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Abstract

The correctness of program verification systems is of great importance, as they are used to for-
mally prove that safety- and security-critical programs follow their specification. This correctness
needs to be checked and demonstrated to users and certification agencies. One of the contributing
factors to the correctness of the whole verification system is the correctness of the background axiom-
atization, which captures the semantics of the target program language. We present an optimisation
framework for the maximization of the proportion of the axiomatization that is used (“covered”)
during testing of the verification tool. We show how test cases for regression tests can be created
based on existing ones, as the initial creation of test cases is a very time consuming process. Our
study shows that the combination of different heuristics leads to a diverse set of test cases, which in
turn increases the axiomatization coverage. This translates into a significant increase in trust in the
program verification system.

1 Introduction

Motivation. Formal verification is the act of proving or disproving that an algorithm or its implemen-
tation is correct with respect to its formal specification. The formal mathematical approaches include,
amongst others, model checking, deductive verification, and program derivation [4}, [7, 9].

The correctness of the program verification systems themselves is imperative if they are to be used
in practice. In principle, instead of or in addition to testing, parts of verification tools (in particular
the axiomatization and the calculus) can be formally verified. For example, the Bali project [[16], the
LOORP project [12], and the Mobius project [2], all aimed at the development of fully verified verification
systems. One may employ formal methods to prove a system or its calculus to be correct. But—as for
any other type of software system—testing and cross-validation are of great importance; this is further
discussed in [3]].

Metaheuristic and other search-based approaches to test case generation have been in use for over a
decade (see [14,[17] for an overview). In our situation of verification system testing, all tests have to be
programs (along with their formal specifications) that can be verified successfully, whether it is with or
without human interaction. Due to their inherent complexity, creating such test cases by hand is already
a challenging problem for experienced verification engineers. Currently, it is unknown how tests can be
generated automatically from scratch using existing methods.

Within the verification systems, the so-called axiomatization carries the formal definitions of the
target program language, among other things. This makes it a core component of the systems. The
correctness of this component is of outmost importance, especially when safety- and security-critical
programs are to be formally verified.

Topic. Our goal is to increase the proportion of the axiomatization that is actively used in successful
verification attempts [6]. As a consequence, new bugs (“regressions®) are more likely to be found in re-
gression testing, when the implementation of the verification system (and its axiomatization) is changed.
The large number of axioms (typically 100’s) and the time consuming verification process (sometimes
minutes) make this a challenging problem for iterative search approaches.

We present a framework that allows to increase the axiomatization coverage for regression testing of
verification systems. We focus on systematic local searches with randomized components, as the time-
consuming coverage determination does not allow for approaches that typically require many evaluations,

Singapore, August 4-8, 2013
Page 37



6-2 2 TARGET OF OPTIMIZATION: PROGRAM VERIFICATION SYSTEMS

such as population-based evolutionary algorithms or ant-colony optimization [1, [10]. Furthermore, the
vast number of infeasible ways of reusing existing test cases renders the problem inappropriate for dis-
ruptive approaches, such as simulated annealing and even the simple (1+1) evolutionary algorithms.

The structure of this paper is as follows: First, Section [2| outlines the specific problem to be solved
in detail, with its formulation as an optimisation problem following in Section [3] In the subsequent
Section |4} our metaheuristic approaches to the problem are described, with results being presented and
discussed in Section[5] The paper concludes in Section [6] with a summary of key findings and a descrip-
tion of potential future areas of work.

2 Target of Optimization: Program Verification Systems

Modern Program Verification Tools. Every program verification system has to perform (at least) two
rather separate tasks: (a) handling the program-language-specific and specification-language-specific
constructs, and reducing or transforming them to classical logic expressions, (b) theory reasoning and
reasoning in classical logics, for handling the resulting expressions and statements over data types. One
can either handle these tasks in one monolithic logic/system, or one can use a combination of subsystems.

In this paper, we concentrate on verification systems that allow for auto-active verification. In auto-
active verification, the requirement specification, together with all relevant information to find a proof
(e.g., loop invariants) is given to the verification tool right from the start of the verification process—
interaction hereafter is not possible. While some tools such as VCC [§] and Caduceus [[11] allow only
this type of interaction, other such as the KeY tool [4], offer in addition a mode where user interaction is
possible also during the proof construction stage. For the rest of the paper, we restrict all test cases to be
provable without human interaction, due to practical reasons.

Program verification tools have to capture the program language semantics of the programs to be
verified. In some tools this information is mostly stored as one huge axiomatization (e.g., as with logical
frameworks like Isabelle/HOL [15]]). Then, the actual implementation part of the tool itself can be kept
relatively small. Other tools (e.g., some static checkers) implicitly contain most of the programming
language semantics in their implementation.

To assure the correctness of program verification tools, it is necessary to validate both parts: the
implementation, as well as the axiomatization. Only testing the implementation is not sufficient, even if
a high code coverage is achieved. For example, it was noted in [6] that the axiomatization coverage was
as low as 1% for some tests (for the given verification system), while code coverage was never less than
25%. This means that there is a certain amount of “core code” exercised by all tests, while there is only
a small number of “core axioms” used by many tests.

Test Cases. We consider in this paper system tests, i.e., the verification tool is tested as a whole.
Though the correctness of a tool, of course, depends on the correctness of its components and it makes
sense to also test these components independently, not all components are easy to test individually. In
the following, we concentrate on functional tests that can be executed automatically, i.e., usability tests
and user-interface properties are not considered.

As is typical for verification tools following the auto-active verification paradigm, we assume that a
verification problem consists of a program to be verified and a requirement specification that is added
in form of annotations to the program. Typical annotations are, e.g., invariants, pre-/postcondition pairs,
and assertions of various kinds. If P is a program and A is a set of annotations, then we call the pair
P+ A. Besides the requirement specification, a verification problem usually contains additional auxiliary
annotations that help the system in finding a proof. We assume that all other auxiliary input (e.g., loop
invariants) are made part of the testing input, such that the test can be executed automatically.

Possible outcomes of running a verification tool on a test P+(REQ U AUX) (a verification problem
consisting of a program P, a requirement specification RE(Q), and auxiliary annotations AUX) are
proved: A proof has been found showing that the program P satisfies REQ U AUX.
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not provable: There is no proof (either P does not satisfy REQ or AUX is not sufficient); the system
may provide additional information on why no proof exists, e.g., by a counter example or by
showing the current proof state.

timeout: No proof could be found given the allotted resource (time and space).

Correctness Properties. Verification systems can be tested for soundness (“The program P indeed
satisfies the specification SPEC, whenever the output for a verification problem P+SPEC' is ‘proved’.”)
and for completeness (“If the program is correct with respect to its given requirement specification REQ),
then some auxiliary specification AUX or other required user input exists allowing to prove this” [3]]).
Interestingly, it is difficult to test for soundness, as a soundness test case should not be provable For
completeness testing, it is easier to construct tests, albeit still far from being trivial. To reveal a com-
pleteness problem, a test case must consist of a program P with annotations RE(Q) U AUX such that
(a) P satisfies REQ U AUX and (b) the annotations are strong enough to prove this, i.e., the expected
output is “proved”.

If the observed output is “not provable”, then a completeness failure is revealed. The situation is
similar with an observed output “timeout”. In that case, the system may just be slower as expected or,
worse, there may be no proof using AUX or, worst of all, there may be no proof at all for any annotation
set AUX'. For both kinds of incorrect output (“not provable” and “timeout*) the developer has to further
investigate what kind of failure occurred.

One may consider incompleteness of a verification tool to be harmless in the sense that it is notice-
able: the user does not achieve the desired goal of constructing a proof and thus knows that something
is wrong. In practice, however, completeness bugs can be very annoying, difficult to detect, and time-
consuming. A user may look for errors in the program to be verified or blame the annotation A UX when
no proof is found for a correct program and try to improve A UX, while in fact nothing is wrong with it.
It is therefore very important to systematically test for completeness bugs.

3 Problem Formulation

Our goal is to increase the amount of testing done in a structured way. In this section, we present how
we determine the amount of testing done, and how we intend to improve it.

Axiomatization Coverage. Measuring code coverage is an important method in software testing to
judge the quality of a test suite. This is also true for testing verification tools. However, code coverage
is not an indicator for how well the declarative logical axioms and definitions—that define the semantics
of programs and specifications and that make up an important part of the system—are tested.

To solve this problem, we use the notion of axiomatization coverage [6]]. It measures to which extent
a test suite exercises the axioms (that capture the program language semantics) used in a verification
system. The idea is to compute the percentage of axioms that are actually used in the proofs or proof
attempts for the verification problems that make up a test suite. The higher the coverage of a test suite is,
the more likely it is that a bug that is introduced in a new version of the verification system is discovered.

As mentioned above, we focus on completeness testing, and consequently we use the following
version of axiomatization coverage: the percentage of axioms needed to successfully verify correct pro-
grams. An axiom is defined to be needed to verify a program, if it is an element of a minimal axiom
subset, using which the verification system is able to find a proof. That is, if the axiom is removed from
the subset, the verifier is not able anymore to prove the correctness of the program.

Definition 1 ([6]) A test case P+(REQ U AUX) covers the axioms in a set Th if Th = P+(REQ U
AUX) but TH' / P+(REQ U AUX) for all TH' C Th.

'"For an in-depth discussion on how one can test for different kinds of failures and correctness properties we refer the
interested reader to [6].
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As a consequence, the axiom coverage of a test suite with respect to a system depends on resource
constraints (e.g., number of proof steps allowed, timeout or memory limitations) and the implementation
of the verification system, most notably the proof search strategy. In addition, axiom coverage of a test
suite has to be recomputed not only when the axiomatization or test suite changes but also whenever
parts of the implementation of the verification tool relevant for proof search are modified.

Note that, in general, the minimal set of axioms covered by a given verification problem is not unique.

Computing Axiomatization Coverage in Practice. We have implemented a framework that allows for
the automated execution and evaluation of tests for verification systems that computes the completeness
version of axiomatization coverage.

To compute an approximation of the axiom coverage for a completeness test case P+(REQUAUX),
the procedure is as follows. In a first step, P+(REQ U AUX) is verified with the verification tool using
the complete axiom base available. Besides gathering information on resource consumption of this proof
attempt (e.g., number of proof steps and time needed), information on which axioms are actually used in
the proof are recorded as set T In a reduction step, we start from the empty set C' of covered axioms.
For each axiom ¢ in the set of axioms 7" used in the first proof run, an attempt to prove P+(REQUAUX)
using axioms C'U(T'\{t}) is made. If the proof does not succeed, ¢ is added to set C'. Axiom ¢ is removed
from 7" and the next proof iteration starts until 7' = &.

After a single iteration of this computation, the resulting set of axioms C'is only an approximation of
the coverage of P+(REQ U AUX), as not every applied axiom was not necessarily crucial in the proof
process. This is the approach taken in [6]. In contrast to this, we repeat the above procedure with C' as
input as long as the result is different from the input. Eventually, this fixed-point algorithm finds a true
minimal set of axioms necessary to construct the proof.

It currently takes several minutes to compute a single minimal axiom set for an average test case. This
is acceptable if the coverage is not computed too often, but a considerable speed-up should be possible
using heuristics for choosing the axioms to remove from the set. Divide and conquer algorithms, e.g.,
akin to binary search, seem to be suited to reduce computation times at first glance. However, they do not
help in practice: as the reduction step does not start from the whole axiomatization but rather from the
subset 1" of axioms actually used in a proof, only relatively few axioms remain that are not covered and
can be discarded in the iterative proof runs. For divide and conquer algorithms to be successful, large
sets of axioms that could be discarded at once are needed.

In our case, where we will iteratively maximize the axiomatization coverage, the computation of a
single minimal axiom set is similar to what is often referred to as “an evaluation”. As we shall see in Sec-
tion[5] evaluation times typically take several minutes, but can in very few cases exceed 24 hours (despite
adjusted internal timeouts). Consequently, this renders our problem infeasible for many population-based
approaches and other iterative approaches that would require large numbers of evaluations.

Maximizing Axiomatization Coverage. We propose to increase the amount of testing done, by gen-
erating additional tests from existing tests. We achieve this by preventing the verification system to use
certain parts of the axiomatization. Thus, we force the system to find alternative ways of constructing a
correctness proof for a given test case P+(REQ U AUX ), while using only a subset of the total set of
axioms. We will refer to this subset of allowed axioms as the whitelist WL. Now, the notion of what a
test case constitutes actually changes: it becomes a tuple of (P+(REQ U AUX), WL), of a program P
with a requirement specification RE(Q and auxiliary annotations A UX, and a whitelist WL.

The introduction of the whitelists allows us to reuse existing test cases. This is a big advantage
over writing new test cases, which is a very time consuming process, even for experienced verification
engineers. On the other hand, our approach cannot fully replace the need to extend test suites through
additional test cases. For example, take axioms for bitwise XOR-operations or for certain simplifications
of inequalities. Even though many parts of the axiomatization will be reused over and over, it may not
be possible to cover these, if the corresponding characteristics are never found in any of the existing test
cases.

2Used” does not imply that the application of the axiom was necessary to find the proof.
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With our additional generated test cases, it is for example possible to identify axioms that are still
not used at all, for which the reasons can then be investigated separately. Such analysis can help to focus
the efforts of manual test creation to parts of the axiomatization that are not exercised.

One could ask whether it is possible to maximize the number of axioms covered in a more direct
way. We conjecture that it is either not possible, or just with significant effort. One would need to know
in advance which combinations of axioms would “just suffice”, and this would require an oracle.

4 Metaheuristic Approach

In the following, we describe the verification system that is the subject of our study. Subsequently, we
present our heuristic approaches to the problem. The approaches can be applied to the testing of further
verification systems, if these can provide information on which axioms were used during the construction
of the proof; this is typically the case.

The KeY System. As the target for our case study we have chosen the KeY tool [4]], a verification
system for sequential Java Card programs. In KeY, the Java Modeling Language (JML) is used to specify
properties about Java programs with the common specification constructs like pre- and postconditions
for methods and object invariants. Like in other deductive verification tools, the verification task is
modularized by proving one Java method at a time.

In the following, we will briefly describe the workflow of the KeY system—in our case, we assume
the user has chosen one method to be verified against a single pre-/postcondition pair. First, the relevant
parts of the Java program, together with its JML annotations are translated to a sequent in Java Dynamic
Logic, a multimodal predicate logic [4]]. Validity of this sequent implies that the program is correct with
respect to its specification. Proving the validity is done using automatic proof strategies within KeY,
which apply sequent calculus rules implemented as so-called faclets.

The set of taclets provided with KeY captures the semantics of Java. Additionally, it contains taclets
that deal with first order logic formulas. The development version of KeY as of 16 August 2012, contains
1520 taclets and rules that we will call axioms to facilitate reading. However, not all of them are available
at a time when performing a proof, as some exist in several versions, depending on proof options chosen
(e.g., handling integer arithmetic depends on whether integer overflows are to be checked or not).

The automatic proof search is combined with interactive steps of the user, in case a proof is not found
automatically. As already mentioned, the interactive part of KeY is irrelevant to us, as we restrict test
cases to those that can be proven automatically—otherwise, finding the a minimal set of taclets needed
to prove a program correct is infeasible.

Results of a verification attempt in KeY are the following: either the generated Java Card Dynamic
Logic formula is valid and KeY is able to prove it; or the generated formula is not valid and the proof
cannot be closed; or KeY runs out of resources.

Algorithms. As stated above, we are aiming at maximizing the axiomatization coverage through the
creation of test cases (P+(REQ U AUX), WL). The test suite that we will consider contains already
pairs P+(REQ U AUX), such that we can focus on the search for whitelists. In previous experiments,
we have found out that this process can be very time consuming (several hours) due to the reduction
phases. Furthermore, it is very often the case that infeasible whitelists are created, as they miss elements
that are crucial for the construction of the eventual proof. Even a very “careful” random generation of
whitelists is rarely successful.

Therefore, we choose conservative approaches in which we try to use the the knowledge gained so
far. In addition, we introduce varying degrees of randomization, to allow for different search directions.

All approaches have the following idea in common. Given a minimal set of axioms M for a given pair
P+(REQ U AUX), the approaches try to remove axioms m € M from the current whitelist WL (first
iteration: all 1520 axioms). If the subsequent verification of (P+(REQ U AUX), WL) is successful,
then the verification system has found an alternative path to prove the correctness. Consequently, a new
minimal set M’ can be found, which will of course only contain the elements that are in WL, and it will
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contain previously uncovered axioms. For the next iteration, M’ will be the starting point. Effectively,
we iteratively check if some axioms can be replaced by others.
The approaches differ in the way they shorten the whitelists, when given a minimal set of axioms M :

1. APPROACH 1 “in order enumeration‘: the elements in M are explored in lexicographical order in
a depth-first fashion. This naive approach is structured and the resulting sequence of minimal sets
allows for an easy analysis of dependencies.

2. APPROACH 2 “random order enumeration®: the elements in M are explored in random order. The
axiomatization contains groups of axioms that can be used interchangeably in the proof search. In
case several unrelated test cases use the same groups of axioms, then chances are that this approach
will not rediscover the same replacements for group of axioms over and over again.

3. APPROACH 3 “random step sizes*: up to six randomly picked elements from M are removed
from the current whitelist. Iteratively, the step size is reduced by 50% (rounded up) in case the
whitelist does not allow for a successful proof, because it is too restrictive. APPROACH 2 is used as
a fall-back strategy. Even though verification attempts are more likely to fail, the whitelists should
become shorter, thus motivating the verification system to “work around” our artificially imposed
restrictions in order to construct a proof.

Our general approach is in stark contrast to shortening the whitelists by randomly picking axioms
from the axiomatization: removing a previously unused axiom from the whitelist will result in the very
same minimal set over and over again. In contrast to this, we try to remove axioms that have been used
before.

Lastly, as we keep track of the generated whitelists, we prevent the repeated computation of minimal
sets for a given pair pairs P+(REQ U AUX).

5 Experiments

Using our testing framework, we automatically execute the test cases contained in KeY’s test suite and
measure the taclet coverage. The code is available upon request, and will be made publicly available.

The KeY source distribution provides a test suite containing 335 test cases (as of 16 August 2012)
of which 319 test cases testing verification of functional properties—the other 16 are soundness tests
or are concerned with the verification of information flow properties and were omitted due to resource
constraint. The complexity of the proof obligations ranges from simple arithmetic problems to small
Java programs testing single features of Java, up to more complex programs and properties taken from
recent software verification competitions.

This test and all subsequent runs are performed on AMD Opteron 250 CPUs (2.4GHz), on Debian
GNU/Linux 5.0.8, with Java SE RE 1.7.0. The computation time for each of the 319 test cases is limited
to 24h for each approach. The internal resource constraints are set to twice the amount of resources
needed for the first proof run recorded initially. This allows for calculating axiom coverage in reasonable
time and ensures comparability of coverage measures between computers of different processing power.

Example. To start our presentation of the results, we exemplarily investigate KeY’s original test case
heap/list/ArrayList.ArrayListIterator_inv.key. It’s purpose is to test the iterator function-
ality of an array list implementation. It is of particular interest, as the shortest successful whitelist across
all approaches is found for it. Several statistics are listed in Table [I} Note that the first minimal set
contains only 34 elements, and that all approaches have been able to at least double this number.

Interestingly, all approaches rarely backtrack, as we would otherwise see more “branches” in the
sequence of whitelist lengths. This is a strong indicator that the search for new minimal sets is not
finished yet. Many backtracking points are still waiting to be explored.

The significant drop of the trials that APPROACH 2 performs is due to axioms being removed that (1)
cause a timeout (when missing), and (2) have previously improved the performance of the proof strategy.
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Approach successful covered sequence of whitelist length development
trials axioms
APPROACH 1 | 43/878 80 (1520, ...,1481, 1487, 1486, 1485)
APPROACH 2 | 45/388 80 (1520,...,1514, 1514,...,1484, 1485, ... ,1481)
(1520,1514, 1511, 1510, 1507, 1504, 1503, 1500, . . . ,
APPROACH 3 | 17/864 116 1497, 1491, 1488, . .., 1486, 1483, . . ., 1464, 1461, 1460)

Table 1: Example test case. Listed are the ratios of successful to failed whitelist trials, the number
of axioms covered by the union of all minimal sets, and the sequence of whitelist lengths that were
discovered (backtracking points marked). Dots indicate decrements by one up to the next shown value.

APPROACH 1 APPROACH 2 APPROACH 3 Union
axioms covered in the first minimal sets 475 (31%) 473 (31%) 475 (31%) 479 (32%)
axiom usage in the first minimal sets 7,375 7,374 7,370 7,512
axioms covered in all minimal sets 616 (41%) 610 (40%) 594 (39%) 643 (42%)
axiom usage in all minimal sets 15,278 15,855 14,632 18,547
shortest whitelist found 1469 1471 1460 1460

Table 2: Coverage statistics. The first minimal sets refer to those found first by the approaches, which
initially use all 1520 axioms. Axiom usage is the total count of axioms used by the respective sets. The
Union is the result of considering all three approaches together.

APPROACH 3 tries out many larger reductions of the current whitelist, and a huge proportion of them
is not successful. If it would be possible to establish dependencies between the axioms, and logical
groups, then it should be possible to either identify these in advance, or to learn these on the fly. Con-
sequently, the time spent on extensions that are unlikely to work (because “essential” rules are to be left
out) may be reduced, thus increasing the efficiency of the framework.

It is obvious that the different approaches exercise the verification system in different ways. Because
of their nature, APPROACH 1 and 2 iteratively block out larger and larger parts of the axiomatization. In
contrast to that, APPROACH 3 is able to rapidly decrease the lengths of the whitelists.

Axiomatization Coverage Results. The coverage statistics of the different approaches are listed in
Table[2] In [6], an approximated coverage of 585 (out of 1520) is reported. This turns out to be drastically
overestimating the actual ~ 474 that is achieved by iteratively running the reduction algorithm for the
same test files. The number 474 furthermore represents the result of the naive approach, where the full
set of 1520 axioms is used and no alternatives are sought. Thus, this is our base value

The individual approaches improve the total coverage by about 10% each. When considering all
approaches together, then the initial coverage of about 474 axioms is increased to 643 axioms through
the use of whitelists. This means that the framework is able to improve the achievable coverage au-
tonomously by about 35%, without requiring a verification engineer to write a single new test case.

Figures [IH4] show additional statistics about the frequency of the axioms covered, and about the
lengths of the whitelists (from top to bottom: APPROACH 1-3). The overall distribution of the axiom
coverage is almost identical (see Figure [I). Often, APPROACH 1 and 2 exhibit very similar statistics
(e.g., see Figures 2H4). APPROACH 3 deviates from the other two in certain sections, as different “local
shapes” indicate. Such histograms, when split by taclet group, allow us to compare the quality of the
test suite with respect to the different groups. In [6] we were able to locate underrepresented taclet
groups, e.g., relevant for Java assertions or the bigint primitive type of JML (with coverage of each
group below 10%). This coarse classification already allows to focus the effort of writing new test cases
on constructing specific tests for seldomly covered taclet groups. Additional data mining, e.g., in the

3The used KeY-Version uses certain taclets indeterministically. However, we observed no significant consequences on the
overall number of taclets covered in several repetitions of our experiments.
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Figure 1: Axiom coverage counts. y-axis: num- Figure 2: Average test case selectivity by axiom.
ber of test cases an axiom is covered by. On the In black: average selectivity of all test cases cov-
x-axis: axioms at least covered by one test case, ering an axiom. Deviation of this value from the

sorted by y values. (f.t.t.b.. APPROACH 1-3) average is shown in red. (f.t.t.b.: APPROACH 1-3)
y covers axioms not covered by: | APPROACH 1 APPROACH 2 APPROACH 3
APPROACH 1 — 25 35
APPROACH 2 19 — 31
APPROACH 3 13 15 —

Table 3: Differences between the minimal sets found. For example, APPROACH 3 covers 15 axioms that
are not covered by APPROACH 2.

form of clustering, can be done in order to group similar test cases together to identify commonalities.
This is, however, beyond the scope of this paper.

The need for broader test cases, covering several combinations of axioms, is supported by studies
(e.g. [13]]), which show that software failures in a variety of domains are often caused by combinations
of several conditions. Specialized test cases, in comparison, might simplify testing different aspects of
one taclet by being able to better control the context an axiom will presumably be applied in the proof.
As a measure for this, we define the selectivity of a test case as the number of axioms covered by the
test. The current state of the KeY test suite with respect to this selectivity criterion is shown in Figure 2]
For each axiom, the average selectivity of all test cases covering this taclet is shown, together with the
deviation from the average. The leftmost axioms in this diagram are good candidates for which additional
test cases might be needed, as they are only covered by specialized test cases. Also axioms with a high
selectivity average of the corresponding test cases but low deviation indicate need for improvements, as
only broad test cases cover the axioms.

Coming back to the optimisation approaches, we can see in Table [3] that they complement each
other. When we combine Approaches 1 and 2, they cover a total of 635 axioms. Thus, one can see
that a small degree of randomization contributes to the diversity of the outcomes. When combining the
randomized Approaches 2 and 3, then only 625 axioms are covered. It seems that the search directions
differ significantly, because APPROACH 2 covers 31 axioms that are not covered by the other approach.
On the other hand, even though APPROACH 3 yields the lowest coverage values amongst all, its outcome
is still complementary to those of the otherwise relatively similar Approaches 1 and 2.
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Three test cases never produced a minimal set within the allotted 24 hours. The reason for this is that
in all three cases the number of axioms used in the first successful proof is very large (> 140). Then, the
iterative reduction process becomes very time consuming, and cannot finish within the allotted time. We
will allot additional time to these three in the future, as they have the potential to contribute significantly
to the coverage due to the complexity of the tests.

6 Conclusions and Future Work

In this paper, we address the problem of increasing the axiomatization coverage when rigorously testing
verification systems. We introduce several approaches that allow us to reuse the existing test cases
without generating new cases by hand. The reuse is implemented through varying the restriction on
which axioms can be used for proof attempts.

The experiments reveal several interesting insights. It is important to note that it is impractical
to manually impose the restrictions on verification systems under which correctness should be proven.
Randomly generated restrictions typically are too strong and make it impossible to find a proof. Our
local search approaches, however, explore the space of restrictions in a structured way. When generating
the restrictions, it is beneficial to allow for random decisions and for a degree of disruption. An algo-
rithm that does both is able to obtain a considerably higher axiomatization coverage. Even though our
experiments are computationally expensive, the restrictions found so far can be reused in future coverage
computations as seeds, without having to rerun the entire search again.

In the future, we will continue to research in the following areas:

1. The computation of a minimal set of axioms is time consuming. If it would be possible to establish
dependencies between the axioms, and logical groups, then it should be possible to either iden-
tify these in advance, or to learn these on the fly. Consequently, the time spent on the coverage
calculations may be reduced significantly, thus increasing the efficiency of the framework.

2. Failures in a variety of domains are often caused by combinations of several conditions (see studies
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like [13]]). We plan to combine combinatorial testing with combinatorial search techniques. There,
combinations of language features and axioms are used to form complex test cases. The knowledge
gained from the work presented here will help us to focus our efforts in comprehensive testing.
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