
Chapter 16
Formal Verification with KeY: A Tutorial

Bernhard Beckert, Reiner Hähnle, Martin Hentschel, Peter H. Schmitt

16.1 Introduction

This chapter gives a systematic tutorial introduction on how to perform formal
program verification with the KeY system. It illustrates a number of complications
and pitfalls, notably programs with loops, and shows how to deal with them. After
working through this tutorial, you should be able to formally verify with KeY the
correctness of simple Java programs, such as standard sorting algorithms, gcd, etc.
This chapter is intended to be read with a computer at hand on which the KeY system
is up and running, so that every example can be tried out immediately. The KeY
system, specifically its version 2.6 used in this book, is available for download from
www.key-project.org. The example input files can be found on the web page for this
book, www.key-project.org/thebook2, as well as in the examples directory of your
KeY system’s installation.

In principle, this chapter can be read on its own, but one should be familiar with
basic usage of the KeY system and with some fundamental concepts of KeY’s program
logic. Working through Chapter 15 gives sufficient background. The difference
between Chapter 15 and the present chapter is that the former focuses on usage
and on interaction with the KeY system by systematically explaining the input and
output formats, as well as the possibilities for interaction with the system. It also uses
exclusively the KeY GUI (see Figure 1.1) and is concerned with problems formulated
in first-order logic or dynamic logic. Figure 15.1 on page 496 displays an overview
of the entire verification process.

In the present chapter we mainly look at JML annotated Java programs as inputs
and we target the verification process as a whole, as illustrated in Figure 16.1. It
shows the whole work flow, including specification annotations written in the Java
Modeling Language (JML), the selection of verification tasks, symbolic execution,
proving of first-order proof obligations, followed by a possible analysis of a failed
proof attempt. In addition, there is a section on how to perform verification using the
Eclipse integration of the KeY system.
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Figure 16.1 The KeY verification workflow

When the input to the KeY system is a .java rather than a .key file, then it
is assumed that the Java code has annotations in JML in the form of structured
comments of the source code. Chapter 7 provides a thorough introduction to JML.
We give sufficient explanations to understand the examples in this chapter to make
it self-contained (after all, JML is marketed as being easily understandable to Java
programmers), but we avoid or gloss over the finer points and dark corners of that
language.

The organization of the material in this chapter is as follows: In Section 16.2 we
illustrate the basic principles of program verification with KeY by way of a simple,
loop-free program: JML annotations, loading of problems, selection of proof tasks,
configuration of the prover, interactive verification, representation of the symbolic
heap. This is followed by Section 16.3 which gives a hands-on introduction into
the craft of designing adequate loop invariants and how they are used in KeY. Sec-
tions 16.4 and 16.5 walk you through a more complex example (selection sort on
arrays). We demonstrate advanced aspects of finding a proof: understanding interme-
diate states and open subgoals, specifying complex functional properties, working
with method contracts, working with model elements in specifications, using strategy
macros, guiding the prover when it cannot find a proof itself. Finally, Section 16.6
describes how the Eclipse integration of KeY can be used to automatically manage
proofs so that user interaction is only required if a proof is not automatically closable.
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16.2 A Program without Loops

1 public class PostInc{
2 public PostInc rec;
3 public int x,y;
4

5 /*@ public invariant
6 @ rec.x>=0 && rec.y>=0;
7 @*/
8

9 /*@ public normal_behavior
10 @ requires true;
11 @ ensures rec.x == \old(rec.y) &&
12 @ rec.y == \old(rec.y)+1;
13 @*/
14 public void postinc() {
15 rec.x = rec.y++;
16 }
17 }

Listing 16.1 First example: Postincrement

We start with a first simple Java program shown in Listing 16.1. The class
PostInc has two integer fields x and y declared in line 3. The only method in
the class, postinc(), declared in lines 14–15, sets x to y and increments y. To make
things a little more interesting these operations are not performed on the this object,
but on the object given by the field rec in line 2. The rest of the shown code are
JML comments. In lines 5–6 an invariant is declared. An invariant, as the name is
supposed to suggest, is—roughly—true in all states. The states during which the
variables contained in the invariant are manipulated have, e.g., to be excepted from
this requirement. The details of when invariants precisely are required to hold are
surprisingly thorny. Detailed explanations are contained in Section 7.4. For now it
suffices to understand that invariants may be assumed to hold at every method call
and have to be established after every method termination.

Lines 9–13 are filled with a JML method contract. A contract typically consists of
two clauses (we will later see more than two): a precondition signaled by the keyword
requires and a postcondition following the keyword ensures. As with real-life
contracts, there are two parties involved in a method contract. The user of a method
has to make sure that the precondition is true when the method is called and may
depend on the fact that the postcondition is true after termination of the method. The
second party, the method provider, has the liability to guarantee that after termination
of the method the postcondition is true, provided the precondition was met in the
calling state. In the example there is no precondition, more precisely the precondition
is the Boolean constant true that is true in any state. The postcondition in this case
is just the specification of the postincrement operator _++. We trust that the reader
has figured out that an JML expression of the form \old(exp) refers to the value of
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exp before the execution of the method. The postcondition in itself does not make
any claims on the termination of the method. It is a partial correctness assertion: if
the method terminates, then the postcondition will be true. In the specific example,
termination is asserted by the declaration of the specification case in line 9 as a
normal_behavior. When a normal behavior method is called in a state satisfying
its precondition, it will terminate and not throw an exception.

To see what KeY does with the annotated program from Figure 16.1, start the
KeY system as explained in the beginning of Section 15.2. The file PostInc.java
is loaded by File→ Load (or selecting in the tool bar) and navigating through the
opened file browser. This is the same as loading .key files as described in Chapter 15;
the result however is different. The Proof Management window will pop up. You will
notice that not only the file you selected has been loaded but also all other .java
files in the same directory. So, you could just as well have selected the directory
itself. You may now select in the Proof Management window a .java file, a method
and a contract. For this experiment we choose the contract JML normal_behavior
operation contract 0 for method postinc() in file PostInc.java and press
the Start Proof button. The verification task formalized in Dynamic Logic will now
show up in the Current Goal pane. Since we try to discharge it automatically we do
not pay attention to it. We rather look at the Proof Search Strategy tab in the lower
left-hand pane and press the Defaults button in its top right corner. You may slide the
maximal rule application selector down to 200 if you wish. All that needs to be done
is to press the Start button (to the left of the Defaults button or in the tool bar). A
pop-up window will inform you that the proof has been closed and give statistics on
the number and nature of rule applications. In the Proof tab of the original window
the proof can be inspected.

The fact that the invariant rec.x>=0 && rec.y>=0 can be assumed to be true
when the method postinc() is called did not contribute to establish the postcondi-
tion. But, the automatic proof did include a proof that after termination the invariant
is again true. You can convince yourself of this by investigating the proof tree. To do
this move the cursor in the Proof tab of the lower left-hand pane on the first node, or
any other node for that matter, of the proof tree and press the right mouse button. A
pop-up menu will appear. Select the Search entry. A search pane at the very bottom
of the Proof tab will show up. Enter inv in it. Press the button to the left of the text
field. The first hit, shown in the Goal pane, will be self.<inv> that corresponds to
the assumption of the invariant at the beginning. Another push on the button yields
the next hit of the form h[self.<inv>]. Here, h is a lengthy expression denoting
the heap after termination of the method. This is the formalization of the claim that
the invariant is true in the poststate. The green folder symbol shows that this claim
could be proved successfully. You can now save the proof by selecting File→ Save.
Let us agree that we accept the suggested file name PostInc.proof. We remark,
that you can also save a partial proof and later load it again to complete it.

There is one more topic that we want to discuss with the PostInc example at
hand: pretty printing. We start by loading the file PostInc.proof that contains the
finished proof for the verification task we have just gone through. After loading
finishes the tree of the closed proof can be inspected in the Proof tab. Click on proof
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node 13:exc=null;. The Inner Node pane now shows the sequent at this proof node.
We first focus on the second line self.<created> = TRUE. In the View menu the
option Use pretty syntax is checked in the standard setting. Uncheck it and let us
investigate what happened. Line 2 now reads

boolean::select(heap,self,java.lang.Object::<created>) = TRUE.

Here, boolean::select is the ASCII rendering of the function selectboolean. In
general A::select renders the functions selectA introduced in Figures 2.4 and 2.11.
In the same formula, <created> is expanded to java.lang.Object::<created>.
We thus first observe that pretty printing omits the typing of functions, predicates and
fields which in most cases is either fixed in the vocabulary or can be inferred from
the context. If nothing helps, you may have to resort to switching pretty printing off.
But, the important part is that pretty printing hides the dependence of evaluations on
the current heap which is modeled by the attribute heap. This parallels the habit that
most programmers omit most of the time to explicitly name the this object. For a
field f of type B in class A and a term t of static type A, the following abbreviation
will be used for pretty printing:

PP(B::select(heap,t,A::$f)) = PP(t).f

Note, that in the next line PostInc::exactInstance(self) = TRUE remains
unchanged by pretty printing since the functions exactInstanceA do not depend on
the heap.

When running a Java program all evaluations are done with respect to the current
heap. But, in verifying properties of programs we need to talk about evaluations
in different heaps. It is frequently the case that we want to compare the value of a
field before the program is run with its value in the terminating state. What does
pretty printing do in case evaluation is not with respect to the current heap? To see
an example we look at the line that contains the end \> of the ASCII version of the
diamond operator:

self.rec.y@heapAtPre = self.rec.x

Without pretty printing it looks

KeY Output
int::select(heapAtPre,

PostInc::select(heapAtPre,
self,
PostInc::$rec),

PostInc::$y)
=

int::select(heap,
PostInc::select(heap,self,PostInc::$rec),
PostInc::$x)

KeY Output

The general rule may be stated as
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PP(B::select(H,t,A::f)) = PP(t).f@H .

Applying this literally to the term at the right (upper) side of the above equation we
would obtain:

(self.rec@heapAtPre).y@heapAtPre

There is a second rule that allows the pretty printer to abbreviate (t0.t1@H).t2@H
by t0.t1.t2@H.

Another pretty printing feature, which does not occur in the current example but
will pop up in the next section, concerns array access. The pretty printed expression
a[pos2]@H stands for the full version int::select(H,a,arr(pos2)).

The heap independent function arr : Int → Field (see Figures 2.4 and 2.11)
associates with every integer i a field that stands for the access to the i-th en-
try in an array. Note, that JFOL is again more liberal than Java. We may write
A::select(h,a,arr(i)) even for i greater than the array length, for negative i, or
even when a is not of array type.

The general pretty printing rule is

PP(A::select(H,e,arr(a))) = PP(e)[PP(a)]@H

if the declared type of e is A[]. Furthermore, @H will be omitted if H equals heap.

16.3 A Brief Primer on Loop Invariants

16.3.1 Introduction

Finding suitable loop invariants is considered to be one of the most difficult tasks
in formal program verification and it is arguably the one that is least amenable to
automation. For the uninitiated user the ability to come up with loop invariants that
permit successful verification of nontrivial programs is bordering on black magic.
We show that, on the contrary, the development of loop invariants is a craft that can
be learned and applied in a systematic manner.

We highlight the main difficulties during development of loop invariants, such as
strengthening, generalization, weakening, introducing special cases, and we discuss
heuristics on how these issues can be attacked. Systematic development of loop
invariants also involves close interaction with a formal verification tool, because it
is otherwise too easy to overlook errors. To this end, we demonstrate a number of
typical interaction patterns with the KeY system.

This section has necessarily some amount of overlap with Section 3.7.2, but it
is written in a less formal manner and it concentrates on the pragmatics of loop
invariant rules rather than on their formal definition. It is assumed that you have
acquired a basic understanding of how the KeY prover works, for example, by reading
Chapter 15. Even though proving problems involving recursive methods share some
problems with proofs about loops, we concentrate here on the latter, because KeY
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uses somewhat different technical means to deal with recursion. Some information
on proving recursive programs is found in Chapter 9.

16.3.2 Why Are Loop Invariants Needed?

Students who start in Computer Science are often puzzled by the question why such
a complex and hard to grasp concept as loop invariants is required in the first place.
In the context of formal verification, however, their need is easily motivated. In
Chapter 3 it is explained how the calculus of JavaDL realizes a symbolic execution
engine for Java programs. When, during symbolic execution, a loop1 is encountered,
symbolic execution attempts to unwind the loop, using the rule from Section 3.6.4:

loopUnwind
=⇒ 〈π if (e) { p while (e) p } ω〉φ

=⇒ 〈π while (e) p ω〉φ

If the loop guard is evaluated to true in the current symbolic state, then the loop
body p is symbolically executed once and afterwards the program pointer is at the
beginning of the loop once again. Otherwise, symbolic execution continues with the
code ω following the loop.

Obviously, this works only well, when the number of iterations of the loop is
bounded by a small constant. This is not the case in general, however. A loop
guard might, for example, look like i < a.length, where a is an arbitrary array of
unknown length.

To reason about unbounded loops or even about loops whose body is executed very
often (for example, 0 <= i && i < Integer.MAX_VALUE), some kind of induc-
tion principle is necessary that permits to prove properties of unbounded structures
in a finite manner.

16.3.3 What Is A Loop Invariant?

First of all, a loop invariant always relates to some loop that occurs at a specific
location in a given program. In the following we assume it is clear which loop is
meant when we speak of “the loop.”

In the context of KeY, a loop invariant is a formula inv ∈ DLFml that holds in the
program state at the beginning of the loop and in the state immediately after each
execution of the loop body. If the loop terminates, this means that the invariant holds
also in the state where continuation of the given program after the loop commences.
As a consequence, if we manage to prove that a formula inv is a loop invariant, then

1 To avoid obscuring the essential points with technical complexities, we concentrate in this section
on while loops. Moreover, we assume that the loop body does not throw any exceptions and does
not contain break, continue, or return statements.
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it can be used during symbolic execution of the continuation after the loop. In this
way, loop invariants indeed allow us to reason about programs containing unbounded
loops.

The considerations in the previous paragraph can be formalized in a first attempt
at a loop invariant rule for JavaDL. To simplify things a little, we assume that the
program in the loop guard and loop body do not access the heap.

Γ =⇒{u}inv, ∆

inv, g .
= TRUE =⇒ [p]inv

inv, g .
= FALSE =⇒ [π ω]ϕ

(initially valid)
(preserved by body)

(use case)
loopInvariant1

Γ =⇒{u}[π while(g)p; ω]ϕ, ∆

The first premiss states that inv holds in the program state at beginning of the loop,
the second premiss states that if inv holds in any state that evaluates the loop guard
to true—i.e., the loop is entered—then it also holds in the final state after symbolic
execution of the loop body, provided that it terminates. Finally, the third premiss
permits to use the invariant plus the negated loop guard to prove correctness of the
continuation (use case).

Soundness of the loop invariant rule rests on an inductive argument that runs as
follows:

Induction Hypothesis: For any n ≥ 1 the invariant inv holds in the state at the
beginning of the n-th execution of the loop body.

Induction Base: The invariant inv holds in the state at the beginning of the first
execution of the loop body, i.e., in the state where symbolic execution of the loop
commences. This is exactly what the first premiss says.

Induction Step: If inv holds in the state at the beginning of the n-th execution of
the loop body, and if the loop is entered at least one more time, then inv holds
again after execution of the loop body, i.e., in the state at the beginning of the
n+1-st execution of the loop body.

The problem is that we do not know in which state we are at the beginning of the
n-th execution. This problem can be addressed by proving a somewhat more general
induction step which does not require that knowledge:

“For any program state, if inv holds in it at the beginning of the n-th execution of the loop
body, and if the loop is entered at least one more time, then inv holds again in the state after
execution of the loop body.”

The latter clearly implies the Induction Step above and it is exactly what is
expressed in the second premiss of the invariant rule. Observe that the contexts Γ , ∆ ,
and {u} were removed from the sequent to ensure that the induction step is indeed
valid in any program state.

Similarly, we don’t know in which state we are when the loop terminates, so the
context information is erased from the third premiss as well. This means that any
information from the context that might be needed in the proof of the continuation
must be part of the loop invariant. Obviously, this is not very practical and we will
come back to this issue. But now let us look at our first concrete loop invariant.
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16.3.4 Goal-Oriented Derivation of Loop Invariants

We start by the observation that any loop has the trivially valid invariant true. Indeed, a
glance at the invariant rule above shows that its first two premisses are straightforward
to prove whenever inv≡ true. But this trivial invariant is, of course, normally useless
to prove correctness of the continuation (i.e., the third premiss). In general, we need
to find a nontrivial formula to serve as loop invariant, but which?

Often, it is a good idea to think about what we would like to prove, i.e., to work in
a goal-oriented manner. Consider the following formula in .key file input syntax:2

KeY
n >= 0 & wellFormed(heap) ==>
{i := 0} \[{

while (i < n) {
i = i + 1;

}
}\](i = n)

KeY

Look at the postcondition i = n to be proven. What, in addition to the negated
guard i >= n, is needed to show it? Obviously, the formula i <= n is sufficient.
Therefore, let us take this formula as a candidate for our loop invariant. To establish
that inv≡ i≤ n is an invariant we must instantiate the loop invariant rule with inv as
above, Γ ≡ n≥ 0, u≡ i := 0, g≡ i< n, p≡ i = i + 1; and empty ∆ , π, ω . The
instantiated (initially valid) premiss becomes

n≥ 0 =⇒{i := 0}(i≤ n)

After update application the sequent’s succedent becomes 0≤ n, making the sequent
obviously provable. Instantiation of the second premiss (preserved by body) and
simplification of the guard expression yields:

i≤ n, i< n=⇒ [i = i + 1;](i≤ n)

The sequent’s succedent becomes after symbolic execution of the assignment and up-
date application i+1≤ n, which is clearly provable from the antecedent. Therefore,
inv≡ i≤ n is indeed a loop invariant that suffices to prove the postcondition at hand.

It is not always the case that a loop is the final statement before the postcondition.
In this case, it is necessary to infer the difference between the state after the loop and
the final state before the postcondition. For this reason, in the presence of multiple
loops it is a good idea

2 Even for programs that do not access the heap it is necessary to have the well-formedness
assumption in order to render the problem provable. This is to exclude initial states that cannot be
obtained in the Java runtime environment. We include the well-formedness constraint, because we
want to give actually provable examples, but we leave it out from the subsequent reasoning steps
for readability. The declaration of program variables, for example “int i, n;,” is omitted in the
following.
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• to develop the invariant of the loop that is closest to the end of the program first,
and

• to develop the invariant of the outermost loop first, in the case of nested loops.

16.3.5 Generalization

Let us look at a slightly more complex example, where x and y are program variables
of type integer and x0, y0 are first-order constants of the same type.

KeY
x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>
\[{

while (y > 0) {
x = x + 1;
y = y - 1;

}
}\] (x = x0 + y0)

KeY

Starting again from the postcondition, we see that the postcondition bears no
obvious relation to the guard. Hence, our first attempt at finding a loop invariant is
simply to use the postcondition itself: inv≡ x .

= x0 + y0. This formula, however, is
clearly not valid at the beginning of the loop, and neither is it preserved by the loop
body.

A closer look at what happens in the loop body reveals that both x and y are
modified, but only the former is mentioned in the invariant. It is obvious that the
invariant must say something about the relation of x and y to be preserved by the
loop body. What could that be? The key observation is that in the loop body first x is
increased by one and then y is decreased by one. Therefore, the sum of x and y stays
invariant. Together with the observation that x initially has the value x0 and y the
value y0, we arrive at the invariant candidate inv≡ x+y .

= x0 + y0, which is indeed
initially valid as well as preserved by the loop body.

Is this a good invariant? Not quite: the postcondition is not provable from x+y .
=

x0 + y0 ∧ y≤ 0. It would be sufficient, if we knew that y≥ 0. And indeed, we have
not made use of the precondition y0 ≥ 0 which states that the initial value of y is
nonnegative. The loop guard ensures that y is positive when we enter the loop and in
the loop body it is decreased only by one, therefore, y≥ 0 is a loop invariant as well.
Using the combined invariant inv≡ x+y .

= x0 + y0 ∧ y≥ 0 it is easy to prove the
example. In summary, for this example we made use of some important heuristics:

1. Generalize the postcondition into a relation about the variables modified in the
loop body that is preserved.

2. Look for unused information in the proof context that can be used to derive
additional invariants.
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3. Loop invariants are closed under conjunction: if inv1 and inv2 are loop invariants
of the same loop, then so is inv1 ∧ inv2.

16.3.6 Recovering the Context

Recall from Section 16.3.3 that our rule loopInvariant1 throws away the proof context
from the second and third premiss to ensure soundness. Let us look at an example
that illustrates the problem with this approach. Assume we want to prove something
about the following program, where a has type int[]:

Java + JML
int i = 0;
while(i < a.length) {
a[i] = 1;
i++;

}
Java + JML

Whatever property we are going to prove about the loop, we will need the precon-
dition a 6 .= null ∈ Γ to make sure that the array access does not throw a null pointer
exception. As we throw away the context, it will be necessary to add a 6 .= null to
any loop invariant. This may seem not so bad, but now assume that Γ contains a
complex class invariant that is needed during the proof of the continuation after the
loop. Again, this has to be added to the invariant. Loop invariants tend to become
impractically bulky when they are required to include relevant parts of the proof
context.

A closer look at the loop body of the program above shows that while the content
of the array a is updated, the object reference a itself is untouched and, therefore, a
precondition such as a 6 .= null ∈ Γ is an implicit invariant of the loop body. What
we would like to have is a mechanism that automatically includes all those parts of
the context into the invariant whose value is unmodified by the loop body.

As it is undecidable whether the value of a given program location is modified in
a loop body, this information must in general be supplied by the user. On the level
of JML annotations this is done with the directive “assignable l1, . . . , ln;”, where
the li are program locations or more general expressions of type \locset. These
may contain a wildcard “*” where an index or a field is expected to express that all
fields/entries of an object might get updated. For the loop above a correct specification
of its assignable locations would be “assignable i, a[*];.” KeY accepts that
assignable clause, but actually ignores the local variable i. Instead its loop invariant
rule checks the loop body and guard for any assignments to local variables and
adds these implicitly to the assignable clause. Hence, only heap locations need to be
specified as part of the assignable clause.

The intended effect of an assignable clause is that any knowledge in the proof
context that depends on the value of a location mentioned in that assignable clause



552 16 Formal Verification with KeY: A Tutorial

is erased in the second and third premiss of the invariant rule. How is this realized
at the level of JavaDL? The main idea is to work with suitable updates. For value
types, such as i in the example above, it is sufficient to add an update of the form
{i := c}, where c is a fresh constant of the same type as i. Such an update assigning
fresh values to locations is called anonymizing update; details about their structure
are explained in Section 9.4.1. A context preserving invariant rule, based on the rule
LOOPINVARIANT1 above, therefore, looks as follows:

Γ =⇒{u}inv, ∆

Γ =⇒{u}{v}
(
inv∧g .

= TRUE→ [p]inv
)
, ∆

Γ =⇒{u}{v}
(
inv∧g .

= FALSE→ [π ω]ϕ
)
, ∆

(initially valid)
(preserved by body)

(use case)

Γ =⇒{u}[π while(g)p; ω]ϕ, ∆

where {v} is the anonymizing update for the assignable clause
assignable l1, . . . , ln;.

Observe that the proof context Γ , ∆ , {u} has been reinstated into the second and
third premiss. For object types (e.g., a[*]) more complex conditions about the heap
must be generated. KeY does this automatically for assignable clauses specified in
JML and we omit the gory details. The interested reader is referred to Section 8.2.5.

Assignable clauses should be as “tight” as possible, i.e., they should not contain
any location that cannot be modified by the loop they refer to. On the other hand,
assignable clauses must be sound: they must list all locations that possibly can be
modified. In Java care must be taken, because it is possible to modify locations even
in the guard expression. An unsound assignable clause renders the invariant rule
where it is used unsound as well. For this reason, KeY generates proof obligations
for all assignable clauses that ensure their soundness.3 The exception are local
variables where it is possible to compute a sound assignable clause by a simple
static analysis and KeY does that automatically, even when no assignable clause is
explicitly stated. Otherwise, the default declaration, when no assignable clause is
stated, is “assignable \everything;.” This should be avoided.

We close this subsection by stating the example from above with JML annotations
that are sufficient for KeY to prove it fully automatic:

Java + JML
public int[] a;
/*@ public normal_behavior
@ ensures (\forall int x; 0<=x && x<a.length; a[x]==1);
@ diverges true; // termination not proven
@*/

public void m() {
int i = 0;
/*@ loop_invariant

3 This proof obligation is part of the (preserved by body) branch. For ease of presentation it is not
included in the rule above.
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@ 0 <= i && i <= a.length &&
@ (\forall int x; 0<=x && x<i; a[x]==1);
@ assignable a[*];
@*/

while(i < a.length) {
a[i] = 1;
i++;

}
}

Java + JML

Observe that the local variable i is not listed in the assignable clause and that the
JML default a 6 .= null needs not to be stated in the invariant.

To maximize automation of KeY in the presence of loops, the setting Invariant
should be chosen in the Loop Treatment option of the Proof Search Strategy set-
tings (see Chapter 15). This causes the prover to look for loop_invariant and
assignable declarations in the input file and applies the loop invariant rules without
user interaction. In addition, it can be useful to set option Quantifier Treatment to
No Splits with Progs (which avoids splitting during symbolic execution) and, if the
program contains arithmetic operators * or /, to set option Arithmetic Treatment to
DefOps.

16.3.7 Proving Termination

Programs with loops may not terminate, but so far we have only looked at partial
correctness and at terminating programs. Consider, for example, the sequent:

=⇒ [i = 17; while (true) {}]i .
= 42

Is it provable? It turns out that our formalism so far can correctly handle this example:
with the trivial invariant true and the declaration assignable \nothing; this is
proven automatically. Indeed, for the trivial invariant, the (initially valid) and (pre-
served by body) branches are always closable. The negated guard gives false and
from that anything is provable, including the stated postcondition. The initialization
in front of the loop is completely irrelevant and could have been left out.

On the other hand, to prove termination of a loop we need additional machinery.
In KeY we use well-founded orders, i.e. partial orders without infinite descending
chains. In this chapter we use only the natural numbers in their standard ordering
0 < 1 < 2 < · · · . The idea is to define an arithmetic expression d over program
variables that is proven to become strictly smaller, but not negative, in each loop
iteration. This is called decreasing term or variant. Since any natural number has
only a finite number of predecessors, it follows that a loop with a decreasing term
must terminate after a finite number of iterations.
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The principle is illustrated in Figure 16.2. Assume that, when we execute the loop
body the first time, the decreasing term d is evaluated to N ≥ 0. In the next iteration
it must be evaluated to a value smaller than N, and so on. After a finite number of
rounds 0 is reached. As d must be nonnegative, the loop must terminate then.

while (b) {
body

}

if (b) { body }1

...
if (b) { body }17
if (b) { body }42

Figure 16.2 Mapping loop execution into a well-founded order

The loop invariant rule for total correctness can now be derived from the version
for partial correctness in a straightforward manner, by simply adding the decreasing
term with the according proof obligations:

1. We must strengthen the invariant inv by stating that the decreasing term d stays
nonnegative, resulting in inv∧d ≥ 0.

2. The postcondition of the (preserved by body) branch must state that the value of
d is strictly less than it was at the beginning of the execution of the loop body.

The result is the following invariant rule with context preservation for termination:

Γ =⇒{u}inv, ∆

Γ =⇒{u}{v}
(
inv∧g .

= TRUE∧d ≥ 0∧d′ .= d→ 〈p〉(inv∧d ≥ 0∧d > d′)
)
, ∆

Γ =⇒{u}{v}
(
inv∧g .

= FALSE→ 〈π ω〉ϕ
)
, ∆

Γ =⇒{u}〈π while(g)p; ω〉ϕ, ∆

where {v} is the anonymizing update for the assignable clause
assignable l1, . . . , ln;. Moreover, d′ is a fresh integer constant.

At the level of JML, total correctness is achieved by

1. removing the partial correctness directive diverges true; from the surround-
ing contract and

2. adding a directive “decreasing d;,” where d is a decreasing term.
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This causes KeY to create suitable proof obligations with total correctness modali-
ties and to choose the terminating version of the invariant rule.

To prove that the loop in the example from the previous subsection terminates,
it is sufficient to remove the diverges true; directive and to add the directive
“decreasing a.length - i;” to the loop specification.

Sometimes a termination witnessing decreasing term of type integer is very
difficult or even impossible to find. JML and KeY support more general decreases
clauses working, e.g., with pairs or sequences. Details can be found in Section 9.1.4
on the verification of terminating recursive methods.

16.3.8 A More Complex Example

We use a slightly more complex example to illustrate a few more heuristics that can
be useful when developing loop invariants. Below is the JML specification and Java
implementation of method gcdHelp that computes the greatest common divisor (gcd)
of two integers _big and _small under the normalizing assumption that _big is at
least as large as _small which in turn is not negative. It can be used to implement a
method gcd for arbitrary numbers (not shown here).

Java + JML
public class Gcd {
/*@ public normal_behavior
@ requires _small >= 0 && _big >= _small;
@ ensures _big != 0 ==>
@ (_big % \result == 0 && _small % \result == 0 &&
@ (\forall int x;
@ x > 0 && _big % x == 0 && _small % x == 0;
@ \result % x == 0));
@ assignable \nothing;
@*/

private static int gcdHelp(int _big, int _small) {
int big = _big; int small = _small;
while (small != 0) {

final int t = big % small;
big = small;
small = t;
}

return big;
}

}
Java + JML

A result is only defined for the nontrivial case when _big is positive. In this case,
the returned value must be a common divisor of both _big and _small which is
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ensured by “_big % \result == 0 && _small % \result == 0.” In addition,
the returned value must be the greatest common divisor. This is expressed by the
quantified formula which states that any positive x that is a common divisor of _big
and _small must also be a divisor of the result and hence not greater.

The code above does not yet specify a loop invariant. We must supply a speci-
fication of the loop that allows us to prove the given contract. Obviously, the loop
doesn’t modify any location that is visible outside, therefore, we use assignable
\nothing;. The decreases term is also straightforward: small is initially nonneg-
ative and certainly it decreases whenever the loop is entered, therefore, we use
“decreasing small;.”

To develop the loop invariant we look first at the requires clause to see what could
be preserved. A quick check tells us that the properties of _big and _small also
hold for the variables big and small that are used in the loop (we introduced these
fresh names, because this results in a more readable invariant). Therefore, the first
part of our invariant is:

small >= 0 && big >= small

What else can we say about the boundaries of big and small? For example, can
big become zero? Certainly not in the loop body, because it is assigned the old value
of small which is ensured by the loop guard to be nonzero. However, it is admissible
to call the method with _big being zero, so big > 0 might not initially be valid.
Only when _big is non zero, we can assume big> 0 to be an invariant. Hence, we
add the relative invariant

_big != 0 ==> big != 0 . (16.1)

But what is the functional property that the loop preserves? In the end we need
to state something about all common divisors x of _big and _small. Which partial
result might have been achieved during execution of the loop? A natural conjecture is
to say something about the common divisors of big and small: in fact these should
be exactly the common divisors of _big and _small. Because, if not, we could run
in danger to “loose” one of the divisors during execution of the loop body. This
property is stated as(

\forall int x; x > 0; (_big % x == 0 && _small % x == 0)
<==> (big % x == 0 && small % x == 0)

)
;

We summarize the complete loop specification below. With it, KeY can prove total
correctness of gcdHelp fully automatically in a few seconds.

Java + JML
int big = _big; int small = _small;
/*@ loop_invariant small >= 0 && big >= small &&
@ (big == 0 ==> _big == 0) &&
@ (\forall int x; x > 0; (_big % x == 0 && _small % x == 0)
@ <==> (big % x == 0 && small % x == 0));
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@ decreases small;
@ assignable \nothing;
@*/

while (small != 0) {
final int t = big % small;
big = small;
small = t;

}
return big; // will be assigned to \result

Java + JML

Perhaps the reader wonders why the loop invariant is actually sufficient to achieve
the postcondition of the contract, specifically, why is it the case that the returned
value, i.e., the final value of big after the loop terminates, is a divisor of both _big
and _small? Now, this needs only to be shown when big is positive, because of
(16.1). In that case, the third part of the invariant can be instantiated with x/big.
Using that small == 0 (the negated loop guard) then completes the argument. This
kind of reasoning is easily within the first-order inference capabilities of KeY.

16.3.9 Invariants: Concluding Remarks

The discussion in this section hopefully demonstrated that loop invariants must be
systematically developed: they don’t come out of thin air or appear magically after
staring at a program for long enough. The process of loop invariant discovery is
comparable to bug finding: it is a cycle consisting of analysis of the target program,
generation of an informed conjecture and then confirmation or refutation of the
conjecture. If the latter happens, the reasons for failure must be analyzed and they
form the basis of the next attempt.

Good starting points for invariant candidates are the postcondition (what, in
addition to the negated loop guard is needed to achieve it?) and the precondition
of the problem’s contract. Another source is the result of symbolic execution of
one loop guard and body. But one such execution yields usually no invariant: it is
necessary to relate the state before and after symbolic execution of the loop body to
each other in the invariant. A good question to ask is: how can I express the partial
result computed by one execution of the loop body? Often, symbolic execution of a
few loop iterations can give good hints.

If a loop invariant that suffices to prove the problem at hand seems elusive, don’t
forget that your program or your specification of it might be buggy. Ask yourself
questions such as: does the postcondition really hold in each case? Are assumptions
missing from the precondition? Another possibility is that you attempt to use a
stronger loop invariant than is required. The Model Search feature of the KeY prover
(see Section 15.4) can be very useful to generate counter examples that give a hint,
in case some proof goal stays open.
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For complex loops, it is often the case that several rounds of strengthening and
weakening of the invariant candidate is required, before a suitable one is found.
In this case, it is a good idea to develop invariants incrementally. This is possible,
because invariants are closed under conjunction. Start with simple value bounds
and well-formedness assumptions. These may exhibit flaws in the target program
or specification already. It is also a good idea to work with relativized invariants
that can be tested separately. For example, it can be simpler to test cnd→ inv and
¬cnd→ inv separately than to work with inv directly.

Remember that there is no single loop invariant that is suitable to prove the
problem at hand, but there are typically many reformulations that do the trick. There
could be simpler formulations than the first one that comes to mind. In particular,
try to avoid quantified formulas as much as possible in invariants, because they are
detrimental to a high degree of automation in proof search.

It is recommended to use the KeY prover to confirm or to refute conjectures about
invariants, as symbolic execution by hand is slow and error-prone. If a loop occurs
within a complex context (for example, nested with/followed by other loops) it can
be useful to formulate the invariant as a separate contract and look at just that proof
obligation in isolation.

In this section we tried to give some practical hints on systematic development of
loop invariants. There is much more to say about this topic. For example, so as not
obscure the basic principles we left out the complications arising from heap access or
from abrupt termination of loop bodies. More information on how JavaDL handles
these issues can be found in Chapter 3. More complex examples of loop invariants
can be found in the subsequent section and in Part V of this book.

16.4 A Program with Loops

Listing 16.2 shows the code of a Java class Sort implementing the selection sort
algorithm. This is a simple, not very effective sorting algorithm, see e.g. [Knuth, 1998,
Pages 138—141 of Section 5.2.3]. The integer array to be sorted is stored in the field
int[] a of the class Sort. At every stage of the algorithm the initial segment a[0]
. . .a[pos-1] is sorted in decreasing order. The tail a[pos] . . .a[a.length-1]
is still unsorted but every entry a[i] in the tail is not greater than a[pos-1]. At
the beginning pos=0. On termination pos=a.length-1, which means that a[0]
. . .a[a.length-2] is sorted in decreasing order and a[a.length-1] is not greater
than a[a.length-2]. Thus the whole array is indeed sorted.

To proceed from one stage in the algorithm to the next, as long as pos is still strictly
less than a.length-1, an index idx is computed such that a[idx] is maximal
among a[pos] . . .a[a.length-1], the entries a[idx] and a[pos] are swapped
and pos is increased by one.

The main part of this algorithm is implemented in the method sort() in
lines 26 to 46 of Listing 16.2. The index of a maximal entry in the tail a[pos]
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1 public class Sort {
2 public int[] a;
3

4 /*@ public normal_behavior
5 @ requires a.length > 0 && 0<= start && start < a.length;
6 @ ensures (\forall int i; start<=i && i<a.length;a[\result] >= a[i]);
7 @ ensures start <= \result && \result < a.length;
8 @*/
9 int /*@ strictly_pure @*/ max(int start) {

10 int counter = start;
11 int idx = start;
12 /*@ loop_invariant start<=counter && counter<=a.length &&
13 @ start<=idx && idx<a.length && start<a.length &&
14 @ (\forall int x; x>=start && x<counter; a[idx]>=a[x]);
15 @ assignable \strictly_nothing;
16 @ decreases a.length - counter;
17 @*/
18 while (counter < a.length) {
19 if (a[counter] > a[idx])
20 idx = counter;
21 counter = counter+1;
22 }
23 return idx;
24 }
25

26 /*@ public normal_behavior
27 @ requires a.length > 0;
28 @ ensures (\forall int i; 0 <= i && i<a.length-1; a[i] >= a[i+1]);
29 @*/
30 void sort() {
31 int pos = 0;
32 int idx = 0;
33 /*@ loop_invariant 0<=pos && pos<=a.length && 0<=idx && idx<a.length
34 @ && (\forall int x; x>=0 && x<pos-1; a[x]>=a[x+1]) &&
35 @ (pos>0 ==>(\forall int y; y>=pos && y<a.length; a[pos-1]>=a[y]));
36 @ assignable a[*];
37 @ decreases a.length - pos;
38 @*/
39 while (pos < a.length-1) {
40 idx = max(pos);
41 int tmp = a[idx];
42 a[idx] = a[pos];
43 a[pos] = tmp;
44 pos = pos+1;
45 }
46 }
47 }

Listing 16.2 Second example: Sorting an array
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. . .a[a.length-1] of the array is returned by the method call max(pos). Method
max(int start) is given in lines 9–24 in Listing 16.2.

The specification of sort() says that this method terminates without an un-
caught exception (line 26) and upon termination array a is sorted in decreasing order
(line 28). The only precondition, a.length>0, required of method sort() is stated
in line 27. Inspection shows that the code would also handle the case a.length=0
correctly. But, the loop invariant would have to be rephrased. As it stands 0<=idx &&
idx<a.length would not be true at the beginning of the loop. There is no need to
also require that a is not the null object since JML tacitly takes this as the default.

The loop invariant starts in line 33 with the statement that the local variables pos
and idx stay within their bounds. The remaining two lines formalize the informal
description of the algorithm given a above: The formula in line 34 says that the initial
segment a[0] . . .a[pos-1] is sorted in decreasing order while line 35 contains the
formalization of the description that every entry a[i] for pos <= i < a.length+ is
not greater than a[pos-1]. This is not true for pos=0, so the condition pos>0 ==>
has to be prefixed. Line 31 specifies the locations that may at most be changed by the
loop body. See Section 16.3.6 for a general introduction of the use of assignable
clauses. Also pos and idx may be changed in the loop body, but the KeY system can
figure this out by itself. Only possible changes to heap locations need to be declared.

To allow the system to prove termination of the loop an integer expression is
needed that is never negative and strictly decreases in each loop iteration. The term
a.length-pos given in the decreases clause in line 37 serves this purpose. See
the previous Section 16.3.7 for a gentle introduction to termination proofs.

Let us now turn to the contract for method max. This method is declared to
be strictly_pure in line 9, which means that is does not change any field of
any existing object and also does not create new objects. The precondition, line 5,
requires the parameter start to be within the bounds of array a. The conjunctive
part a.length>0 is here for the same reason as in the precondition of sort. The
postcondition ensures that the returned index, denoted by the JML keyword result,
is taken from the tail segment start, . . .a.length-1, line 7, and that a[result]
is indeed maximal among a[start], . . .a[a.length-1], line 6.

The loop invariant begins in lines 12 – 13 with a declaration that the method
parameter start and the local variables counter and idx stay within their intended
ranges. In Section 16.3.9 it was proposed as a guideline for finding invariants to
look at the postcondition and the loop guard. This advice works very well in the
case at hand. In the end, i.e., when counter=a.length, we want a[idx] to be
maximal among a[start],. . . , a[a.length-1]. This suggests as an invariant that
a[idx] be maximal among a[start],. . . , a[counter-1]. This is formalized in
the formula in line 14. The frame condition in the assignable clause in line 15, and
the decreases clause in line 16 are self explanatory.

The KeY system verifies the contracts for both methods automatically with the
settings Java verif. std. Make sure that Max. Rule Applications is at least 6000. Let us
inspect the finished proof. For this open the Proof tab in the lower left-hand pane,
place the cursor over any node, activate the menu by a right mouse click and select the
Hide Intermediate Proofsteps entry. After opening some of the green folder symbols



16.4. A Program with Loops 561

Figure 16.3 Condensed finished proof tree

the proof tree looks as in Figure 16.3 on the
left. The proof goals Use Axiom at the top
and Show Axiom Satisfiability at the
bottom of the first column refer to the type
or class invariant. This JML concepts was
already alluded to in Section 15.3. A type
invariant is a formula that is stipulated to be
true in any visible state. E.g., a type invari-
ant is assumed to be true at every method
call and must be verified to be true after
method termination, or as is the case in the
situation under study, the invariant axiom is

assumed to be true at the beginning of a while loop and has to be established after
its termination. For the class Sort the invariant a!=null is automatically generated
from the JML default. In general, the user may specify any invariant he believes to be
useful. To guard against the possibility that the chosen invariant is inconsistent, the
proof goal Show Axiom Satisfiability is generated and has to be discharged,
which is absolutely trivial in the present situation.

The three proof goals on the second vertical line in the screenshot 16.3 are gener-
ated when symbolic execution reaches the while loop. As explained in Section 16.3.2,
the new goals are Invariant Initially Valid, Body Preserves Invariant and Use Case.
The interesting branch is Body Preserves Invariant which has been unfolded three
times. We skip the next three columns in screenshot 16.3 and turn to the three goals
Post(max), Exceptional Post(max), and Pre(max). They are generated when
symbolic execution reaches the method call max. According to the proof settings the
method call to max is not symbolically executed, its contract is used instead. This
involves verifying that its precondition, Pre(max), is satisfied and continuing in case
max terminates exceptionally with the proof branch labeled Exceptional Post(max)
and in case of normal termination, Post(max), with the respective guarantees ensured
by the contract in both cases.

There is one more issue that can be demonstrated already with the small example
program under investigation. How precise should a postcondition be? There is the
notion of a strongest postcondition, but this is not always expressible in first-order
logic and may also be undesirably complicated. The postcondition of method max in
line 6 of Listing 16.2, e.g., is not the strongest possible. One could add that \result
is the least index of a maximal value among a[start] . . .a[a.length-1]:
(\forall int i; start <= i && i < \result; a[i]<\result)
But, that would complicate verification without being necessary in the present context.
Thus, how precise the postcondition should be may depend in what it is being used
for.
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16.5 Data Type Properties of Programs

Listing 16.3 contains the same Java code as Listing 16.2. Also the contract for method
max is the same. The differences lie in the contract for method sort in lines 30–33
and in the declaration of model fields in lines 4–6. In the postcondition for method
sort in line 28 in Listing 16.2 an important assurance is missing: that the array a after
termination is a permutation of the array when the method was called. More precisely,
we want to say that there is a permutation σ of the integers 0, . . . ,a.length−1 such
that for all 0≤ i < a.length we have anew[i] = aold [σ(i)]. To formalize this statement
we introduce the abstract data type Seq of finite sequences. This data type is described
in detail in Section 5.2. For this tutorial it will suffice to think of a finite sequence
as mathematical function σ whose domain of definition is a finite initial segment of
the positive integers. In general the range of values of σ is quite liberal. Here, we
only encounter finite sequences of integers. A permutation is then defined as a finite
sequence that is a surjective, and thus also injective, function from its domain onto
its domain. The data type Seq contains a binary predicate seqPerm(s1,s2) with the
intended meaning, that sequence s1 is a permutation of s2. This is not to be confused
with the unary predicate seqNPerm(s) which says that s is a permutation, i.e., that
s is a bijective function from [0,seqLen(a)) onto [0,seqLen(a)), where predictably
seqLen(s) is the length of sequence s.

This seems to be the right time to point out a troubling obstacle to our idea to
use sequences and permutation to formulate the intended postcondition of method
sort: sequences and permutations do not occur anywhere in the Java code and Java
code is all JML allows us to talk about. As a solution JML offers the declaration of
model fields. In line 4 of Listing 16.3 a model field of class SortPerm named seqa
of type \seq is declared. Here, \seq simply is the JML name for the data type Seq. A
model field is a field that is only used for modeling purposes. Written as a special
comment, like all JML specifications, it is ignored by the Java compiler. Values to
model fields are assigned by the JML represents clause. In line 5 of Listing 16.3
seqa is assigned the sequence that corresponds to the field a. The transformation
from a state-dependent Java array to a state-independent object of data type Seq is
effected by the built-in function array2seq. The data type Seq and also the function
array2seq are not part of official JML. It belongs to our project specific extension
of JML, that we hope will at some time also be adopted in the official version. In
the meantime we will use the escape sequence \dl_ to signal to the JML parser
that the following item is not JML syntax and is to be passed unchanged on to the
translator from JML into our internal logic JavaDL. After these explanations we
see that line 32 in Listing 16.3 formalizes the postcondition we want: the sequence
corresponding to array a after method termination is a permutation of the sequence
corresponding to array a at method invocation. Since again seqPerm is not part of
official JML we have to use the escape \dl_seqPerm.

Now, that we understand the specification let us see how we can prove it. We start
with the taclet base configuration. To this end load any file containing JML annotated
Java code and select a contract target. This is necessary since the menu item we are
looking for, Taclet Options, is not active when no proof is loaded. Clicking on menu
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1 public class SortPerm {
2 public int[] a;
3

4 /*@ model \seq seqa;
5 @ represents seqa = \dl_array2seq(a);
6 @*/
7

8 /*@ public normal_behavior
9 @ requires a.length > 0 && 0<= start && start < a.length;

10 @ ensures (\forall int i;start<=i && i<a.length; a[\result] >= a[i]);
11 @ ensures start <= \result && \result < a.length;
12 @*/
13 int /*@ strictly_pure @*/ max(int start) {
14 int counter = start;
15 int idx = start;
16 /*@ loop_invariant start<=counter && counter<=a.length &&
17 @ start<=idx && idx<a.length && start<a.length &&
18 @ (\forall int x; x>=start && x<counter; a[idx]>=a[x]);
19 @ assignable \strictly_nothing;
20 @ decreases a.length - counter;
21 @*/
22 while (counter<a.length) {
23 if (a[counter] > a[idx])
24 idx=counter;
25 counter=counter+1;
26 }
27 return idx;
28 }
29

30 /*@ public normal_behavior
31 @ requires a.length > 0;
32 @ ensures \dl_seqPerm(seqa,\old(seqa));
33 @*/
34 void sort() {
35 int pos = 0;
36 int idx = 0;
37 /*@ loop_invariant 0<=pos && pos<=a.length && 0<=idx && idx<a.length
38 @ && \dl_seqPerm(seqa,\old(seqa));
39 @ assignable a[*];
40 @ decreases a.length - pos;
41 @*/
42 while (pos < a.length-1) {
43 idx = max(pos);
44 int tmp = a[idx];
45 a[idx] = a[pos];
46 a[pos] = tmp;
47 pos = pos+1;
48 }
49 }
50 }

Listing 16.3 Third example: Permutations
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item Options, Taclet Options after a proof is loaded opens the Taclet Base Configura-
tion window. Somewhere in the middle of the list you see moreSeqRules. Clicking
on it shows the two options moreSeqRules:off and moreSeqRules:on. By default this
option is turned off, but we will need it to reason about permutations. After pushing
the OK button, the system will inform you that you have to instantiate a new proof for
the changes to take effect. Do this, now by loading the file SortPerm.java. Since
KeY loads all Java files in a directory we have to select in the Proof Management
window the file SortPerm and the method sort(). This proof will not close auto-
matically. The prover will need a little help from us. We want to keep interactions to
a minimum but at the same time have control over what the prover tries to do. This is
where strategy macros come into play.

Figure 16.4 Strategy macros

Placing the cursor over the sequent separation arrow ==> a click on the right mouse
button will display the list of strategy macros shown in the screenshot 16.4 above.
Alternatively, you can press the left mouse button and select the Strategy macros
menu. For now, we select the Full Auto Pilot which does the following:

1. Finish symbolic execution (another macro in itself)
2. Separate proof obligations
3. Expand invariant definitions
4. Close provable goals (another macro in itself)

Alternatively one could click on the left mouse button to obtain a selection of possible
next steps. Among them is one named Apply rules automatically here which starts the
proof search strategy only for the current goal/formula. This differs from the macro
Close provable goals below in that it runs till the maximal number of proof steps is
exhausted and may thus stop in a proof situation that is hard to figure out. So, let us
apply the Full Auto Pilot macro with the maximal number of rule applications set to
5000. One goal remains. Inspection of the proof tree shows that the open goal claims
that the loop invariant is preserved by an execution of the loop body. Above the
sequent separator ==> we find the assumption seqPerm(s1,t1), where s1 denotes
the model field seqa at the beginning of an arbitrary loop iteration and t1 stands for
seqa at the beginning of the loop. Below the sequent separator ==> we find the claim
seqPerm(s2,t2). Here t2 is a different representation for the same sequence as t1,
in which the represents clause for seqa has not yet been applied. Also s2 denotes
the value of seqa at the end of the arbitrary loop execution. Thus s2 is obtained
from s1 by swapping two entries. So we need to prove: if s1 is a permutation of
t1 (=t2) and s2 is a swap of s1, then also s2 is a permutation of t1 (=t2). There
is fortunately a taclet that provides exactly this argument. Place the cursor over the
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occurrence of seqPerm below the sequence separator, press the left mouse button
and select from the presented suggestions the taclet seqPermFromSwap. Since the
system cannot decide when it is useful to apply this taclet, i.e., when s2 is a swap of
s1, the heuristics of this taclet forbids automatic application. User interaction is thus
needed here.

Figure 16.5 After seqPermFromSwap

After rule application the lower (right) part of the sequent starts as shown in the
Snapshot 16.5. Remember that the right side of a sequent is a comma separated
disjunction. We may thus assume self.a != null and self != null and try to
prove the remaining conjunction. Place the cursor over the conjunction symbol &
and select the taclet andRight for the next step. This splits the previous conjunctive
goal into two goals, one for each conjunct. Applying the macro Close provable goals
below we see that KeY can prove both goals on its own. Make sure that Max. Rule
Applications is at least 10 000.

16.6 KeY and Eclipse

As we have seen in the previous sections the KeY system is powerful enough to
close a proof fully automatically in many situations. All that needs to be done is to
load the source code, select a contract and start the proof search strategy. After a
single contract has been proven successfully, the proof remains in the almost proven
state until the correctness of all applied contracts is shown as well. Our goal for this
section will be to achieve overall correctness, so we are interested in proving all
available proof obligations.

To achieve overall correctness is an arduous path and very likely we will not be
able to achieve it the first time. Some proofs might remain open caused by defective
method implementations or by too weak or wrong specifications. In such cases we
have to modify code or specifications. Previously unclosed proofs can then be retried
on the new code version. But also already closed proofs have to be redone since the
modification may have violated them.

Tool support for verification in such an ongoing software development process
requires the ability to react on source file changes and to store proofs consistently
with the sources. This can’t be achieved by the KeY system alone simply by the fact
that it operates on a specific version of source files. Modifications always have to be
done in a different tool which is typically an integrated development environment
(IDE) like Eclipse.
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In the following subsections we describe the usage of KeY’s Eclipse integration
[Hentschel et al., 2014c]. The main contribution is an automatic proof management
for all proof obligations in the whole project. After each change possibly outdated
proofs are determined and automatically redone. User interaction is only required if
a proof is not automatically closable.

16.6.1 Installation

The Eclipse integration of KeY and other Eclipse extensions provided by the KeY
project can be added to an existing Eclipse installation via an update-site. The
supported Eclipse versions and the concrete update-site URLs are available on the
KeY website (www.key-project.org). When reading the following sections for the
first time, we strongly recommend to have a running Eclipse installation with the
verification features at hand, so that they can be tried out immediately. We assume
that the reader is familiar with the Java perspective of the Eclipse IDE.

16.6.2 Proof Management with KeY Projects

Eclipse is a platform for different purposes including software development in differ-
ent programming languages. Source files are organized in projects of different kinds
associated with Builders that are automatically invoked when the project content
changes. A Java Project is used to develop Java applications and the associated Java
Builder automatically compiles the contained source code.

KeY’s Eclipse integration provides a new project kind named KeY Project which
is an extended Java project. The additional functionality is that the KeY Builder
automatically performs relevant proofs whenever source or proof files are modified.

To start we create an example KeY project which is automatically filled with
some content. All we have to do is to open the New Example wizard, select KeY/KeY
Project Example and finish the wizard. An empty KeY project can be created with
the help of the eponymous New Project wizard. Alternatively, it is possible to convert
an existing Java project into a KeY project via its context menu.

Performed proofs are automatically maintained in folder proofs as shown in
Figure 16.6. For each proof obligation a .proof file named after it exists.

The advantage of the maintained project structure is the compatibility with version
control systems. Thus a KeY Project can be directly shared and source files with
proofs are always committed and updated in a consistent way. Even a comparison
between different versions is possible.

http://www.key-project.org/
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Figure 16.6 KeY project with example content

16.6.3 Proof Results via Marker

Each time the KeY Builder completed a proof, the user is immediately informed
about the proof result. This is done directly in the source code as close as possible
to the proven proof obligation via so called Marker. As Figure 16.7 demonstrates,
markers are shown as icons next to the line number within the Java Editor. In this
example the method add is successfully proven ( information marker) whereas the
proof of method sub is still open ( warning marker).

The presence of warning and error markers can also be seen in view Package
Explorer. Whenever a Java source file contains a warning ( ) or error marker ( ), an
overlay image is added to the file icon. In case that a file contains both, warning
and error markers, only the more urgent error icon is shown. In addition, the most
urgent marker type is also delegated to parent folders and the project. This can be
seen in Figure 16.6 where the default package has an error overlay image, because
the error in class MultipleRecursion is more urgent than the warning in class
IntegerUtil.

To find out why the proof of method sub was not closed by the proof search
strategy all we have to do is to move the mouse over the marker icon. In general two
reasons are possible: First, the strategy could be not powerful enough to close it or
second, because the implementation or its specifications are defective.

Here, the implementation is obviously defective. We can easily fix it by replacing
return x + y with return x - y. When we save the file now, the KeY Builder
will be triggered. It performs the proofs again and updates the result marker. It
is also possible to inspect and to interactively continue proofs using the quick fix
functionality (i.e., left click on the marker icon). This opens the proof in the original
user interface of KeY as earlier discussed in this chapter. Alternatively, a proof can
be inspected using the Symbolic Execution Debugger (see Chapter 11). When an
interactively completed proof is saved back to its original location, the KeY Builder
will be triggered and in turn update the result marker.
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Figure 16.7 Closed and open proof marker

The Use Operation Contract rule requires to introduce another marker kind.
Whereas in general the applicability of rules depends only on the current sequent,
the application of method contracts requires a global correctness management to
avoid cyclic contract applications of all proofs shown in the same proof management
dialog. Such cycles are problematic because it allows one to prove everything, even
false. To avoid cyclic contract applications in the KeY system, the rule which would
cause a cycle is not applicable. The drawback is that other proofs and the order in
which they are done can influence the current proof result.

This approach does not work for a KeY Project, because we can finish a single
proof interactively without caring about other proofs. Consequently, the global
correctness check is performed as last step during a built. If a cycle is detected,
participating proofs are highlighted with an error marker ( ). An example is shown
in Figure 16.8 where methods a and b successfully prove false. Both proofs apply
the contract of the called method which forms a cycle indicated by the error marker.
The tooltip of such marker lists all participating proofs and it is our task to modify at
least one of them to break the cycle.

16.6.4 The Overall Verification Status

The view Verification Status is the best opportunity to inspect the overall verification
status. Figure 16.7 shows the status of the example project before fixing the defect in
method sub. The two progress bars at the top indicate how many proofs are already
successfully proven and how many methods are specified. Absolute numbers are
shown in the tooltips of the progress bars.
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Figure 16.8 Recursive specification marker

Figure 16.9 The overall verification status

The tree in the middle reflects the code and the specification structure. The
color of each item shows its verification result as specified by the legend below the
tree. The most problematic result is always delegated to ancestors. It is defined as
the minimal element in the following ordered list (worst to best): (i) cyclic proofs
(the usage of specifications forms a cycle; colored red), (ii) open proof (colored
orange), (iii) unspecified (no proof obligation available; colored gray), (iv) unproven
dependency (proof is closed, but an applied specification is not verified yet; colored
blue) and (v) closed proof (colored green). Here the only contract of method add
is successfully proven whereas the one of sub is still open. The default constructor
of class IntegerUtil is unspecified. The most problematic result below class
IntegerUtil is the open proof and consequently, it is colored with this result.
Finally, class MultipleRecursion contains proofs forming a cyclic specification
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use. As this is even more problematic, the result is also delegated to the package and
the project which are colored accordingly.

A warning or information icon on a contract indicates that unsound or incomplete
Taclet options are used. When we move the mouse over the contract of method add,
the opened tooltip will list the Taclet options in detail.

Finally, tab Report provides a clear HTML report of the verification status in-
cluding all the information discussed up to now. Additionally, the report lists all
assumptions made in the proofs which have to be proven outside of the current KeY
project. An example of such assumptions are for instance applied method contracts
of API methods for which the correctness is not proven within the current project.
Another example are method calls treated by inlining instead of a contract application.
In such a case KeY performs a case distinction over all possible method implementa-
tions. Consequently, we have to ensure that the overall system in which the code of
the current project is used does not influence the case distinction.


