Figure 12: A tableau proof translated by ILF into natural language (Example 8).Note that, in the last paragraph of the proof, the constant c1 replaces the(implicitly) existentially quanti�ed variable x in \f(c3) � f(x) does not hold"although c1 already occurs. That is allowed because (1) c1 was \arbitrarily cho-sen" when it was �rst used and because (2) the other constant c3 occurring inthe formula does not depend on c1 (the dependency between Skolem constants isdiscussed in Section 3 below De�nition 4). The (satis�ed) dependency conditionis not pointed out by ILF (it is arguable whether it should be mentioned in anatural language proof presentation).7.3 Proof CheckingA further application for proof transformations is the possibility to check thecorrectness of proofs more easily.Since automated theorem provers use complicated heuristics and proof pro-cedures, their implementations are very complex. Therefore, the proofs that areconstructed may not be sound in all cases, and it is highly desirable to be ableto check the correctness of these proofs. This is made di�cult by the fact thatsearch-oriented calculi often employ tableau rules that are di�cult to validateand that have non-local side e�ects [see Section 2.3].The rules of an interaction-oriented calculus, however, are syntactically sim-ple; for the same reasons that proofs in interaction-oriented calculus are easierto understand and validate for humans [see Section 2.2], they are easier to checkfor a computer. The proof checker can be implemented as a small and simpleprogram and is therefore more trustworthy. Therefore, the proof transformationprocedure is useful for generating the input for a proof checker.



Based on the implementation of our proof transformation as part of 3TAP , weimplemented a compact proof checker, which has been very helpful in detectingbugs in both 3TAP and the implementation of the proof transformation.8 ConclusionWe have categorised logic calculi into two types according to the purpose theyserve in theorem proving, either proof search or user interaction. Furthermore wehave explained the inherent characteristics of such calculi and how these relateto the designated rôle of a calculus.As examples we have de�ned one tableau calculus from each of those twocategories, a search-oriented free variable calculus and an interaction-orientedground calculus, and we have established a proof transformation procedure fromproofs in the former into proofs in the latter calculus.We believe that the problems we encountered in devising such a transfor-mation procedure are not particular to our calculi but are invariably caused bythe need to translate between a calculus placing the greatest emphasis on searchspace minimisation and a calculus designed with the syntactical simplicity ofits rules as the main objective. Similar phenomena may, for example, occur if aresolution proof is transformed into a ground resolution proof, i.e., a proof where�rst a set of ground instances of the input clauses are listed, from which in asecond step the empty clause is derived.This work exempli�es and supports the fact that there is a non-trivial gapbetween calculi that serve di�erent purposes even if they belong to the samefamily. Bridging this gap and thus bringing proofs back to the user requiresconsiderable e�ort.Such transformations are not only of theoretical value but they have appli-cations and our implementation shows that they are indeed of practical value.References[Ahrendt et al., 98] Wolfgang Ahrendt, Bernhard Beckert, Reiner H�ahnle, WolframMenzel, Wolfgang Reif, Gerhard Schellhorn, and Peter H. Schmitt. Integrating au-tomated and interactive theorem proving. In Wolfgang Bibel and Peter H. Schmitt,editors, Automated Deduction | A Basis for Applications, volume II: Systems andImplementation Techniques, pages 97{116. Kluwer, Dordrecht, 1998.[Beckert and H�ahnle, 92] Bernhard Beckert and Reiner H�ahnle. An improved methodfor adding equality to free variable semantic tableaux. In Depak Kapur, editor, Pro-ceedings, 11th International Conference on Automated Deduction (CADE), SaratogaSprings, NY, USA, LNCS 607, pages 507{521. Springer, 1992.[Beckert and H�ahnle, 98] Bernhard Beckert and Reiner H�ahnle. Analytic tableaux. InWolfgang Bibel and Peter H. Schmitt, editors, Automated Deduction | A Basis forApplications, volume I: Foundations, pages 11{41. Kluwer, Dordrecht, 1998.[Beckert et al., 96] Bernhard Beckert, Reiner H�ahnle, Peter Oel, and Martin Sulzmann.The tableau-based theorem prover 3TAP , version 4.0. In Proceedings, 13th Inter-national Conference on Automated Deduction (CADE), New Brunswick, NJ, USA,LNCS 1104, pages 303{307. Springer, 1996.[Beckert, 98] Bernhard Beckert. Integration und Uniformierung von Methoden destableau-basierten Theorembeweisens. PhD thesis, Universit�at Karlsruhe, Fakult�atf�ur Informatik, 1998.
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