
Tableau-based Theorem Proving:A Uni�ed ViewIntegrating and UnifyingMethods of Tableau-basedTheorem Proving
Bernhard Bekert

Dissertation(PhD Thesis)Final VersionMay 29, 1998

Universit�at Karlsruhe (TH)
Fakultät für Informatik
Institut für Logik, Komplexität und
Deduktionssysteme

The invention of tableau systems will continue,
simply because they are easier to think of than
other formulations.

Melvin Fitting (1998)

Prefae
Bakground
This is the English version of my PhD thesis submitted (in German) to the Department
of Computer Science, University of Karlsruhe, in June 1998.Publiation
Some of the results presented in this thesis have already been published as journal
articles or in conference proceedings:

(Beckert & Goré, 1997) – a mixed variable tableau calculus for the basic modal logics
(Section 4.3.7).

(Beckert & Hartmer, 1998) – tableau calculi for the fragments MLSS and MLSSF of
set theory (Section 3.8).

(Beckert & Gabbay, 1998) – fibring tableau calculi (Chapter 6).Aknowledgements
Many people encouraged me and helped me in some way or the other while I worked
on this thesis; without their support it could not have been done. My sincerest thanks
go to:

– Prof. Peter H. Schmitt for his excellent advise, his support, and for giving me the
opportunity to work in his group with its friendly and productive atmosphere;

– Prof. Jacques Calmet for agreeing to be co-referee of my thesis and for fruitful
discussions;

– my colleagues and friends Wolfgang Ahrendt, Reiner Hähnle, Christian Pape, and
Joachim Posegga for all their support and many stimulating discussions;

– Prof. Dov Gabbay for giving me the opportunity to visit his group at Imperial Col-
lege, for sharing with me parts of his huge knowlege in all areas of logic, and for
suggesting to apply the fibring technique to tableau calculi;

– Rajeev Goré, as to work with him is always productive—evenwhen he is on the
other side of the planet;

v

vi Preface

– Ulrike Hartmer, who worked out the details of the calculi for fragments of set theory
described in this thesis;

– all the many other people who gave me some advise or hints, including Prof. Dome-
nico Cantone, Uwe Egly, Guido Governatori, and Gernot Stenz;

– the Department of Computer Science of the University of Karlsruhe for providing a
good work environment;

– the Deutsche Forschungsgemeinschaft (DFG), which—as part of its Schwerpunkt-
programmDeduktion—financed the projects that I worked on for the last years;

– the Department of Computing at Imperial College in London,for inviting me—my
visit there was very profitable and productive;

– the European Union, for financing my visit at Imperial College as part of itsTrain-
ing and Mobility of Researchers(TMR) program and my participation in several
workshops and conferences as part of the COST ActionMany-valued Logics;

– and especially my parents for their support and encouragement over the years.

Karlsruhe, Mai 1998

Bernhard Beckert

Note. In the following, I often use the pronoun “we”; that is not apluralis majestatisbut it
refers to the two of us: myself andyou, the reader.

Contents
Preface v

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Main Results and Structure of this Thesis 2

1.3 Tableaux and Why We Use Them 4

1.4 Historical Overview . 5

2 Logical Systems 9

2.1 Syntax and Semantics of Logical Systems 9

2.2 Terms and Substitutions . 10

2.3 First-order Predicate Logic .15

2.4 Modal Logics . 17

2.5 Modal Logics Without Binary Connectives 19

2.6 The Fragments MLSS and MLSSF of Set Theory 20

3 Tableau Calculi 23

3.1 A Uniform View . 23

3.2 Syntax of Tableau Calculi . 24

3.3 Syntactical Properties . 27

3.4 Semantics of Tableaux . 33

3.5 Semantical Properties . 34

3.6 An Ideal Tableau Calculus for PL1 41

3.7 Ideal Tableau Calculi for Modal Logics 48

3.8 Ideal Calculi for the Set Logics MLSS and MLSSF 62

vii

viii Contents

4 Enhancements 81

4.1 Overview . 81

4.2 Rigid Variable Tableau Calculi .83

4.3 Universal Variable Calculi . 101

4.4 Improved Skolemisation . 122

4.5 Local Lemmata . 125

4.6 Pruning . 130

4.7 Additional Rule Schemata . 132

5 Constructing an Efficient Proof Procedure 133

5.1 Overview . 133

5.2 Regularity . 136

5.3 Weight Orderings . 142

5.4 Deterministic Proof Procedures for Rigid Variable Calculi 144

5.5 Search Space Restrictions that Preserve Idealness 153

6 Fibring 155

6.1 Overview . 155

6.2 Fibring Logical Systems . 157

6.3 Fibring Tableau Calculi . 159

6.4 Semantical Properties of Fibred Calculi 161

6.5 Example: Fibring Calculi for PL1 and a Modal Logic 164

7 Theory Reasoning 167

7.1 Overview . 167

7.2 Theories . 168

7.3 Examples for Background Reasoners169

Bibliography 171

Bibliography 171

List of Symbols 179

Index 183

List of Tables
2.1 Basic modal axioms and their corresponding restrictions on the reach-

ability relation . 18

2.2 Axiomatic characterisations of the basic modal logics 19

3.1 The four formula types of first-order predicate logic 42

3.2 Rule schemata for first-order predicate logic 43

3.3 The accessibility relation on labels for the basic modallogics 50

3.4 The four formula types of modal logics51

3.5 Rule schemata for modal logics . 52

3.6 The elements of the conclusion of a�-formula 52

3.7 The new rule schemata of a calculus for the logicK with continuous
expansion rule for�-formulae . 59

3.8 Rule schemata of a calculus for the logicK with continuous expansion
rule for�-formulae . 59

3.9 Generalised expansion rule schemata for�- and�-formulae 63

3.10 Rule schemata for splitting complex set terms 64

3.11 Rule schemata handling equalities and inequalities, and the cut rule
schema . 65

3.12 Additional expansion rule schemata for MLSSF 73

4.1 Examples for the relationship between a ground calculusfor PL1 and
its rigid variable version . 90

4.2 Rigid variable rule schemata for first-order predicate logic 98

4.3 Expansion rule schemata of a rigid variable calculus forthe modal
logicK . 99

4.4 Examples for the construction of universal variable conclusions 111

4.5 Examples for the construction of mixed variable conclusions (first part) 115

4.6 Examples for the construction of mixed variable conclusions (second
part) . 116

ix

x List of Tables

4.7 Rule schemata for first-order predicate logic using bothuniversal and
rigid variables . 118

4.8 Mixed variable expansion rule schemata for the modal logic K 120

7.1 Examples for premisses and their conclusions using equality theory . 169

7.2 Additional expansion rule schemata for the theory of partial orderings 170

List of Figures
3.1 The tableau from Example 3.7.16 . 57

3.2 A tableau proof for a formula of the modal logicK using an expansion
rule that is continuous for�-formulae 62

3.3 Comparison of two calculi for MLSS 73

3.4 A closed sub-tableau constructed using the rigidE-unification expan-
sion rule schema for MLSSF . 77

3.5 Tableau proof for an MLSSF formula 79

4.1 A rigid variable tableau proof for a formula of modal logicK 101

4.2 Example for the usefulness of universal variables 103

4.3 A universal variable tableau proof 108

4.4 A ground tableau proof constructed from the universal variable tableau
proof in Figure 4.3 . 109

4.5 A mixed variable tableau proof for a formula of modal logicK 122

4.6 Example for the use of pruning . 132

5.1 An irregular expansion rule application 137

5.2 Example for the difference between the new and the classical notion
of regularity . 138

5.3 Examples for tableaux thatk-contain other tableaux 139

5.4 Example for nearly identical tableauxnot containing each other . . . 140

5.5 Two tableaux one of which 1-contains the other 140

5.6 A tableau illustrating the necessity of Condition 2 in the definition of
weight functions . 144

5.7 An irregular sequence of tableaux containing a cycle 146

5.8 A more complex irregular sequence of tableaux containing a cycle
(part 1) . 148

5.9 A more complex irregular sequence of tableaux containing a cycle
(part 2) . 149

5.10 A tableau reconstruction step .. 150

xi

xii List of Figures

6.1 Illustration of a fibred model . 157

6.2 A tableau proof for the validity of a formula in modal predicate logic . 165

6.3 The continutation of a tableau proof for a formula of modal predicate
logic . 166

1 Introdution
Logicians have but ill defined

As rational the human kind.
Logic, they say, belongs to man,
But let them prove it if they can.

— OLIVER GOLDSMITH

1.1 Motivation
Automated Deduction—and in particular tableau-based theorem proving—has reached
a state where it is on the verge of being successfully used in real-world applications.
Up to now, however, the transition from a technique mainly used in research towards
a tool that is routinely used in practice has not been accomplished.

One obstacle is that much work is put into developing very sophisticated and powerful
theorem proving systems for certain logics (in particular first-order predicate logic),
which are not tailor-made for certain applications. To use these systems, problems
from the particular area of application have to be transformed into the logic supported
by the prover.

A different and possibly more successful approach is to construct a specialised, dedi-
cated proof system for a certain application supporting a logic that is particularly well
suited for the application and that makes use of the special features of both the logic
and the application to increase efficiency.

This requires the availability of uniform methods for the construction of efficient dedi-
cated proof procedures for different logics, such that theydo not have to be developed
from scratch. There is, however, a gap between the two main areas into which most
knowledge in the field of Automated Deduction can be separated: on the one hand,
many different calculi for many different logics have been presented; these, however,
are typically only of theoretical interest and not suitablefor an implementation. On
the other hand, proof procedures for a few important logics—predominantly classical
propositional and first-order predicate logic—have been described including a huge
number of special techniques and refinements to make them more efficient.

1

2 Chapter 1: Introduction

The objective of this thesis is to close that gap: To reach this goal and to facilitate
the uniform construction of efficient, dedicated tableau-based theorem provers, three
approaches are pursued, which complement each other:

1. the generalisation and uniform description of tableau calculi, of their refine-
ments, and of methods for their improvement;

2. the development of uniform methods for constructing efficient deterministic
proof procedures from (non-deterministic) tableau calculi;

3. the (uniform) integration of different tableau calculi and of tableau calculi and
special methods for solving problems from certain domains (theory reasoning).

The first two approaches apply to all kinds of logics, whereasthe third one applies
mainly to logics that are extensions of classical logic (e.g., many-valued, modal and
temporal logics) but only in part to logics that can be seen asrestrictions of classical
logics, such as linear and relevance logic.

The uniform methods presented in the following simplify thedesign of efficient ta-
bleau-based proof procedures. Since many of the pre-conditions for the applicability
of these methods are purely syntactical and easy to check, one can—as a future goal—
imagine an (at least partially) automatedmetadeduction system that, when presented
with the definition of a tableau calculus, applies uniform techniques to improve the
calculus and construct an efficient proof procedure, or thateven constructs a tableau
calculus for a given logic from scratch.1.2 Main Results and Struture of this ThesisChapter 1 In this introductory chapter, the importance of methods forthe uniform
design of efficient tableau calculi is discussed and motivated; the main results and
the structure of the thesis are described; the notion of tableau calculi is introduced;
the main properties of tableau calculi and the differences to other types of calculi are
explained; and, finally, a short overview of the history of tableau calculi is given.Chapter 2 Logical systems (or logics for short) are defined in a very general way (as
few restrictions as possible are made regarding syntax and semantics). The notions of
terms and, based on that, substitutions and unification of terms are introduced. As ex-
amples for the description of logics within the general framework, first-order predicate
logic, modal logics, and two fragments of quantifier-free set theory are presented.

1.2 Main Results and Structure of this Thesis 3Chapter 3 A uniform description of tableau calculi and their syntactical and se-
mantical properties is given—as, for example, being analytic, monotonic, saturating,
respectively being sound, complete, proof confluent—without any restriction to certain
logics or normal forms. General criteria are presented for checking whether a calculus
has these properties (including criteria for checking soundness and completeness). An
important class of “well-behaved” tableau calculi is identified, which are calledideal
calculi. This class turns out to be of great importance as (a)idealness is a pre-condition
for the applicability of many of the uniform methods for improving the efficiency of
tableau calculi described in the following, and (b) ideal calculi exist for most logics.
As examples, ideal calculi for first-order predicate logic and for modal logics are pre-
sented. In addition, ideal tableau calculi are defined for the fragments of set theory
introduced in Chapter 2; these calculi are shown to be more efficient than the calculi
that were previously described in the literature.Chapter 4 Techniques are presented for improving a tableau calculus for automated
deduction in such a way that proof procedures based on it are more efficient. In
particular, methods that have turned out to be useful for tableau-based deduction in
first-order predicate logic are generalised, such that theycan be used in the design
of tableau-based proof procedures for arbitrary logics—including (a) the concept of
rigid variables that represent terms and can be instantiated “on demand” during proof
search, (b) the universal variable technique, where variables representall terms simul-
taneously, and (c) a combination of both. The relation of rigid and universal variable
calculi to ground (i.e., variable-free) calculi is explained, including uniformlifting
methods for constructing rigid and mixed variable calculi from ground calculi. An im-
proved version ofskolemisationis described where instead of introducing new Skolem
symbols, each premiss from which the existence of objects with certain properties can
be deduced is assigned its own unique symbol. As examples forcalculi making use
of these techniques, mixed rigid and universal variable calculi for first-order predicate
and modal logics are presented. Other methods for uniformlyimproving tableau cal-
culi that are described in this chapter include thelocal lemmatechnique,pruningof
redundant tableau branches, and the introduction of additional tableau rule schemata.Chapter 5 This chapter complements Chapter 4 where methods for improving a
tableau calculus are discussed such that shorter proofs canbe constructed. Here, the
subject is how to efficiently search for proofs in the remaining smaller search space.
Techniques for turning a (non-deterministic) tableau calculus into a deterministic proof
procedure are discussed and analysed. A general concept ofregularity for arbitrary
tableau calculi and the notion ofweight orderingsare introduced, which are proven to
be appropriate for constructing a deterministic depth-first proof search procedure for
arbitrary ideal rigid variable calculi (although it was known that such procedures exist,
it was up to now an unsolved problem to actually describe a practical procedure).

4 Chapter 1: IntroductionChapter 6 The fibring technique, which allows to combine logical systems based
on combining their semantics, is extended to tableau calculi. A method is introduced
for uniformly constructing a sound and complete tableau calculus for a combined logic
from tableau calculi for the component logics. Since tableau calculi are readily avail-
able for most “basic” logics, calculi can be obtained for many “complex” logics that
can be constructed by fibring basic logics, such as modal predicate logic, intuitionistic
temporal logic, etc. As an example, a calculus for modal predicate logic is presented
that is the combination of a calculus for first-order predicate logic and a calculus for a
modal logic.Chapter 7 The concept oftheory reasoning, which allows to integrate tableau cal-
culi with dedicated procedures for solving problems from a certain domain, is gener-
alised and formulated using the notions introduced in previous chapters1.3 Tableaux and Why We Use Them
A tableau, as defined in dictionaries, is a “striking or vividrepresentation” (Hayward &
Sparkes, 1968) or a “well-arranged picture” (

”
ein wohlgeordnetes Bild“ (Drosdowski

et al., 1991)). In automated deduction, a tableau is a special representation of (partial)
proofs. Whether this representation is indeed “striking” and “well-arranged” is of
course a matter of debate; but from all the proof representations that are well-suited
for computers and are thus used in automated deduction, the tableau representation is
arguably the one that is easiest to understand and use for humans.

While tableau calculi have always been popular for pedagogical purposes in introduc-
tory logic texts, the deduction community became interested in them only in the 1980s.
One reason was the increased demand for deduction in non-classical logics in various
AI applications. For many non-classical logics tableau-like calculi are the only ones
available. In addition, the proximity of tableau inferencerules to semantics makes it
easy to construct tableau calculi for new logics. Moreover,the introduction of uni-
fication and other refinements lead to an increase in the efficiency of tableau calculi
for classical logic; today some of the most powerful automated theorem provers for
first-order predicate logic are based on tableau-calculi.

There are many different definitions of the notion of tableaux in the literature; and
there seem to be as many characterisations of tableau calculi and criteria that distin-
guish them from other types of calculi as there are experts inthe field of tableau-based
deduction; the most common and important of these criteria are:

1. A tableau is a tree structure whose nodes are labelled withformulae; and any
calculus operating on such structures is a tableau calculus.

1.4 Historical Overview 5

2. A calculus is a tableau calculus if it has all (or most) of the following properties:
It proves by analysing the theorem to be proven (top-down); aproof is based on
a complete case distinction; it proves by contradiction.

In this thesis, a tableau calculus is assumed to satisfy bothof the above criteria. In par-
ticular the tree structure of tableaux is part of their definition (whereas some authors,
e.g. (Fitting, 1998), view trees as only being one of many possible data structures for
implementing tableaux). Therefore, calculi such as the connection method, which is
based on a matrix representation, and sequent calculi are not considered to be tableau
calculi—though they certainly are closely related to tableau calculi.1

To avoid confusion, the following notions have to be distinguished:� tableaux, which are trees whose nodes are annotated with formulae;� (partial) tableau proofs, which consist of a tableau and theinformation of how
to construct this tableau using the rules of the calculus; this information can, for
example, be given in form of a sequence of tableaux where eachtableau in the
sequence is constructed from the previous one by a single rule application;� the state that the computation of a tableau proof procedure has reached, which
in addition to a partial tableau proof may contain information about futile proof
attempts;� tableau calculi, which are characterised by their expansion and closure rules;� the tableau method in general.

In the literature, “tableau” is often used inconsistently with any of the above meanings.
In this thesis, however, “tableau” always refers to a tree structure, the only (rare) ex-
ception being expressions like “semantic tableaux” or “free variable tableaux”, which
refer to certain tableau calculi or classes of calculi.1.4 Historial Overview
Historically, tableaux derive from Gentzen’s proof theoretic work done in the 1930s,
namely hissequent calculusintroduced in (Gentzen, 1935). The termtableauis due
to Beth (1955) who was looking for a “systematic method for constructing a counter-
example.” Roughly at the same time (and, like Beth, motivated by semantic concerns)
Hintikka (1955) and Schütte (1956) independently came up with a similar system.
These calculi still had drawbacks with respect to notation,which was tedious; but1 Every sequent calculus can be turned into a tableau calculusand vice versa, where the branches of

tableaux in a tableau calculus correspond to the sequents ina sequent calculus.

6 Chapter 1: Introduction

Hintikka gave an argument in his completeness proof that is (with few modifications)
still in use today (see Section 3.5.4).

The modern form (in particular the tree representation) of tableaux was conceived,
again independently, by Lis (1960) and Smullyan; the latteradded the device ofuni-
fying notationand summarised his results in (Smullyan, 1968), which became a well-
known textbook.

The development of tableau-like calculi for non-classicallogics began in parallel to
that of calculi for classical logic—the first being a sequentcalculus for intuitionistic
logic described in (Gentzen, 1935). Beth presented a calculus for intuitionistic logic,
that is similar to his calculus for classical logic, in (Beth, 1959). Roughly at the same
time Kanger (1957) and Matsumoto and Ohnishi (1957; 1959) developed tableau-like
calculi for modal logics. In Kanger’s calculus for the modallogic S5, formulae were
indexed with integers; this can be seen as the first tableau-like calculus using the mech-
anism of labelled formulae. Kripke describes in his celebrated paper (Kripke, 1959) (in
which he proposes the possible world semantics for modal logics) a tableau-like calcu-
lus for modal logics in the style of Beth (1955). Kripke uses auxiliary tableaux, where
a different tableau is used for each possible world, and these tableaux are interrelated
by a reachability relation.

The first real tableau calculi (using tree representation) for non-classical logics, namely
the modal logic S4 and intuitionistic logic, were presentedin (Fitting, 1969) (later Fit-
ting defined tableau calculi for many other modal logics in (Fitting, 1983)). A first
tableau calculus for temporal logics was described in (Rescher & Urquhart, 1971);
and the first tableau-like calculus for many-valued logics was Rousseau’s (1967) se-
quent calculus (which was based on using sequents consisting of more than two se-
quences). Later, Suchon (1974) defined a tableau calculus for Łukasiewicz logics; and
Surma (1984), Carnielli (1987) and Hähnle (?) presented tableau calculi for arbitrary
finitely-valued logics.

In the late 1950s, the design of tableau-like calculi and proof procedures began that
were tailor-made for automated proof search and thus for implementing automated
theorem provers; and that area of research started to separate from the development of
tableau calculi for purely theoretical or pedagogical purposes.

The possibility to automate proof search was first considered by Kanger (1957; 1963).
In 1957 and ’58, D. Prawitz, H. Prawitz, and Voghera implemented a sequent calculus
for first-order predicate logic without function symbols (Prawitz, 1960; Prawitzet al.,
1960). At the same time, in 1958, Wang implemented a sequent calculus for the89-
fragment of first-order predicate logic on an IBM 704 (Wang, 1960); this remarkable
program was able to prove all 220 propositional and 139 of the158 first-order theorems
in Russell and Whitehead’sPrincipia Mathematica.

In the 1960s and ’70s resolution-based calculi dominated the field of automated de-
duction; during that time nearly all implementations were in some way based on reso-
lution, a notable exception being Popplestone’s (1967) implementation of a Beth-style

1.4 Historical Overview 7

tableau calculus for first-order predicate logic. The main advantage of resolution was
(at that time) that it employed unification for finding usefulinstantiations for univer-
sally quantified variables; whereas tableau calculi lackedthis powerful method and
were based on enumerating all possible instantiations. In the 1980s, tableau calculi
overcame that disadvantage. The introduction of free (or dummy) variables whose in-
stantiations are computed using unification lead to a drastic increase in the efficiency
of tableau-based theorem provers.

The idea of using unification in tableau calculi was first considered in (Cohenet al.,
1974); the first calculi using unification were formulated (independently) in (Broda,
1980) and (Bowen, 1982). However, in these papers the problem of preserving sound-
ness when dummy variables are instantiated with (Skolem) constants had not been
solved (see Section 4.4). Inmodel elimination(Andrews, 1981) and thematrix method
(Bibel, 1982), which are calculi closely related to tableaux that use unification, the
problem was avoided by assuming the input formula to be in skolemised normal form
such that no Skolem constants are introduced in a proof.

First tableau calculi for first-order predicate logic that use run-time skolemisation and
unification were presented by Wrightson (1984) and Reeves (1987); these solved the
the soundness problem by imposing certain constraints on the unifiability of free vari-
ables and Skolem constants. Finally, the technique for preserving soundness that is
mainly used today, namely the use of complex Skolemtermsinstead of Skolemcon-
stants, was introduced in (Schmitt, 1987) and (Fitting, 1990).

A further important improvement of tableau calculi for first-order predicate logic was
the introduction ofconnectednessconditions (see Section 5.5); the notion of connect-
edness had been used before inmodel elimination(Andrews, 1981) and thematrix
method(Bibel, 1982).

Today, the most comprehensive available source of information on tableau calculi is
the Handbook of Tableau Methods(D’Agostino et al., 1998). Its chapters cover the
main variants of clausal and non-clausal tableau calculi for classical propositional and
first-order predicate logic, as well as tableau systems for the most important families
of non-classical logics.

8 Chapter 1: Introduction

2 Logial Systems
2.1 Syntax and Semantis of Logial Systems
We define the notion of alogical systemin a very general way; only very basic prop-
erties of its syntax and semantics are part of the definition.

The logic has to have a model semantics that uses Kripke-style models, i.e., models
consisting of (possible)worlds in which formulae are true or false. That includes
models consisting of just one world (for example, models of classical propositional
and first-order logic);1 and there is no restriction on what the relationship between
these worlds is.

Definition 2.1.1 Associated with alogical systemL (a logic for short) is a setSig
of (L-)signatures2 of L. For each signature� 2 Sig, syntax and semantics of the
instanceL(�) of L are given by:

Syntax: A setForm(�) of (L-)formulaeand a setAtom(�) � Form(�) of atomic
(L-)formulae ([L-]atoms)where the setsAtom(�) andForm(�) are decidable
formal languages (not containing the empty word), i.e., atoms and formulae are
words in these languages, respectively.

Semantics: A setM(�) of (L-)modelswhere each modelm 2 M(�) (at least) con-
tains (a) a setW of worlds, (b) aninitial world w0 2 W , and (c) a binary relationj= betweenW andForm(�).

If w j= F for some worldw 2 W and some formulaF 2 Form(�), thenF is said to
betrue in w, else it isfalsein w.

A formulaF 2 Form(�) is satisfiedby a modelm 2 M(�) if (and only if) it is true
in the initial worldw0 ofm. A setG � Form(�) of formulae is satisfied bym iff all
its elements are satisfied bym.1 In fact, any kind of model can be considered to be a Kripke-style model with a single world (namely

the model itself). However, since the labels of tableau formulae are interpreted as worlds, if there
is only one world in the models of a logic, then the interpretation of all labels is the same and they
become useless for the calculus.2 We do not further specify what a signature is;Sig can be seen as a set of indices for distinguishing
different instances of the logicL (whichusuallydiffer in the symbols they use).

9

10 Chapter 2: Logical Systems

A formulaF 2 Form(�) (a setF � Form(�) of formulae) issatisfiableif there is a
modelm 2 M satisfyingF (resp.F). 2
Although usually non-atomic formulae are constructed fromatomic formulae, and
their truth value is determined by the truth value of the atoms they consist of, this
is not part of the above definition. However, the existence of a “well-behaved” tableau
calculus for a logicL implies that the truth value of a formulaF is strongly related to
the truth value of certain atoms (that may or may not be sub-formulae ofF).

Example 2.1.2 The truth value of the formula(9x)(p(x)) in a model of first-order
predicate logic is not determined by the truth value of the (only) atomp(x) it contains,
neither can it be computed from the truth values of all atomicformulaep(t) unless all
elements of the model’s domain are represented by a termt (as is the case in Herbrand
models). 2
Tableau calculi allow to check thesatisfiabilityof a formula; we only consider this
property. It may or may not be possible in a certain logic to check whether a formula
is valid in some model (true in all worlds) or is a tautology (valid in all models) by
reducing this problem to a satisfiability problem; in many logics—though not in all—a
formula is a tautology if its negation is not satisfiable.

Often, formulae are used in tableau calculi that are not built from the original but from
an extended signature (e.g., formulae containing Skolem symbols):

Definition 2.1.3 Given a logicL, a signature�� 2 Sig is an extensionof a signa-
ture� 2 Sig (and� is arestrictionof ��) ifForm(�) � Form(��) and Atom(�) � Atom(��) :
In that case, a modelm 2 M(�) is a restriction of a modelm� 2 M(��) (to the
signature�), if there is a functionf that assigns to each world ofm a world ofm0
such that: (a) the initial world ofm� is assigned to the initial world ofm; and (b) for
all formulaeF 2 Form(�) and worldsw ofm: w j= F iff f(w) j= F . 22.2 Terms and Substitutions2.2.1 Logial Systems with Terms and Free Variables
There is an important class of logical systems, including all predicate logics, where
formulae containterms. Again we make as few restrictions as possible on what a term
is. In particular we do not assume that terms are of the formf(t1; : : : ; tn); instead, a
set of terms may be any decidable set of words occurring in theformulae. The only

2.2 Terms and Substitutions 11

condition, that in fact is used to define the notion of terms, is that the set of formulae
is closed under the replacement of terms occurring in a formula by other terms.

To be more flexible, we allow the terms to be separated into different classes, i.e.,
we attachsortsto terms. We do not use a sub-sort hierarchy; however, most notions
and methods introduced in the following can easily be adapted to a more complex sort
concept (see (Weidenbach, 1995) for an overview of tableau calculi for first-order logic
with sorted terms).

Definition 2.2.1 A formal languageL is a language with termsif there is

1. a non-empty setTerm of (ground) termsthat is a decidable formal language
over the same alphabet asL (not containing the empty word);

2. a non-empty setS of sorts;

3. a functionsort assigning a sorts 2 S to each termt 2 Term such that there is
at least one term of each sort;

4. the set of terms of some sorts is closed under replacing subterms of some
sorts0 by subterms of the same sorts0, i.e., if vrw 2 Term, r; r0 2 Term, andsort(r) = sort(r0), thenvr0w 2 Term andsort(vrw) = sort(vr0w);

5. the languageL is closed under the replacement of terms by other terms of the
same sort, i.e., ifs; t 2 Term, sort(s) = sort(t), and the wordwsw0 is an ele-
ment ofL, thenwtw0 is an element ofL.

If t andr are terms andt is of the formvrw (v; w may be empty), thenr is asubterm
of t. 2
The closure property allows the replacement of terms by place holders or dummies that
stand for arbitrary terms of a certain sort. We call these place holdersfree variables. A
word containing a free variableXs of sorts stands for a single (but unknown) element
of the set of all words that are the result of replacingXs by some term of sorts.
A non-ground term is constructed by replacing an arbitrary number of subterms of a
ground term by free variables; and a non-ground word is constructed by replacing a
ground term occurring in a ground word by a non-ground term.

Definition 2.2.2 LetL be a language with terms; and letVar be an infinite set offree
variablesthat do not occur inL. The functionsort is (arbitrarily) extended toVar
such that there is an infinite number of free variables of eachsorts 2 S.

12 Chapter 2: Logical Systems

Then, the setTermfv of (non-ground) termsis defined by:Term fv0 = TermTerm fvi = fvXw j vtw 2 Term fvi�1; t 2 Term; X 2 Var ; sort(t) = sort(X)gTerm fv = [i�0Term fvi :
The functionsort is extended to (non-ground) terms inTermfv by definingsort(vXw) = sort(vtw)
for all variablesX and termst with sort(X) = sort(t).
The languageLfv of (non-ground) wordsis defined byLfv = fvtw j vsw 2 L; s 2 Term; t 2 Termfv; sort(s) = sort(t)g : 2
Definition 2.2.3 A logical system is alogic with termsif, for each signature� 2 Sig,
the setsForm(�) of formulae andAtom(�) atoms are languages with terms with the
same setTerm(�) of terms. 2
In the following we use the setsVar = fXi j i � 1g andUVar = fxi j i � 1g of free
variables; we assume these variables to be different from all other occurring symbols
(without mentioning that explicitly in definitions).

Free variables, which are either denoted by upper-case letters (X; Y; Z;Xi; X 0 etc.) or
by boldface letters (x;y; z;xi;x0 etc.), should not be confused with object variables
occurring inTerm(�), which are denoted byx; y; z; xi; x0 etc. A term that does not
contain free variables is always calledground—even if it contains object variables that
are not bound by a quantifier.2.2.2 Substitutions
An important notion is that ofsubstitutingvariables by terms. This concept, which is
well-known from classical predicate logic, can easily be extended to our more general
notion of terms.

Definition 2.2.4 LetL be a language with terms. Asubstitutionis a mapping� : Var ! Termfv
of free variables into (non-ground) terms such thatsort(X) = sort(�(X)) for allX 2 Var .

2.2 Terms and Substitutions 13

The setdom(�) = fX 2 Var j �(X) 6= Xg of variables is called thedomainof �;
and the setran(�) = f�(X) j X 2 dom(�)g of terms is called therangeof �.

If dom(�) = fX1; : : : ; Xng is finite, thenfX1 7! t1; : : : ; Xn 7! tng may be used to
represent� whereti = �(Xi) (1 � i � n).

A substitutionfX1 7! Y1; : : : ; Xn 7! Yng that maps the variablesXi in different, pair-
wise distinct variablesYj is called avariable renaming.

A wordw0 2 L is avariantof a wordw 2 L if there is a variable renaming� such thatw� = w0.
The application t� of a substitution� to a termt is the result of (simultaneously)
replacing all occurrences of free variablesX in t by �(X). The termt� is called an
instanceof t. The application of a substitution to a formula and instances of formulae
are defined analogously.

Therestriction�jV of a substitution� to a setV � Var of variables is the substitution
that is defined for allX 2 Var by:�jV (X) = � �(X) if X 2 VX otherwise

The composition� Æ � of two substitutions� and� is the substitution that is for allX 2 Var defined by: (� Æ �)(X) = �(�(X)) :
The empty substitution, which has an empty domain, is denoted by id .

A substitution� is idempotentif � = � Æ �. The set of all idempotent substitutions is
denoted bySubst .
A substitution� is groundingfor a formulaF (a setF of formulae) ifdom(�) is the
set of free variables occurring inF (resp.F) andF� (resp.F�) does not contain any
free variables. 2
The result of applying a composition� Æ � to a termt can be computed by first apply-
ing � and then�, i.e.,t(� Æ �) = (t�)�.

If an idempotentsubstitution� = fX1 7! t1; : : : ; Xn 7! tng is applied to a term, the
variables do not have to be replaced simultaneously, i.e.,� = fX1 7! t1g Æ � � � Æ fXn 7! tng
Example 2.2.5 The substitutionsfX 7! Y; Z 7! Y g and fX 7! a; Y 7! f(b)g are
idempotent.

The substitutionsfX 7! Y; Y 7! ag andfX 7! f(X)g arenot idempotent. 2

14 Chapter 2: Logical Systems

Definition 2.2.6 Given a finite setW of free variables, a substitution� 2 Subst(�) is
more generalthan a substitution� 2 Subst(�) (onW) and� is a specialisation of�,
denoted by� �W � , iff there is a substitution� 2 Subst(�) such that�(X) = (�(X))�
for all X 2 W . 2
The setW contains the “relevant” free variables, i.e., those occurring in the context
in which the substitutions� and� are used (usually those occurring in a certain ta-
bleau). It is of advantage to keep the setW as small as possible because, for exam-
ple,� = fX 7! f(Y)g subsumes� = fX 7! f()g if Y 62 W ; otherwise, ifY 2 W ,� subsumes the substitution� 0 = fY 7! f(); Y 7! g but not� .

The empty substitutionid is the most general of all substitutions, i.e.,id �W � for all
substitutions� and all setsW of free variables.2.2.3 Uni�ation
Although terms have been defined in a more general way than usual, it is still possible
to define the notion ofunifiers. And the problem of testing whether two terms are
unifiable is always decidable.

Definition 2.2.7 LetL be a language with terms. Termsr; t 2 Term fv areunifiableifr� = t� for some substitution� 2 Subst . In that case,� is called aunifier of r andt.2
In many logics with terms (e.g., first-order predicate logic), it is possible to represent
the set of all solutions to a unification problem (all unifiers) by a single most general
unifier (MGU), that is more general than all other unifiers w.r.t. the subsumption rela-
tion�W (Def. 2.2.6). In general however, a single MGU is not sufficient to represent
all solutions. Instead, asetU of (most general) unifiers has to be used;U is complete
if every solution to the given problem is subsumed by one of the unifiers inU .

Example 2.2.8 Let s = ab andt = XY be terms. The two substitutions�1 = fX 7! ab; Y 7! g and �2 = fX 7! a; Y 7! bg
form a complete set of unifiers ofs andt; but since they are incomparable w.r.t.�W ,
there is no single substitution that represents all unifiersof s andt. 2
In free variable tableau calculi, the cardinality of a complete set of unifiers is closely
related to the number of choice points when tableau rules involving unification are
applied. Therefore, it is desirable to compute aminimalcomplete set of unifiers. Nev-
ertheless, it is not always useful to enforce minimality since there is a trade-off between
the gain of computing a minimal set and the extra cost for checking minimality and
removing subsumed substitutions.

2.3 First-order Predicate Logic 15

Definition 2.2.9 LetL be a language with terms; letW be a set of free variables; and
let r; t 2 Termfv be terms. A setU � Subst is a complete set of unifiersof r and t
w.r.t.W if

1. each� 2 U is a unifier ofr andt (soundness),

2. for each unifier� of r andt there is a unifier� 2 U such that� �W � (complete-
ness).

The setU is called aminimalcomplete set of unifiers if, in addition,

3. there areno�1; �2 2 U , �1 6= �2, such that�1 �W �2 (minimality). 2
If two terms are unifiable, then there is afinitecomplete set of unifiers.

The computation of (most general) unifiers is closely related to the computation of
(most general) common specialisations of (idempotent) substitutions, because� is a
common specialisation of� and� iff it is a unifier of the terms�(X) and�(X) for allX 2 dom(�) \ dom(�).2.3 First-order Prediate Logi
As a first example for a logical system, we use first-order predicate logic PL1, which is
a logic systemwith terms. According to Definition 2.1.1, the setSigPL1 of signatures
and the syntax and semantics of PL1 have to be defined.Signatures: A signature� = hP (�); F (�); ��i in SigPL1 consists of a setP (�) of
predicate symbols, a non-empty setF (�) of function symbols, and a function�� that
assigns an arityn � 0 to each predicate and each function symbol. A function symbol
of arity 0 is called aconstant.Syntax: In addition to the predicate and function symbols in signatures there is an
infinite setV of object variables(which is disjoint from the setsVar andUVar of free
variables). Thelogical operatorsare_ (disjunction),^ (conjunction),! (implica-
tion), and: (negation), and the quantifier symbols8 and9. We consider�$ (equiv-
alence) to be an abbreviation for(� ^) _ (:� ^ :).
Definition 2.3.1 Let � 2 SigPL1 be a signature. The setTermn(�) of termsover�
is defined by:

1. All variablesx 2 V and all constants 2 F (�) are terms over�.

16 Chapter 2: Logical Systems

2. If f 2 F (�) andt1; : : : ; t��(f) are terms over�, thenf(t1; : : : ; t��(f)) is a term
over�.

By Term0PL1(�) we denote the set of all terms inTermn(�) that do not contain object
variables.

The setAtomnPL1(�) of atomsover� is defined by: Ifp 2 P (�) andt1; : : : ; t��(f) are
terms over�, thenp(t1; : : : ; t��(f)) is an atom over�.

The setFormnPL1(�) of formulae over� is defined by:

1. Atoms over� are formulae over�.

2. If F is a formula over�, then:F is a formula over�.

3. If F andG are formulae over�, thenF ^G, F _G, andF ! G are formulae
over�.

4. If F is a formula over� andx 2 V , then(8x)F and(9x)F are formulae over�.2
We define the setFormPL1(�) of formulae of the logical system PL1 to consist of all
sentencesin FormnPL1(�), i.e., all elements ofFormnPL1(�) in which object variables
occur only bound by a quantifier; and the setAtomPL1(�) of atoms of PL1 is the set
of all atomic sentences inForm0PL1(�).
Note that this is a slight abuse of terminology. Usually, object variables can occur free
in formulae of first-order logic. Free object variables are often used as dummy vari-
ables in free variable tableau calculi. Here, however, we have separated free (dummy)
variables and object variables. One could still allow free object variables to occur in
formulae; but that does not increase expressivity and complicates the design of a ta-
bleau calculus unnecessarily. Free variables in a formula whose unsatisfiability is to
be proven would have to be treated as if they were existentially quantified. In addi-
tion, one would have to be careful not to introduce free variables into the scope of a
quantification when free variables are instantiated with terms. To avoid these compli-
cations, we formally define the set of formulae of the logicalsystem PL1 to consist
of sentences only; formulae with free object variables are only considered as auxil-
iaries used in the construction of sentences. Accordingly,the logical system PL1 is a
logic with termsw.r.t. to the setTerm0PL1(�) of terms not containing object variables,
since the setFormPL1(�) is closed under replacement of variable-free terms by other
variable-free terms.Semantis: According to Definition 2.1.1, all models must contain a set of worlds.
Thus, we defineMPL1(�) to consist of models where the initial worldw0 is a first-
order structure (Def. 2.3.2), andfw0g is the set of worlds.

2.4 Modal Logics 17

Definition 2.3.2 A first-orderstructurehD; Ii for a signature� 2 SigPL1 consists of
a domainD and an interpretationI, which gives meaning to the function and predicate
symbols of�.

A variable assignmentis a mapping� : V ! D from the set of object variables to the
domainD.

The evaluation functionval is defined as usual; that is, given a structurehD; Ii and
a variable assignment�, it assigns to each formulaF 2 FormnPL1(�) a truth valuevalI;�(F) 2 ftrue; falseg. 2
The relationj=PL1 is defined by:w0 j=PL1 F if and only if, for all variable assign-
ments�, valI;�(F) = true.2.4 Modal Logis
As a second example for logical systems, we use the (basic) modal logics K, KT, KB,
K4, K5, K45, KD, KDB, KD4, KD5, KD45, KB4, B, S4, and S5 (see (Goré, 1998) for
an overview).Signature: The setSigL is the same for all modal logicsL; a signature� is a denu-
merable non-empty set of primitive propositions.Syntax: Formulae are built using the classical connectives^ (conjunction),_ (dis-
junction),: (negation), and the non-classical unary modal connectives2 (“box”) and3 (“diamond”).

Given a signature�, the setFormL(�) = Formmod(�) of formulae is the same for
all modal logicsL; formulae are constructed in the usual way from the propositional
variables and the logical connectives. The setAtomL(�) = Atommod(�) of atoms is
identical to�. The modal logics are logical systems without terms.Semantis: We use a Kripke-style possible world semantics for modal logics. Thus,
the models of modal logics consist of Kripke frames:

Definition 2.4.1 A Kripke frame is a pairhW;Ri, whereW is a non-empty set (of
possible worlds) andR is a binary relation onW .

A Kripke modelis a triplehW;R; V i, where the valuationV is a mapping from propo-
sitional variables to sets of worlds. Thus,V (p) is the set of worlds at whichp is true
under the valuationV .

18 Chapter 2: Logical Systems

Name Axiom Property

(K) 2(A! B)! (2A! 2B) —
(T) 2A! A reflexive
(D) 2A! 3A serial
(4) 2A! 22A transitive
(5) 3A! 23A euclidean
(B) A! 23A symmetric

Table 2.1:Basic modal axioms and their corresponding restrictions onthe reach-
ability relation.

If wRw0 (i.e., hw;w0i 2 R) then the worldw0 is reachablefrom worldw, andw0 is a
successorof w.

The notion of propositions being true in a world is extended to complex formulaeF 2 FormL(�) as follows:F is true in a worldw iff:� G is not true inw, in caseF = :G,� G1 andG2 are true inw, in caseF = G1 ^G2,� G1 orG2 is true inw, in caseF = G1 _G2,� G is true in all worlds reachable fromw, in caseF = 2G,� G is true in some world reachable fromw, in caseF = 3G. 2
The first two columns of Table 2.2 show the axiomatisations ofthe 15 basic modal
logics that can be formed from the axioms shown in Table 2.1.

Definition 2.4.2 Given one of the logicsL listed in Table 2.2, a Kripke framehW;Ri is
anL-frameif every formula instance of each axiom ofL is true in all worlds ofhW;Ri.
A Kripke modelhW;R; V i is anL-modelif hW;Ri is anL-frame. 2
It is well-known that the axioms listed in Table 2.1 are characterised by the properties
of R listed next to them. Thus, all KT-frames have a reflexive accessibility relationR,
and if a frame has a reflexive accessibility relation then it validates axiom (T). There-
fore, we associate these properties with logics as well, andsay, for example, that a
logicL is serial if allL-frames have a serial accessibility relation. Some care is needed
here: for example the axiom (D) is not an axiom of KT, but it is valid in all KT-frames
since it is implied by (T). Consequently the reachability relationR of all KT-modelsis
serial.

2.5 Modal Logics Without Binary Connectives 19

Logic Axioms Logic Axioms
K (K) KT (K), (T)
KB (K), (B) K4 (K), (4)
K5 (K), (5) K45 (K), (4), (5)
KD (K), (D) KDB (K), (D), (B)
KD4 (K), (D), (4) KD5 (K), (D), (5)
KD45 (K), (D), (4), (5) KB4 (K), (B), (4)
B (K), (T), (B) S4 (K), (T), (4)
S5 (K), (T), (5)

Table 2.2:Axiomatic characterisations of the basic modal logics.

We can now proceed to formally define the semantics of the basic modal logics. LetL
be one of the basic modal logics listed in Table 2.2, and let� be a signature inSigL.
A modelm in ML(�) consists of a KripkeL-modelhW;R; V i. One of the worlds
in W is chosen to be the initial worldw0. The relationj=L is, for all worldsw 2 W
and formulaeF 2 FormL(�) defined by:w j=L F if and only if F is true inw.2.5 Modal Logis Without Binary Connetives
As a further example for logical systems, we use modal logicsbL without binary logical
connectives. That is, all formulae are modal literals, i.e., they are of the formÆ1 � � � Æn p
(n � 0), wherep is a propositional variable andÆi is one of the modalities2;3 or the
negation symbol:; the semantics ofbL is the same as that of the corresponding full
modal logicL. More formally:Signatures: The setSig bL of signatures ofbL is the same as that of the modal logicL,
i.e., a signature is a denumerable non-empty set of propositional variables.Syntax: Let � be a signature inSig bL. ThenFormbL(�) is the set of formulae inFormL that consist of a single element of� prefixed by a sequence of the logical
operators2,3, and:. The setAtom bL(�) is identical to�.Semantis: The setMbL(�) of models ofbL is identical to the setML of models
of L; and the relationj=bL is the restriction ofj=L to the formulae fromFormL(�)
occurring inFormbL(�).
Every formula inFormbL(�) is satisfiable. Nevertheless, the logic is not trivial, be-
cause we are interested in the satisfiability ofsetsof formulae, which are implicitly
conjunctively connected and can be unsatisfiable.

20 Chapter 2: Logical Systems

The logicsbL are used in Chapter 6 to demonstrate the benefits of fibring, i.e., combin-
ing logics and their calculi. The missing connectives can beadded by fibringbL with
first-order predicate logic PL1; and a calculus for the resulting modal predicate logic
can be constructed by fibring calculi forbL and PL1.2.6 The Fragments MLSS and MLSSF of Set Theory
As further examples for logical systems present two fragments of quantifier-free set
theory; a new and improved tableau calculus for these logicsis defined in Section 3.8.

Set theory is the common language of mathematics. Therefore, set theory plays an im-
portant rôle in many applications of automated deduction.For example, some of the
most widely used specification languages, namely the Z and B specification languages,
are completely based on set theory. For other languages, sets are at least a very im-
portant construct, frequently used in specifications either on the meta-level or as a data
structure of the specified programs. Set theoretic proof obligations occur both as part
of proving an implementation to be sound w.r.t. a specification and as part of immanent
reasoning (such as consistency checks, proving invariants, pre- and post-conditions).

Set theoretic reasoning, i.e., employing special purpose techniques instead of using
the axioms of set theory, is indispensable for automated deduction in many real world
domains. Automated deduction tools can, for example, be integrated into interactive
software verification systems and relieve the user from the need to interactively handle
simple set theoretic problems that do not require his or her intuition but merely a
combinatorial search.

Multi-level syllogistic (MLS) consists of quantifier-freeformulae built using the set
theoretic predicatesmembership, equality, set inclusion, the binary functionsunion,
intersection, set difference, and a constant representing the empty set. In the extension
MLSS of MLS, n-ary functionsf�gn can be used to construct singletons, pairs, etc.
The fragment MLSSF consists of MLSS enriched with free (uninterpreted) function
symbols.

The expressiveness of MLSS and MLSSF is sufficient for many applications. MLSS
formulae can contain variables that are implicitly universally quantified. The main
restriction is that there is no existential quantification;thus, sentences such as “there is
an infinite set” cannot be formalised within MLSS.

Decision and semi-decision procedures for various extensions of MLS have been de-
scribed in the literature; these, however, are not based on tableaux but are highly non-
deterministic search procedures and are not suitable for implementation; an overview
can be found in (Cantone & Ferro, 1995; Cantoneet al., 1989). Extensions of MLS
that are known to be decidable include: MLS with powerset andsingleton (Cantone,
1991; Cantoneet al., 1985), with relational constructs (Cantone & Schwartz, 1991),

2.6 The Fragments MLSS and MLSSF of Set Theory 21

with unary union (Cantoneet al., 1987), and with a choice operator (Ferro & Omodeo,
1987).Signatures An MLSSF signature� is a signature of PL1 such that

1. its setP (�) of predicate symbols consists of the binary symbols� (member-
ship),� (equality), andv (set inclusion),

2. its setF (�) of function symbols consists of

(a) the binary function symbolsu (intersection),t (union),n (set difference),
the set constructorsf�gn with arity n � 1 (singleton, pair, etc.), and the set
theoretic constant; (the empty set),

(b) function symbols that have no special set theoretic interpretation; they are
calledfreefunction symbols.

An MLLSF signature is an MLSS signature if all free function symbols are constants,
i.e., are of arity0.Syntax The formulae of MLSS and MLSSF are built according to the rules of first-
order predicate logic using the logical connectives_ (disjunction),^ (conjunction),: (negation), and! (implication) butno quantifiers.

Definition 2.6.1 Let � be an MLSS (resp. MLSSF) signature; then the set ofatoms
of MLSS (MLSSF), which is denoted byAtomMLSS(�) (resp.AtomMLSSF(�)) is
the setAtomPL1(�) of all PL1-atoms over�; and the set offormulae of MLSS
(MLSSF), which is denoted byFormMLSS(�) (resp.FormMLSSF(�)) is the set of all
PL1-formulae over� that do not contain any quantifiers8 or 9 (and, thus, no object
variables). 2
Notation 2.6.2 To avoid confusion we use the non-standard symbols�;�;v;u;t; ;
on the object level and the standard symbols2;=;�;\;[; ; on the meta level.

As usual, the binary set theoretic function and predicate symbols are written in infix
notation, andf�gn is written in circumfix notation. 2
Definition 2.6.3 A term t 2 TermPL1(�) over an MLSSF signature� is aset term. It
is apureset terms if it does not contain free function symbolsf with arity��(f) > 0.
A set term is calledfunctionalif it is of the formf(t1; : : : ; tn)wheref is a free function
symbol. 2
Note that functional set terms can contain non-functional set terms (which are not
necessarily pure) and vice versa.

22 Chapter 2: Logical SystemsSemantis We use the semantics of set theory (and thus its fragments MLSS and
MLSSF) as it is defined by the ZF axiom system or, equivalently, by the von Neumann
hierarchy (cumulative hierarchy) of sets (see, for example, (Jech, 1978) for a detailed
discussion of the semantics of set theory).

Definition 2.6.4 Let Ord denote the class of all ordinals. Thevon Neumann hierar-
chyV is defined by V = [�2Ord

V�
where

1. V0 = ;,
2. V� = S�<�V� for each limit ordinal�, and

3. V�+1 is the powerset ofV� for each ordinal�. 2
Definition 2.6.5 Let � be an MLSS or MLSSF signature. A first-order structurem = hD; Ii 2 MPL1(�) is aset structureif it has the following properties:

1. The elements ofD are sets in the von Neumann hierarchyV;

2. D is closed under the set operations\, [, n, andf�gn (n � 1), and it contains
the empty set;

3. I interprets

(a) the constant; by the empty set,

(b) the predicate symbols by their canonical interpretations, i.e.,�by2, � by
the identity relation, andv by�,

(c) the set theoretic function symbols by their canonical interpretations, i.e.,t by[, u by\, n by n, andf�gn by f�gn (n � 1). 2
As models of logical systems must contain a set of worlds, we define models of MLSS
and MLSSF to consist of a single (initial) worldw0 that is a set structure.

The relationsj=MLSS and j=MLSSF are defined in the same way as the relationj=PL1
of PL1: an MLSS-formula or MLSSF-formulaF is true in the worldw0, which is a
set structure, if and only if, for all variable assignments�, valI(F) = true.

One could allow free object variables to occur in MLSS and MLSSF formulae; but that
would not enhance expressivity. Since free object variables in quantifier-free formulae
are implicitly universally quantified, a formulaG(x) is valid in MLSS or MLSSF if
and only if a skolemisation:G() of its negation is unsatisfiable. Thus, free object
variables can be eliminated, and a tableau calculus for formulae without free object
variables is sufficient.

3 Tableau Caluli
3.1 A Uniform View
It is important to distinguish the two phases into which the development of an efficient
tableau-based proof procedure can be separated: the designof a tableau calculus and
the construction of a proof procedure based on that calculus. A tableau calculus is
mainly characterised by a collection of deduction rules that may be employed to non-
deterministically construct a tableau proof; a proof procedure is a description of how
to search for a proof using a certain calculus.

In the literature on tableau calculi, these two phases are often intermingled; refine-
ments that are neither needed for soundness nor for completeness of a calculus but
are intended to improve efficiency are made part of the calculus’s definition. That is
harmful because whatever properties the calculus is then shown to have are actually
only properties of the refined calculus. In addition, refinedcalculi are often less “well-
behaved” than their pure versions, which makes it more difficult to apply the uniform
methods for constructing an efficient proof procedure or combining different calculi
that are described in the following chapters.

A typical refinement that should not be made part of the definition of a calculus is
the often useful heuristic that applications of non-branching rules are preferable to
applications of rules introducing several new tableau (sub-)branches. If this heuristic is
part of the definition of a calculus, then it is, for example, impossible to employ a more
sophisticated technique for chosing the next of several possible rule applications that
is based on measuring the complexity of the formulae that areadded by an application.

Consequently, avoiding redundancy by making a calculus more deterministic and re-
stricting the search space is not the main issue of this chapter; it is the topic of Chap-
ter 5, where the design of efficient proof procedures is discussed. That notwithstand-
ing, efficiency has to be considered when a calculus is designed; for example, heavily
branching rules, such as the cut rule, should be avoided (butonly if there are less-
branching rules that are equally “well-behaved”).

As few restrictions as possible are made regarding the type and form of tableaux and
tableau calculi. But as said in the introduction (Section 1.3), a tableau is a tree whose
nodes are labelled with formulae. If no further restrictions are made, nothing is known
about the behaviour of tableau calculi, except that tableaux represent states of the proof
search, and a tableau rule application corresponds to a state transition. In particular,

23

24 Chapter 3: Tableau Calculi

nothing is known about the way in which states are represented and what the relation
between tableaux is.

To be able to formulate general theorems and apply uniform methods, additional as-
sumptions have to be made regarding the behaviour of calculi. The first of these as-
sumptions is that tableau branches represent different cases of a proof and that they are
thus implicitly disjunctively connected; closing a branchmeans that the correspond-
ing case has been successfully handled. Since branches represent distinct cases, that
implies that the effect of tableau rule applications are local to a branch.

The next step is to assume that the formulae on a branch are implicitly conjunctively
connected and represent the knowledge that has been derivedabout the proof case cor-
responding to the branch. That entails the existence of a tableau expansion and closure
rule that is monotonic and operates on the sets of formulae; the order of formulae on a
branch becomes irrelevant.

The final step are semantical assumptions. A branch is considered to define a partial
model. The tableau construction then corresponds to the construction of a model of
the formulae on the initial tableau. A branch is closed if a contradiction is found in
the partial model defined by that branch. A closed tableau then proves the fact that the
formulae on the initial tableau are unsatisfiable.

To include as many different calculi as possible in our general definition of the notion
of tableau calculi, labels and truth value signs are attached to formulae in tableaux.
Labels have many uses, they allow to make information about formulae and about the
relation between formulae explicit; labels are particularly useful in calculi for non-
classical logics (e.g., many-valued, modal, and intuitionistic logics); many tableau-
like calculi using labelled formulae are described in (Gabbay, 1996b). Tableau calculi
with labels attached to formulae are much more powerful thancalculi that encode the
information otherwise contained in labels into the structure of tableaux. If informa-
tion is implicitly represented by the structure of tableaux, then any changes affecting
the structure may destroy soundness and completeness of thecalculus; therefore, we
say that such calculi are notideal (the idealness property is formally defined in Sec-
tion 3.3.7).

The fact that only the two truth value signsT andF are used does not imply a restric-
tion to two-valued logic; these signs represent the fact that a formula is (resp. is not)
satisfied by a model. The truth-values of a many-valued logiccan be encoded into the
labels attached to tableau formulae.3.2 Syntax of Tableau Caluli
As said before, we consider the tree structure of tableaux tobe an essential property;
trees arenot just a data structure for implementing tableaux. Calculi such as, for exam-
ple, sequent calculi and the connection method, which operate on other data structures,

3.2 Syntax of Tableau Calculi 25

are only “tableau-like”.

Definition 3.2.1 Let L be a logic; let� 2 Sig be a signature; and letLab be a set of
labels.

A tableau formulaS:�:F consists of a truth value signS 2 fT; Fg, a label� 2 Lab,
and a formulaF 2 Form(�); it is calledatomic if F 2 Atom(�). In addition, the
symbol? is a tableau formula (which indicates branch closure). The set of all tableau
formulae is denoted withTabForm(�).
The complement� of a tableau formula� is defined by:� = F:�:F if � is of the
form T:�:F , and� = T:�:F if � is of the formF:�:F (the complement of? is unde-
fined).

A tableau(over the signature�) is a finitely branching tree whose nodes are labelled
with tableau formulae fromTabForm(�).
A branchof a tableauT is a maximal path inT . The set of formulae on a branchB is
denoted withForm(B). 2
In the following, we often identify a node in a tableau and theformula with which it is
labelled.

To keep the notion of tableau calculi as general as possible,any function that assigns
to a tableau a set of possible successor tableaux is considered to be atableau rule. A
tableau rule can change a tableau to which it is applied in an arbitrary way. Tableau
expansionrules are a special case of tableau rules; they are discussedin Section 3.3.3.

A tableau calculusC for a logicL has (different) “instances”C(�) for each signature� 2 Sig. We allow formulae from an extended signature�� to be used in a tableau
proof. Only the tableau formulae that are tested for satisfiability have to be taken from
the language of the non-extended signature�, which is a restriction of��; they are
put on the initial tableau. The possibility to use an extended signature in the proof
or, equivalently, to demand that the formulae that are tested for satisfiability are taken
from the language of a restricted signature is indispensable for many tableau calculi;
it allows, for example, to introduce Skolem symbols that areknow not to occur in the
initial tableau.

Definition 3.2.2 A tableau calculusC for a logicL is, for each signature� 2 Sig,
specified by:� an extension�� 2 Sig of the signature� (Def. 2.1.3);� a setLab of labels and an initial label�0 2 Lab;� a tableau ruleR(�) that assigns to each tableauT over the signature�� a set

of tableaux over��, which are the (possible)successor tableauxof T . The setR(�)(T) may be infinite but has to be enumerable.

26 Chapter 3: Tableau Calculi2
We now have everything at hand to define what the tableaux for asetF of formulae
are and when a tableau is closed. The construction of tableaux for F is in general a
non-deterministic process, since a tableau may have any—even an infinite—number
of possible successor tableaux.

Definition 3.2.3 Let C be a tableau calculus for a logicL; and let� 2 Sig be a signa-
ture. The set of all tableaux for a finite set� � TabForm(��) of tableau formulae is
inductively defined as follows:

1. A linear tableau whose nodes are labelled with the formulae in � is a tableau
for � (an initial tableau).

2. If T is a tableau for� andT 0 2 R(��)(T), i.e.,T 0 is a successor tableau ofT ,
thenT 0 is a tableau for�.

A tableauT is a tableau for a finite setF � Form(�) of formulae if it is a tableau for
the setfT:�0:F j F 2 Fg of tableau formulae. 2
Some useful tableau calculi, by definition, start with an empty initial tableau and allow
to (later on) extend branches of a tableau by formulae from the setF whose unsatisfi-
ability is to be proven. This can easily be modelled in our framework by introducing a
special initial labelÆ with the meaning “is not yet on the branch” and extending the ta-
bleau rule such thatS:�0:F can be derived fromS:Æ:F (where�0 is the original initial
label). That derivation then corresponds to adding the formula S:�0:F to the tableau.
Another possibility, which is also applicable if the setF is infinite, is to extend the
tableau rule such thatS:�0:F can be derived from the empty premiss.

Definition 3.2.4 A tableau branchB is closedif one of its nodes is labelled with?.

A tableau isclosedif all its branches are closed. 2
Intuitively, a tableau proof for a setF of formulae proves the unsatisfiability ofF
(provided that the calculus is sound).

Definition 3.2.5 Let C be a tableau calculus for a logicL; and let� 2 Sig be a sig-
nature. A tableau proof for a setF � Form(�) of formulae is a finite sequenceT0; : : : ; Tn (n � 0) of tableaux forF such that� T0 is an initial tableau forF;� Ti is a successor tableau ofTi�1 (1 � i � n);

3.3 Syntactical Properties 27� Tn is closed. 2
Lemma 3.2.6 Given a tableau calculusC for a logicL and a signature� 2 Sig , there
is a tableau proof for a setF � Form(�) of formulae if and only if there is a closed
tableau forF.

Proof: This follows immediately from the definitions of tableaux for a formula set and
of tableau proofs. 23.3 Syntatial Properties3.3.1 Non-destrutive Tableau Caluli
A tableau calculus is non-destructive if applications of its tableau rule do not alter or
remove formulae already on the tableau but only add new formulae.

Definition 3.3.1 A tableau calculus isnon-destructiveif all possible successor ta-
bleaux of a tableauT containT as an initial subtree; otherwise the calculus isde-
structive. 2
Example 3.3.2 A typical example for destructive calculi are those that usefree vari-
ables in tableau formulae and allow the instantiation of thefree variables by terms
when the tableau rule is applied. 23.3.2 Proof Conuene
A tableau calculus isproof confluentif there are no “dead ends” in the proof search. A
certain tableau rule application may be useless for constructing a proof for a formula
setF, but it cannot prevent the construction of a proof if the calculus is proof confluent.
This property is important for reducing the size of the search space. A deterministic
proof procedures for a proof confluent calculus can be constructed by ensuringfairness
(Chapter 5) of tableau rule applications; backtracking is not needed.

Definition 3.3.3 A tableau calculusC for a logicL is proof confluentif each sequenceT0; : : : ; Tk (k � 0) of tableau for a setF � Form(�) of formulae for which a tableau
proof exists can be extended to a tableau proofT0; : : : ; Tk; : : : ; Tn (n � k) for F. 2

28 Chapter 3: Tableau Calculi3.3.3 Tableau Caluli with Expansion Rule
The most important syntactical property of tableau calculiforcing them to be “well-
behaved” is that tableau rule applications have onlylocal effects. That is, the tableau
rule is non-destructive and it extends only asinglebranch of a tableau. In addition,
what the possibilities for extending a branchB are, only depends onB itself; no ad-
ditional pre-conditions are allowed such as, for example, the presence of formulae on
other branches. A calculus has this “local effects” property if its tableau rule can be
described in form of antableau expansion rule.

Definition 3.3.4 Let C be a tableau calculus for a logicL; and let� 2 Sig be a signa-
ture.

A branch extensionis a finite subset of tableau formulae over��.
A tableau ruleconclusionis a finite set of branch extensions.

A tableauexpansion ruleE(�) is a function that assigns to each (finite) tableau branch
whose nodes are labelled with formulae fromTabForm(��) a setE(�)(B) of (possi-
ble) conclusions, which may be infinite but has to be enumerable. 2
Note that specialclosurerules are not needed. A branch is closed by extending it with
the special tableau formula?. Thus, branch closure can be considered to be a special
case of branch extension.

Definition 3.3.5 Let C be a tableau calculus for a logicL; and let� 2 Sig be a signa-
ture.

An expansion ruleE(�) characterisesthe tableau ruleR(�) of C if, for all tableauxT
over��: a tableauT 0 is a successor tableau ofT (i.e., T 0 2 R(�)(T)) if and only if
there is a branchB of T and a conclusionC in E(�)(B) such that the tableauT 0 can be
constructed fromT by extending the branchB by a new sub-branch for each extensionE in C where the nodes in that sub-branch are labelled with the elements ofE.

If the expansion ruleE(�) characterises the tableau ruleR(�) of a calculusC for all
signatures�, thenE is said to betheexpansion rule ofC; andC is said to be a calculus
with expansion ruleE . 2
Theorem 3.3.6 A tableau calculus with expansion rule is non-destructive.

Proof: The theorem follows immediately from Definitions 3.3.1 and 3.3.4. 2

3.3 Syntactical Properties 293.3.4 Analyti Tableau Caluli
Two different notions ofanalytic calculi can be found in the literature. One is that
a calculus is analytic if it “analyses” the formula to be proven, i.e., if it is a top-
down procedure—as opposed to saturating calculi (or bottom-up procedures) that try
to deduce the formula to be proven from given axioms. In that sense, tableau cal-
culi are always analytic; a stronger version of this property is defined in Section 3.5
(Def. 3.5.13).

Here, however, we use the wordanalytic in its traditional, more restricted sense. A
calculus is analytic, if all formulae in a successor tableauof a tableauT occur as
subformulae inT .

Definition 3.3.7 A tableau calculus isanalytic if the following holds for each ta-
bleauT over a signature�� and all its successor tableauxT 0: if S0:�0:F 0 is a tableau
formula inT 0, then there is a tableau formulaS:�:F in T such thatF 0 is a subformula
of F . 2
Analytic calculi have a smaller search space than non-analytic calculi because there
are less different formulae that may be introduced by a tableau rule application.

It is possible to define analytic calculi for classical and most non-classical proposi-
tional logics. Calculi for predicate logics are usually notanalytic in the strict sense,
because they allow, for example, to deducep(t) from (8x)(p(x)) for all termst. Such
calculi are, however, still analytic in a weaker sense, namely if not only subformulae
but as well instances of subformulae occurring in a tableauT may be introduced by a
tableau rule application toT .3.3.5 Monotoni Tableau Caluli
A tableau calculus with expansion rule ismonotonicif the set of possible conclusions
for a branchB0 that is an expansion of a branchB contains all possible conclusions
for B.

Definition 3.3.8 LetL be a logic, and letC be a tableau calculus forL with expansion
ruleE .

The calculusC is monotonicif E(�)(B1) � E(�)(B2) for all branchesB1 andB2 over
a signature�� such thatB1 is an initial sub-path ofB2. 2
If a calculus with expansion rule is monotonic, then rule applications are permutable.
That is, assumedB is a branch in a some tableau over a signature�, andC1 andC2 are
conclusions inE(�)(B), then all tableau branches that can be constructed fromB by
first appending an extensionE1 fromC1 and then an extensionE2 fromC2 can as well
be constructed permutating the corresponding tableau ruleapplications and extendingB first byE2 and then byE1.

30 Chapter 3: Tableau Calculi3.3.6 Non-strutural Tableau Caluli
A tableau calculus isnon-structuralif the order of formulae on a tableau branchB is
irrelevant for the result of applying the expansion rule toB.

Definition 3.3.9 LetL be a logic; and letC be a tableau calculus forL with expansion
ruleE .

The calculusC is non-structuralif E(�)(B1) = E(�)(B2) for all branchesB1 andB2
over�� with Form(B1) = Form(B2). 23.3.7 Ideal Tableau Caluli
We call a tableau calculusideal if it is a (a) calculus with expansion rule, (b) monotic,
and (c) non-structural. Ideal calculi are—at least syntactically—well behaved. The
idealness property will turn out to be of great importance inthe following chapters.

Definition 3.3.10 A tableau calculus with expansion rule that is non-structural and
monotonic is calledideal. 2
If a tableau calculus is ideal, then its expansion rule can berepresented as a function
on finite sets of tableau formulae (a function onpremisses).

Lemma 3.3.11 LetC be an ideal tableau calculus with expansion ruleE for a logicL.
Then, for all signatures�, there is a (single) function~E(�) that assigns to each finite
set� � TabForm(��) of tableau formulae (each premiss) a set~E(�)(�) of (possible)
conclusions such that E(�)(B) = ~E(�)(Form(B))
for all tableau branchesB over��.
The above lemma implies that the function~E(�) on sets of tableau formulae (pre-
misses) can be seen as an alternative characterisation of the expansion ruleE—pro-
vided that the calculus is ideal. Therefore, in the case of ideal calculi, we identify the
two functions, denote them both withE , and call them “expansion rule”.

Another important feature of ideal calculi is that they are proof confluent.

Theorem 3.3.12 If a tableau calculus is ideal (Def. 3.3.8), then it is proof confluent
(Def. 3.3.3).

3.3 Syntactical Properties 31

Proof: Let C be a ideal calculus for a logicL; let F � Form(�) be a set of formulae
for which a tableau proofT 00; : : : ; T 0m (m � 0) exists; and letT0; : : : ; Tk (k � 0) be a
sequence of tableaux forF.

A tableau proof that is an extension ofT0; : : : ; Tk can be constructed as follows: for
each branchBi (1 � i � r) of Tk, the samem tableau rule applications that were used
to constructT 0m from T 00 are used to extendBi such thatT 0m is attached as a subtableau
to the end ofBi. That is possible because the initial tableauxT0 andT 00 contain the
same formulae (though they may not be identical) and the calculus is non-structural
and monotonic. The resulting tableau proof is of length1 + k +mr. 2
In practice, expansion rules of ideal calculi are often described by means of rule sche-
mata (see Sections 3.6 and 3.7 for examples). In these schemata, the elements of the
minimal premiss, that have to be present to allow the deduction of a certain conclusion,
and that conclusion are separated by a horizontal bar, whilevertical bars in the conclu-
sion denote different extensions. The use of schemata for defining tableau expansion
rules fits perfectly in our framework, with the exception that different rule schemata
are usually considered to define (or tobe) different rules whereas we consider rule
schemata to define different sub-cases of one (single) expansion rule.

Definition 3.3.13 Let C be an ideal calculus for a logicL; and let� be a signature
in Sig .

A set� � TabForm(�) is aminimal premissof a conclusionC if it is a premiss ofC,
i.e.C 2 E(�)(�), and there is no subset�0 � �, � 6= �0 such thatC 2 E(�)(�0). 2
Idealness intuitively prohibits “strange” behaviour of calculi. As will become obvious
in the following chapters, to be ideal is a very important property of tableau calculi. It
is a pre-condition for the applicability of many of the uniform methods described in the
following. Even “slight” non-idealness should be considered harmful. Unfortunately,
many calculi described in the literature and used in practice are “slightly” non-ideal.
Such calculi can often be repaired with minor changes. A typical example are calculi
using expansion rules that introducenewsymbols, i.e., symbols that must not occur on
the branch or even the whole tableau. As the following example shows, this type of
rules can often be replaced by similar rules not violating monotonicity.

Example 3.3.14 In calculi for first-order predicate logic, often an expansion rule is
used that allows to deriveF () from formulae of the form(9x)(F (x)), where is
a constantnew to the tableau (or the branch). A calculus using such a rule isnot
monotonic (and thus not ideal) because the rule demands theabsenceof formulae
containing.
If instead a special constant symbolF is used, which does not have to be new, then the
calculus is monotonic. Soundness is preserved provided that F is not introduced into
the tableau in any other way than by skolemising(9x)(F (x)) (in particular, Skolem
constantsF must not occur in the initial tableau); see Section 4.4. 2

32 Chapter 3: Tableau Calculi

Ideal calculi exist for most logics. There are, however, some non-classical logics
whose inherent properties make it difficult or even impossible to define an ideal ta-
bleau calculus; these include non-monotonic logics (sincetheir calculi are not mono-
tonic) and logics with resource restrictions such as linearand relevance logic (as rule
applications in calculi for these logics have non-local effects).

The idealness property, in particular monotonicity, is often dropped and violated to
remove redundancies when a calculus is turned into a proof procedure (see Chapter 5).
That is not harmful as long as the additional restrictions that are imposed are clearly
end explicitly separated from the definition of the calculus.3.3.8 Continuity
An ideal calculus is in particular monotonic. Therefore, all conclusions that can be
derived (separately) from any two premisses�;�0 can as well be derived from their
union, i.e.,E(�) [E(�0) � E(� [�0). If, moreover,E(� [�0) � E(�) [E(�0) and
thusE(�) [E(�0) = E(� [�0), then a calculus is said to becontinuous(for �;�0).
Virtually no calculus is continuous for all premisses. If a conclusionC has a minimal
premiss� consisting of more than one tableau formula, i.e.,� = �0 [�00 where�0
and�00 are both not empty, then the calculus is not continuous w.r.t. the subsets�0
and�00 (becauseC 62 E(�0) [E(�00) as the premiss� is minimal). Therefore, the
notion of continuity is defined w.r.t. a certain premiss.

Definition 3.3.15 Let C be a ideal calculus for a logicL; let � 2 Sig be a signature;
and� � TabForm(��) be a premiss.

The tableau rule ofC is continuousw.r.t.� if, for all premisses�0 � TabForm(��):E(� [�0) � E(�) [E(�0) : 2
Example 3.3.16The tableau rule of the calculus for first-order predicate logic de-
scribed in Section 3.6 is continuous w.r.t. all premisses consisting solely of non-atomic
formulae. The rule is not continuous w.r.t. premisses containing atoms because branch
closure involves two complementary atoms; i.e., the minimal premiss for the conclu-
sionff?gg consists of more than one tableau formula.

A tableau rule that allows to “apply” equalities, i.e., to derive F (s) from F (t) and the
equalitys � t, is not continuous w.r.t. any (non-empty) premiss. 2
Continuity is a very useful property, because a premiss w.r.t. which the tableau rule is
continuous can be “delete” once all its conclusions have been added to the branch resp.
the tableau, i.e., it has not to be considered again; continuity is, thus, closely related to
the semantical property of invertibility (Def. 3.5.11).

3.5 Semantical Properties 333.4 Semantis of Tableaux
The semantics of tableaux of a calculus for a logicL is based on the semantics ofL,
which is given by setsM(�) of Kriple-style models for each signature�. The labels
that are part of tableau formulae are assumed to represent worlds in models, and the
truth value signs encode truth and falsehood of a formula.

Definition 3.4.1 Let C be a tableau calculus for a logicL; and let� 2 Sig be a signa-
ture. A tableau interpretationfor C(�) is a pairhm; Ii where� m 2 M(��) is a model for the extended signature��, and� I is a partial function that assigns to labels� 2 Lab(�) worlds ofm such thatI(�0) = w0 (i.e.,I assigns to the initial label�0 the initial worldw0 ofm).

A tableau formulaS:�:F 2 TabForm(��) is satisfiedby hm; Ii iff

1. I(�) is defined, and

2. (a) S = T andF is true inI(�), or

(b) S = F andF is false inI(�).
The tableau formula? is not satisfied by any tableau interpretation.

A tableau branchB is satisfiedby hm; Ii iff all tableau formulae onB are satisfied
by hm; Ii.
A tableau issatisfiedby hm; Ii iff at least oneof its branches is satisfied byhm; Ii. 2
Note, that a tableau formula is satisfied by default if the interpretation functionI is not
defined for its label.

Often, it does not make sense to use all possible tableau interpretations to define the
semantics of tableaux. An appropriate subset of the tableauinterpretations has to be
chosen; that choice depends on the particular calculus and the logic. On the one hand,
to be useful for proving soundness of the calculus, the subset must only contain tableau
interpretations for which the tableau rule preserves satisfiability (and can be proven to
preserve satisfiability). On the other hand, to be useful forproving completeness,
the subset must contain enough interpretations such that every satisfiable tableau is
satisfied by an interpretation contained in the subset.

Definition 3.4.2 Let C be a tableau calculus for a logicL. The semantics ofC is, for
each signature�, defined by a setTabInterp(��) of tableau interpretations. 2
Example 3.4.3 To define the semantics of tableaux of calculi for first-orderpredicate
logic, only tableau interpretations are used whose first part is an Herbrand model.2

34 Chapter 3: Tableau Calculi3.5 Semantial Properties3.5.1 The Advantage of Semantial Properties
Semantical properties are needed, because even strong syntactical restrictions such as
idealness still allow calculi to behave “strangely”. Formulae could be added to the
tableau that syntactically encode knowledge derived from the premiss�, but whose
semantics (i.e., truth value) has nothing to do with that of the formulae in�. An
extreme example for this is that two symbols of the signatureare used to encode the
formulae in� in a binary representation, and a tableau rule is employed that operates
on that binary representation. It is impossible to apply anyuniform methods to such
calculi—though they may be sound and complete—because an understanding of the
encoding would be required. To assure a more “conservative”behaviour one could
impose additional syntactical restrictions, such as requiring a calculus to be analytic.
However, the property of tableau rules that makes it possible to apply techniques such
as fibring (Chapter 6) in a uniform way is essentially semantical: the result of a rule
application must be semantically related to its premiss.

Two important semantical properties are already part of thedefinition of tableau inter-
pretations (Def. 3.4.1), namely that the labels in tableau formulae represent worlds in
models, and that the truth value signs encode truth and falsehood of a formula; signs
and labels do not contain other information.

Defining a semantics for tableaux is not only important for proving soundness and
completeness of a calculus; in addition, pre-conditions ofmany search space restric-
tions and other useful techniques are semantical. To replace such uniform semantical
pre-conditions by uniform syntactical pre-conditions is often difficult (if not impossi-
ble). That notwithstanding, a tableau calculus can be quiteuseful, in particular sound
and complete, if no semantics for tableaux is provided.3.5.2 Soundness and Completeness
The most important semantical properties of tableau calculi are soundness and com-
pleteness:

Definition 3.5.1 A calculusC for a logicL is soundif, for all signatures� 2 Sig and
all finite setsF � Form(�) of formulae:

If there is a tableau proof forF, thenF is unsatisfiable.

A calculusC for a logicL is completeif, for all signatures� 2 Sig and all finite setsF � Form(�) of formulae:

If F is unsatisfiable, then there is a tableau proof forF. 2

3.5 Semantical Properties 353.5.3 Soundness Ensuring Properties
There are three important soundness properties; together they are sufficient to ensure
soundness of a calculus.

1. An initial tableau for a satisfiable set of formulae is satisfiable;

2. satisfiability is preserved by tableau rule applications;

3. a closed tableau is unsatisfiable.

Together these properties imply that there is no tableau proof for a satisfiable set of
formulae. The last of the properties does not have to be checked, as all calculi have it
(according to the following lemma).

Lemma 3.5.2 A closed tableau is unsatisfiable.

Proof: If a tableauT is closed, then all its branches are closed, which means thatthey
contain?. Because? is unsatisfiable, none of the branches ofT is satisfied by any
tableau interpretation; thereforeT is not satisfied by any tableau interpretation. 2
Definition 3.5.3 Let C be a calculus for a logicL. Then the followingsoundness
propertiesare defined thatC may have:

Soundness Property 1 ([weak] appropriateness of the set of tableau interpretations):
For all signatures�, if a setF � Form(�) is satisfiable, then there is a tableau
interpretation inTabInterp(��) that satisfies the initial tableau forF.

Soundness Property 2 ([weak] soundness of expansion):For all signatures�, if there
is a tableau interpretation inTabInterp(��) satisfying a tableauT andT 0 is a
successor tableau ofT , then there is a tableau interpretation inTabInterp(��)
satisfyingT 0. 2

A tableau calculus that has the two soundness properties from Definition 3.5.3 can be
proven to be sound (whether it is ideal or not).

Theorem 3.5.4 A tableau calculusC for a logicL that has the two soundness prop-
erties from Definition 3.5.3 (appropriateness of the set of tableau interpretations and
soundness of expansion) is sound (Def. 3.5.1).

36 Chapter 3: Tableau Calculi

Proof: Let F � Form(�) be a finite, satisfiable set of formulae. We prove by contra-
diction that there is no tableau proof forF, which implies soundness of the calculus.

Suppose that there is a tableau proofT0; : : : ; Tn (n � 0) for F. SinceTn is closed, it is
unsatisfiable (Lemma 3.5.2).

However, sinceF is satisfiable, by Property 1 (appropriateness of the set of tableau
interpretations), there is a tableau interpretationhm; Ii 2 TabInterp(��) satisfying
the initial tableauT0. Therefore, by induction oni and using Soundness Property 2
(soundness of expansion), all the tableauxTi (1 � i � n) are satisfied by some tableau
interpretation inTabForm(��), contradicting the fact thatTn is unsatisfiable.

Thus, the assumption is wrong, and there is indeed no tableauproof forF. 23.5.4 Completeness Ensuring Properties
Before properties can be formulated that establishes completeness of a calculus, the
notion of afully expandedtableau branch has to be defined. The definition relies on the
fact that the calculus has an expansion rule (Def. 3.3.4) andis monotonic (Def. 3.3.8);
without these properties, it is difficult to define the notionof fully expanded branches
in a uniform way. Intuitively a branchB is fully expanded if each possible rule appli-
cation creates at least one successor branchB0 that contains the same formulae asB.

Definition 3.5.5 Let C be a monotonic tableau calculus with expansion rule for a
logicL; and let� 2 Sig be a signature.

A (possibly infinite) tableau branchB is fully expandedif E � Form(B) for at least
one extensionE in each conclusionC 2 R(�)(B). 2
Definition 3.5.6 Let C be a calculus for a logicL. Then, the followingcompleteness
propertiesare defined thatC may have:

Completeness Property 1 ([weak] appropriateness of the setof tableau interpreta-
tions): For all signatures�, if there is a tableau interpretation inTabInterp(��)
satisfying the initial tableau for a setF � Form(�) of formulae, then there is a
model inM(�) satisfyingF.

Completeness Property 2 (satisfiability of fully expanded branches): For all signa-
tures�, if a tableau branchB is fully expanded and not closed, then there is
a tableau interpretation inTabInterp(��) satisfyingB. 2

The completeness properties from Definition 3.5.6 are sufficient to ensure complete-
ness of anidealcalculus. As said at the end of Section 3.3.7, idealness is often dropped
when an ideal calculusC is turned into an efficient proof procedure. That is not harm-
ful, because the completeness of these non-ideal procedures follows from the com-
pleteness ofC when the uniform methods for turning a calculus into an efficient proof
procedure from Chapter 5 are employed.

3.5 Semantical Properties 37

Theorem 3.5.7 A tableau calculusC for a logicL that is ideal and has the two com-
pleteness properties from Definition 3.5.6 (appropriateness of the set of tableau inter-
pretations and satisfiability of fully expanded branches) is complete.

Proof: Let F � Form(�) be a finite, unsatisfiable set of formulae; we proceed to
prove that there is a tableau proof forF. Let (Tn)n�0 be a (possibly infinite) sequence
of tableaux forF such that

1. T0 is an initial tableau forF;

2. Ti is a successor tableau ofTi�1 (i � 0);
3. the sequence is constructed in a fair way, i.e., all possible conclusions inE(�)

for all premisses� occurring in one of theTi is sooner or later used to expand
every non-closed branch on which� occurs (where corresponding branches inTi andTi+j are identified).

Because of the monotonicity and non-destructiveness ofC such a sequence can be
constructed for all formula setsF.

The sequence(Tn)n�0 approximates an infinite treeT1; according to its construction,
every non-closed branch inT1 is fully expanded (Def. 3.5.5). Suppose there is a non-
closed (and thus fully expanded) branchB in T1. Then, by the satisfiability of fully
expanded branches (Property 2 in Def. 3.5.6),B is satisfied by a tableau interpretationhm�; Ii 2 TabInterp(��). Since all the formulae of the initial tableauT0 are onB, the
initial tableau is satisfied byhm�; Ii as well. Therefore, by the appropriateness of the
set of tableau interpretations (Property 1 in Def. 3.5.6), there is a modelm 2 M(�)
satisfyingF, in contradiction to the fact thatF is unsatisfiable. Thus, the assumption
that there is a non-closed branch inT1 is wrong, and indeed all branches contain
a node labelled with?. Then, because (by definition) premisses are finite and the
tableaux are finitely branching, König’s Lemma implies that there is ann � 0 such that
already the finite sub-tableauTn of T1 is closed. This concludes the proof, becauseTn is by construction a closed tableau forF. 23.5.5 Strong Soundness and Completeness Properties
A stronger version of the soundness properties from Definition 3.5.3 can be formu-
lated. The weak properties only require satisfiability of the initial tableau and that
satisfiability is preserved by tableau rule applications, but allow that at each step a dif-
ferent model resp. tableau interpretation may be chosen. Ifa calculus has the stronger
properties defined below, and the formulae for which a tableau proof is to be con-
structed are satisfied by a modelm, then the initial tableau and all subsequent tableaux
are satisfied by one and the same tableau interpretation, which is an extension ofm.

38 Chapter 3: Tableau Calculi

These stronger soundness properties are not needed for proving soundness but are
important for the fibring technique (Chapter 6).

Definition 3.5.8 Let C be a calculus for a logicL. Then the followingstrong sound-
ness propertiesare defined thatC may have:

Strong Soundness Property 1 (appropriateness of the set of tableau interpretations):
For all signatures�, if a setF � Form(�) is satisfied by a modelm 2 M(�),
then there is a tableau interpretationhm�; Ii 2 TabInterp(��) satisfying the ini-
tial tableau forF wherem� is an extension ofm.

Strong Soundness Property 2 soundness of expansion:For all signatures�, if a ta-
bleauT is satisfied by a tableau interpretation inTabInterp(��) andT 0 is a
successor tableau ofT , thenT 0 is satisfied bythe sametableau interpretation.2

A calculus has the strong soundness of expansion property defined above (and, thus,
the weaker property from Def. 3.5.3) if and only if the conclusionsC in E(�)(B) are
logical consequences of the formulae onB. An ideal calculus has this property if and
only if a conclusion is a logical consequence of any of its minimal premisses:

Lemma 3.5.9 An ideal calculusC for a logicL has the strong soundness of expan-
sion property (Property 2 from Def. 3.5.8) if, for all signatures� 2 Sig , all premisses� � TabForm(��), and all conclusionsC such that� is a (minimal) premiss ofC the
following holds:

If a tableau interpretation satisfies�, then it satisfies an extensionsE 2 C.

Proof: For the if-part of the proof, lethm; Ii 2 TabInterp(��) be a tableau interpre-
tation satisfying a tableauT and letT 0 be a successor tableau ofT ; letB be the branch
in T that is expanded, and let� � Form(B) be a minimal premiss of the conclusionC
that is used to expandB.

By assumptionhm; Ii satisfiesT ; thus it satisfies some branchB0 of T . If B0 is
different fromB, thenB0 is also a branch ofT 0 and we are through.

If, on the other hand,B0 = B and, thus,hm; Ii satisfies� � Form(B), then it sat-
isfies one of the extensionsE 2 C. Thereforehm; Ii satisfies the branch ofT 0 that
has been constructed by extendingB with the formulaeE and, thus, it satisfies the
tableauT 0.
For the only-if-part, consider a tableauT that consists of a single branch with the
formulae in a premiss�. If � is satisfied then so isT , which implies that the successor

3.5 Semantical Properties 39

tableauT 0 is satisfied that is constructed fromT using the conclusionC. But, by
construction,T 0 can only be satisfied if one of the extensions inC is satisfied. 2
A stronger version of Completeness Property 1 (appropriateness of the set of tableau
interpretations) can be defined as well.1

Definition 3.5.10 Let C be a calculus for a logicL. Then, the followingstrong com-
pleteness propertyis defined thatC may have:

Strong Completeness Property 1 (appropriateness of the setof tableau interpretati-
ons): For all signatures�, if hm�; Ii 2 TabForm(��) satisfies the initial ta-
bleau for a setF � Form(�) of formulae, thenm� can be restricted to a modelm 2 M(�) that satisfiesF. 23.5.6 Invertible Expansion Rules

If the converse of the pre-condition of Lemma 3.5.9 holds, i.e., if each conclusion
logically implies its minimal premiss, then a tableau rule is said to beinvertible.

Definition 3.5.11 Let C be a ideal calculus for a logicL; let � 2 Sig be a signature;
and let� � TabForm(��) be a premiss.

The tableau rule ofC is invertible w.r.t. � if, for all conclusionsC 2 E(�)(�) such
that� is a minimal premiss ofC, the following holds:

If a tableau interpretation satisfies an extensionE 2 C, then it satisfies�.

The calculusC is said to beinvertibleif its tableau rule is invertible for all signatures�
and all premisses� � TabForm(��). 2
It is of advantage if a tableau rule is invertible, because then rule applications not only
preserve satisfiability but they preserveunsatisfiabilityas well. This is important for
constructing efficient proof procedures as it allows to “delete” the minimal premiss of
a conclusionC from a branch that has been extended usingC.

Example 3.5.12The tableau rule of a calculus for PL1 that allows to derive the con-
clusionffT:�:Fg; fT:�:Ggg from the premiss�1 = fT:�:(F _G)g is invertible with
respect to�1 because every first-order interpretation that satisfies oneof the formulaeF andG satisfiesF _G as well.

However, the tableau rule that allows to derive the conclusion ffT:�:p(t)gg from the
premiss�2 = fT:�:(8x)(p(x))g is not invertible w.r.t.�2, because an interpretation
satisfyingp(t) does not necessarily satisfy(8x)(p(x)). 21 A stronger version of Completeness Property 2 is not defined along the same line, as that property

does not involve a transition from one model or tableau interpretation to another. In Section 3.5.7,
the property of being semantically analytic is defined, which strengthens Completeness Property 2
in a different way.

40 Chapter 3: Tableau Calculi3.5.7 Semantially Analyti Tableau Caluli
A stronger version of Completeness Property 2 in Definition 3.5.6 (satisfiability of
fully expanded branches) can be used to ensure that a calculus is “analytic down to the
atomic level”. This isnot a syntactical property and it doesnot imply that the calculus
is analytic in the classical sense (Def. 3.3.7).

Definition 3.5.13 A calculusC for a logicL is (weakly)semantically analyticif, for
all signatures�, the following holds: If a tableau branchB is fully expanded and not
closed, then every tableau interpretation inTabInterp(��) satisfying theatomsonB
satisfiesall formulae onB, and at least one such tableau interpretation exists. 2
Example 3.5.14 If a tableau calculus for a modal logic is to be semantically analytic,
it has to be possible to extend a tableau branch containing the formulaT:�:2p by
the formulaeT:� :p for all labels� representing a world reachable from the world
represented by�. 2
Example 3.5.15 In a tableau calculus for classical propositional logic that is to be se-
mantically analytic, it must be possible to expand a branch containingT:(p _ q) by
sub-branches containingT:p andT:q, respectively. Thus, the calculus is not semanti-
cally analytic any more, if the restriction from Section 5.5is imposed that forbids to
use formulae for expansion that are notconnectedto other formulae. 2
If a calculus is semantically analytic, then the atoms on a fully expanded branchB
explicitly represent all information about the tableau interpretations satisfyingB that
can be derived from the (complex) formulae onB.

However, in certain logicsL, there may be hidden (implicit) restrictions on the form
of models that are not specific for models satisfying certainformulae but apply to all
models ofL and, thus, to all tableau interpretations used to define the semantics of
tableaux. If, for example, a calculus is used for fibring (Chapter 6), then it is important
that such hidden information, too, is explicitly represented by the atoms on a fully
expanded branch. This property is formalised as follows:

Definition 3.5.16 A calculusC for a logicL is strongly semantically analyticif, for
all signatures�, the following holds:

If

1. B is a fully expanded tableau branch that is not closed, and

2. � � TabForm(��) is a set ofatomictableau formulae such that, forno� in �,
both� and� are inForm(B) [�,

3.6 An Ideal Tableau Calculus for PL1 41

then there is a tableau interpretationhm; Ii in TabInterp(��) such that

1. hm; Ii satisfiesForm(B) [�,

2. for all worldsw inm there is a label� in C with I(�) = w. 2
Example 3.5.17Kripke-style models that are used to define the semantics of intu-
itionistic logic have to satisfy the (hidden) restriction that, if a formula is true in some
worldw, then it is true in all successor worlds ofw (if a formula is false in a worldw,
it may be true or false in the successor worlds ofw).

Thus, if a calculus for intuitionistic logic is to be strongly semantically analytic, then it
must be possible to deriveT:� :G from T:�:G for all labels� that represent successor
worlds of the world represented by�. 2
For most logics, including classical and modal logics, the properties of being weakly
resp. strongly semantically analytic coincide, i.e., a calculus that is weakly semanti-
cally analytic is strongly semantically analytic as well.3.6 An Ideal Tableau Calulus for PL13.6.1 Syntax
To describe our calculusCPL1 for first-order predicate logic PL1, we have to define, for
each signature� 2 SigPL1, the extension�� to be used for constructing tableaux, the
set of labels, the initial label, and the tableau rule.Extended Signatures For skolemisation we use a setF sko(�) of function symbols
that is disjoint fromF (�) and contains infinitely many symbols of each arityn � 0.
The extension of a signature� = hP (�); F (�); �(�)i is thus�� = hP (�); F (�) [F sko(�); �(�) [�sko(�)i :Labels The models of first-order logic consist of only one world. We use the label�
to represent this single world. Thus,Lab(�) = f�g for all signatures�, and� is the
initial label. To simplify notation, the abbreviationS:G is used for tableau formulae of
first-order predicate logic, i.e., the label� is omitted.

42 Chapter 3: Tableau Calculi� �1; �2T:�:(F ^G) T:�:F; T:�:GF:�:(F _G) F:�:F; F:�:GF:�:(F ! G) T:�:F; F:�:GT:�::F F:�:F; F:�:FF:�::F T:�:F; T:�:F
� �1; �2T:�:(F _G) T:�:F; T:�:GF:�:(F ^G) F:�:F; F:�:GF:�:(F ! G) F:�:F; T:�:G(x) 1(x)T:�:(8x)(F (x)) T:�:F (x)F:�:(9x)(F (x)) F:�:F (x) Æ(x) Æ1(x)F:�:(8x)(F (x)) F:�:F (x)T:�:(9x)(F (x)) T:�:F (x)

Table 3.1:The four formula types of first-order predicate logic.Tableau Rule We define an ideal calculus, i.e., a calculus with expansion ruleE .

The set of formulae inForm(��) = Form0PL1(��) that are not atomic is divided into
four classes (Table 3.1):� for formulae of conjunctive type,� for formulae of disjunc-
tive type, for quantified formulae of universal type, andÆ for quantified formulae of
existential type (unifying notation).

Notation 3.6.1 The letters�, �, , andÆ are used to denote formulae of (and only
of) the appropriate type. In the case of- andÆ-formulae the object variablex bound
by the (top-most) quantifier is made explicit by writing(x) and1(x) (resp.Æ(x)
andÆ1(x)); accordingly,1(t) denotes the result of replacing all occurrences ofx in 1
by t. 2
In Table 3.2, the expansion rule of the calculusCPL1 is given schematically for the
various formula types.

To preserve monotonicity of the calculus, we use a schema forÆ-formulae that, for con-
structing the Skolem term, does not introduce anewSkolem function symbol. Rather,
each equivalence class ofÆ-formulae identical up to variable renaming and replace-
ment of ground terms may be assigned the same Skolem functionsymbol. (This is an
adaptation of theÆ++-rule described in (Beckertet al., 1993) to the ground case.)

Definition 3.6.2 Given a signature� 2 SigPL1, a Skolem term assignmentis a func-
tion sko assigning to eachÆ-formula� 2 TabFormPL1(��) a termsko(�) = f(t1; : : : ; tk) 2 Term0PL1(��)
such that

1. (a) f 2 F sko(�),

3.6 An Ideal Tableau Calculus for PL1 43��1�2 ��1 �2 (x)1(t)
wheret is any

variable-free term

Æ(x)Æ1(t)
wheret = sko(Æ) T:�:GF:�:G?

whereG is atomic

Table 3.2:Rule schemata for first-order predicate logic.

(b) k = �sko� (f), and

(c) t1; : : : ; tk are (sub-)terms occurring in�;2

2. for all f 0 2 F sko(�), if f 0 occurs in�, thenf > f 0 where> is an arbitrary but
fixed ordering onF sko(�); and

3. for all Æ-formulae 2 Form0PL1(��), if sko() = f(t01; : : : t0k), then� and are
identical up to renaming of bound variables and up to replacing occurrences of
termsti by t0i (1 � i � k). 2

The purpose of Condition 2 in the above definition ofsko is to avoid cycles like:sko(�) = f(t1; : : : ; tk), the symbolf occurs in , sko() = f 0(t01; : : : ; t0l), andf 0 oc-
curs in�.

According to Condition 3, it is allowed to use the same Skolemfunction symbol for an
equivalence class ofÆ-formulae that are identical up to (a) renaming of bound variables
and (b) replacement of variable-free terms; the variable-free terms that may be replaced
have to be made arguments of the Skolem term.

Actually, it is not necessary to use complex terms for skolemisation. It is sufficient
to (uniquely) assign to eachÆ-formula (resp. class ofÆ-formulae that are identical up
to renaming of bound object variables) a Skolemconstant(observing Condition 2 in
Def. 3.6.2). The possibility to use Skolemtermsplays, however, an important rôle
for lifting, i.e., constructing the free variable version of the calculusCPL1 (see Sec-
tion 4.2.10), as the following example illustrates:

Example 3.6.3 TheÆ-formulaeÆt = T:(9x)(p(t; x)) may be assigned the same Sko-
lem function symbolf using the Skolemtermssko(Æt) = f(t) (for all termst), in
which case the expansion rule is liftable for premisses containing theseÆ-formulae.

If, on the other hand, Skolemconstantssko(Æt) = t are used, the expansion rule is not
liftable, asÆt[t 7! t0℄ = Æt0 but Æt1[t 7! t0℄ 6= Æt01 . 2
We now formally define the expansion (and closure) ruleEPL1 of the calculusCPL1:2 Note that the termsti (1 � i � k) must be elements ofTerm0PL1(�), i.e, do not contain object

variables.

44 Chapter 3: Tableau Calculi

Definition 3.6.4 For all signatures� and all premisses� � TabFormPL1(��), the
setEPL1(�)(�) of possible conclusions is the smallest set containing the following
conclusions (where�; �; ; Æ denote formulae of the corresponding type):

– ff�1; �2gg for all � 2 �,
– ff�1g; f�2gg for all � 2 �,
– ff1(t)gg for all 2 � and all termst 2 Term0PL1(��),
– ffÆ(t)gg for all Æ 2 � wheret = sko(Æ) (Def. 3.6.2),
– ff?gg if T:�:G; F:�:G 2 � for any atomG 2 AtomPL1(��). 2
Note, that the formulae inFormPL1(�) = Form0PL1(�) are first-order sentences, i.e.,
do not contain free object variables, and that the tableau expansion rule ofCPL1 does
not introduce any free object variables either.3.6.2 Semantis
To define the semantics of the tableaux ofCPL1, we use the setTabInterpPL1(��) that
contains allcanonicaltableau interpretations:

Definition 3.6.5 A tableau interpretationm = hhD; Ii; Ii for a signature� of PL1 is
canonicalif:

1. D = Term0PL1(��).
2. For allÆ-formulaeÆ(x) 2 TabForm(��):

if valI(Æ(x)) = true, thenvalI(Æ1(t)) = true,

wheret = sko(Æ).
3. I(�) = w0 = hD; Ii. 2

Intuitively, in a canonical tableau interpretation, the functionI assigns to Skolem termst = sko(Æ) an element for which the formulaÆ holds; in addition, the label� is inter-
preted byI in the right way.3.6.3 Soundness and Completeness
Using the setTabInterpPL1(��) of canonical tableau interpretations as defined in
Def. 3.6.5, the calculusCPL1 has the soundness and completeness properties from Def-
initions 3.5.3 and 3.5.6. In particular, if a tableau is satisfied by a canonical tableau
interpretation, then all its successor tableaux are satisfied by the same interpretation;

3.6 An Ideal Tableau Calculus for PL1 45

and every fully expanded tableau branch that is not closed issatisfied by a canonical
interpretation.

Before we prove that the calculusCPL1 is sound and complete using the criteria from
Sections 3.5.3 and 3.5.4, we formulate and prove the appropriate version of Hintikka’s
Lemma.

Definition 3.6.6 A set� � TabFormPL1(��) of tableau formulae is aHintikka setif
it satisfies the following conditions:

1. There are no complementary atomic formulaeT:G; F:G in �.

2. If � 2 �, then�1 and�2 are in�.

3. If � 2 �, then�1 or �2 is in�.

4. If (x) 2 �, then1(t) 2 � for all ground termst in Term0PL1(��).
5. If Æ(x) 2 �, thenÆ1(t) 2 � wheret = sko(Æ). 2

Lemma 3.6.7 If � is a Hintikka set (Def. 3.6.6), then

1. it is satisfied by some tableau interpretation inTabInterp(��);
2. every tableau interpretation satisfying the atomic tableau formulae in� satis-

fies�.

Proof: The second part of the lemma is easy to prove by induction on the structure of
tableau formulae in�.

A canonical tableau interpretationhhD; Ii; Ii satisfying the atomic formulae in� can
be defined as follows, which—using the second part of the lemma—proves the first
part of the lemma:� hD; Ii is an Herbrand structure, i.e.,D = Term0PL1(��) andI(t) = t for all

termst 2 Term0PL1(��);� for all atomsp(t1; : : : ; t�(p)) over��, putpI(t1; : : : ; t�(p)) = true if and only ifT:p(t1; : : : ; t�(p)) 2 �;� I(�) = hD; Ii.
The interpretation functionI is well-defined because of Condition 1 in the definition
of Hintikka sets (Def. 3.6.6). 2

46 Chapter 3: Tableau Calculi

Lemma 3.6.8 The tableau calculusCPL1 for PL1 has the Strong Soundness Property 1
from Definition 3.5.8 (appropriateness of the set of tableauinterpretations).

Proof: Let hD; Ii be a first-order Herbrand structure satisfying a setF of formulae.
Because the Skolem symbols inF sko(�) do not occur inF, it suffices to choose their
interpretation such that the resulting structurehD; I�i satisfies Condition 2 in the def-
inition of canonical tableau interpretations, leaving theinterpretation of the symbols
in � unchanged. A canonical tableau interpretation satisfyingthe initial tableau forF
can then be constructed combininghD; I�i with the label interpretationI defined byI(�) = hD; Ii.
The rankrk(f) of the symbolsf 2 F sko(�) is defined as follows:� rk(f) = 0 if no Æ 2 TabForm(��) exists such thatsko(Æ) = f(t1; : : : ; tk) for

anyt1; : : : ; tk 2 Term0PL1(��);� rk(f) = 1 if sko(Æ) = f(t1; : : : ; tk) for someÆ 2 TabForm(�) and some termst1; : : : ; tk 2 Term0PL1(�);� rk(f) = 1 + maxfrk(f 0) j f 0 2 Fg whereF is the set of allf 0 2 F sko(�) oc-
curring in anyÆ 2 TabForm(��) such thatsko(Æ) = f(t1; : : : ; tk) for any termst1; : : : ; tk 2 Term0PL1(��).

The functionrk is well defined because of Condition 2 in Definition 3.6.2.

We inductively define a sequence(hD; Ini)n�0 of first-order structures that all have
the domainD, wherehD; Ini is a structure over the signature�n that is the restriction
of �� to function symbols of rank not greater thann; the interpretationIn+1 coincides
with In on all symbols in�n [�.

The initial interpretationI0 is defined byfI0 = fI for all f 2 F (�), and for allf 2 F sko(�) of rank 0 the value offI0 is chosen arbitrarily.

The symbolsf 2 F sko(�) of rank r � n have already been interpreted byIn. Con-
siderf 2 F sko(�) of rankn+ 1; we definefIn+1(b1; : : : ; bk) for b1; : : : ; bk 2 D by:
If there are termst1; : : : ; tk 2 Term0(��) such thattIni = bi (1 � i � k) and there is
a formulaÆ(x) 2 TabForm(��) with f(t1; : : : ; tk) = sko(Æ(x)) andvalIn(Æ) = true,
choose ane 2 D with valIn;fx7!eg(Æ1(x)) = true, and setfIn+1(b1; : : : ; bk) = e (sincef is of rankn + 1, the symbols inÆ are from the signature�n). Otherwise, if no
such termst1; : : : ; tk and formulaÆ exist, choosefIn+1(b1; : : : ; bk) to be an arbitrary
element inD.

If other termst01; : : : ; t0k and anotherÆ-formula Æ0 exist satisfying the above condi-
tions, thenvalIn(Æ(x)) = valIn(Æ0(x)) andvalIn;fx7!eg(Æ1(x)) = valIn;fx7!eg(Æ01(x)),
becauseIn(ti) = In(t0i) = bi (1 � i � k) and the formulaeÆ andÆ0 are identical up
to renaming of bound variables and replacement of termsti by t0i (Condition 3 in
Def. 3.6.2).

3.6 An Ideal Tableau Calculus for PL1 47

We can think of the sequence(hD; Ini)n�0 as an approximation to the first-order in-
terpretationhD; I�i over��. The interpretationI� coincides withIn; In+1; : : : on the
symbols in�n. It satisfies Condition 2 in Definition 3.6.2 by construction. 2
Lemma 3.6.9 The tableau calculusCPL1 for PL1 has Strong Soundness Property 2
from Definition 3.5.8 (soundness of expansion).

Proof: As the calculus is ideal, we can use Lemma 3.5.9. Let� � TabFormPL1(��)
be a minimal premiss of a conclusionC; and assume that� is satisfied by a tableau in-
terpretationhm; Ii = hhD; Ii; Ii 2 TabInterpPL1(��). We show thathm; Ii satisfies
one of the extensions inC by cases according to the form of�:� = f�g: In that case,C = ff�1; �2gg, and sincehm; Ii satisfies� we have, by the
property of�-formulae (Def. 2.3.2), thathm; Ii satisfies�1 and�2.� = f�g: In that case,C = ff�1g; f�2gg, and sincehm; Ii satisfies� we have, by the
property of�-formulae (Def. 2.3.2), thathm; Ii satisfies�i for somei 2 f1; 2g.� = fg: In that case,C = ff1(t)gg for somet 2 Term0PL1(��), and sincehm; Ii
satisfies(x) we have, by the property of-formulae, thathm; Ii satisfies1(t).� = fÆg: In that case,C = ffÆ1(t)ggwheret = sko(Æ), and sincehm; Ii is canonical
and satisfiesÆ, it satisfiesÆ1(t).� = fT:�:F; F:�:Fg: A premiss� of this form is not satisfied by any tableau inter-
pretation, which contradicts the assumption that� is satisfied byhm; Ii; thus, this
case cannot occur. 2
Lemma 3.6.10 The tableau calculusCPL1 for PL1 has the Strong Completeness Prop-
erty 1 from Definition 3.5.10 (appropriateness of the set of tableau interpretations).

Proof: If hm�; Ii 2 TabForm(��) satisfies an initial tableau forF, then any restriction
ofm� to� satisfiesF, because the symbols inF sko(�), which are the only additional
symbols, do not occur inF. 2
Lemma 3.6.11 The tableau calculusCPL1 for PL1 has Completeness Property 2 (sat-
isfiability of fully expanded branches) from Definition 3.5.6; and it is strongly seman-
tically analytic (Def. 3.5.16).

Proof: LetB be a fully expanded branch that is not closed; and let� � TabForm(��)
be a set of atomic tableau formulae such that, forno � in �, both � and� are inForm(B) [�.

The setForm(B) [� is a Hintikka set and Lemma 3.6.7 implies that there is a tableau
interpretationhm; Ii satisfyingForm(B) [�; thus, the calculusCPL1 has Complete-
ness Property 2 from Definition 3.5.6.

48 Chapter 3: Tableau Calculi

Since there is only a single worldw0 in m and, by definitionI(�) = w0, the second
condition in Definition 3.5.16 is met as well; and the calculus is indeed strongly se-
mantically analytic. 2
Theorem 3.6.12The tableau calculusCPL1 for PL1 is sound and complete.

Proof: According to Theorems 3.5.4 and 3.5.7, it is sufficient to prove thatCPL1 has the
two soundness properties from Definition 3.5.3 and the two completeness properties
from Definition 3.5.6. That, however, follows immediately from Lemmata 3.6.8, 3.6.9,
3.6.10. 23.7 Ideal Tableau Caluli for Modal Logis3.7.1 Overview
The first non-structural tableau calculi for modal logics, which use labels for encoding
the reachability relation between possible worlds (instead of implicitly encoding them
in the structure of tableaux), were described in (Fitting, 1983). Following Fitting’s
work, non-structural tableau calculi for many modal logicshave been defined, see
(Goré, 1998) for an overview. However, all these calculi are non-monotonic because
they use tableau rules that when applied to a�-formula (a formula assertingexistence
of a reachable world in which a formula is true) they skolemise the�-formula by
introducing a label that has to benewto the branch or tableau. In addition, many of
these calculi are not ideal, asall branches that pass through a particular premiss are
extended when that premiss is used for expansion.

In Section 3.7.2, we present a tableau calculus that is idealbecause each formulaF is
assigned its own unique label, which is a gödelisation ofF itself. This unique label
is used for skolemising the�-formula T:�:3F . This calculus is a ground version
(i.e., a version without free variables) of the calculus described in (Beckert & Goré,
1997). It exemplifies the claim made in Section 3.3.7, that itoften only requires minor
modifications to turn a “slightly” non-ideal calculus into an ideal one.

Because a world in a Kripke model may have no successor, the conclusion of a�-
formula (asserting that a certain formula is true in all reachable worlds) must only
contain labels representing worlds whose existence is known. This knowledge is de-
duced from labels of other formulae, which leads to non-continuity of the tableau rule
for all premisses containing a�-formula. We define a variant of the calculus whose
rule is continuous for�-formulae in Section 3.7.4. It usesconditionallabels, where a
conditional labels does not imply the existence of the worldit represents. An additional
benefit of using conditional labels is that they simplify thedefinition of a free variable
version of the calculus. Checking the existence of worlds ismade part of closing a
tableau branch.

3.7 Ideal Tableau Calculi for Modal Logics 493.7.2 Labels for Modal Logi Caluli
In this section, we introduce labels consisting of natural numbers, which are frequently
used in labelled tableau calculi. Labels consisting of other constituents than natural
numbers can be defined in the same way.

Definition 3.7.1 Let N be the set of natural numbers. The setLab(N) of (non-condi-
tional) labels consisting of natural numbersis defined by:� The word1 is an element ofLab(N).� If � 2 Lab(N), then the word�:n is an element ofLab(N) for all n 2 N .

The setCondLab(N) of conditional labels consisting of natural numbersis defined
by:� The word1 is an element ofCondLab(N);� If � 2 Lab(N), then the words�:n and�:(n) are elements ofLab(N) for alln 2 N .

The initial label of Lab(N) andCondLab(N) is 1.

Thelengthof a label� is the number of dots it contains plus one, and is denoted byj�j.
The components of a label� are calledpositionsin �. A position isconditionalif it is
of the form(n), and a label is conditional if it contains a conditional position.

The equivalence class of all labels inCondLab(N) that are identical to a label� up to
parentheses indicating conditional positions is denoted by [�℄.
The set of all non-emptyinitial prefixesof a label�, excluding� itself, is denoted byipr(�). 2
Note thatLab(N) � CondLab(N); and that(1) is not an element ofCondLab(N),
because1 represents the initial world in models, which always exists.

We often do not differentiate between the labels�:n and�:(n), and we use�:[n℄ to
denote that the label may be of either form.

Definition 3.7.2 A set� � Lab(N) of labels isstrongly generatedif:

1. the initial label1 is an element of�; and

2. � 2 � implies� 2 � for all � 2 ipr(�). 2

50 Chapter 3: Tableau Calculi

Logic � � � iff Logic � � � iff
K � = �:[n℄ KT � = �:[n℄ or � = �
KB � = �:[n℄ or � = �:[m℄ K4 � = �:�
K5 � = �:[n℄, or K45 � = �:�, orj�j � 2, j� j � 2 j�j � 2, j� j � 2
KD K-condition, or� is a KDB KB-condition, or

K-deadend and� = � j�j = 1 and� = � = 1
KD4 K4-condition, or� is a KD5 K5-condition, or

K-deadend and� = � j�j = 1 and� = � = 1
KD45 K45-condition, or KB4 j�j � 2j�j = 1, � = � = 1
B � = �, or � = �:[n℄, S4 � = �:� or � = �

or � = �:[m℄
S5 for all �; �

Table 3.3:The accessibility relation on labels for the basic modal logics.

The labels inLab(N) capture a basic reachability relation between the worlds they
name, where the world named by�:[n℄ is reachable from the world named by�. A
set of strongly generated labels can be viewed as a tree with root 1, where�:[n℄ is an
immediate child of�.

Definition 3.7.3 Given a modal logicL and a set� � Lab(N) of strongly generated
labels, a label� 2 � isL-accessiblefrom a label� 2 �, written as� � � , if the condi-
tions set out in Table 3.3 are satisfied.

A label� 2 � is anL-deadendif no � 2 � isL-accessible from�. 2
The following lemma shows that theL-accessibility relation� on labels captures the
reachability relationR ofL-frames exactly (see (Goré, 1998) for a proof). In particular,� has the properties like reflexivity, transitivity, etc. that are appropriate for the axioms
of L (see Table 2.1).

Lemma 3.7.4 LetL one of the basic modal logics. If� � Lab(N) is a strongly gener-
ated set of labels, thenh�;�i is anL-frame, where� is theL-accessibility relation.3.7.3 Syntax and Semantis of Caluli for Modal Logis
The ideal calculiCL for the basic modal logicsL presented in this section are based on
the labelled tableau calculi described in (Fitting, 1983).The main difference is that, to
ensure monotonicity of the calculi, we use an expansion ruleschema for�-formulae
that does not introduce anew labels but—similar to the schema forÆ-formulae in
Section 3.6—uses a symbol that is uniquely assigned to the formula to which the rule
is applied.

3.7 Ideal Tableau Calculi for Modal Logics 51� �1; �2T:�:(F ^G) T:�:F; T:�:GF:�:(F _G) F:�:F; F:�:GT:�::F F:�:F; F:�:FF:�::F T:�:F; T:�:F
� �1; �2T:�:(F _G) T:�:F; T:�:GF:�:(F ^G) F:�:F; F:�:GS:�:� S:�:n:�K S:�:n:�4 S:�:�TT:�:2F T:�:n:F T:�:n:2F T:�:FF:�:3F F:�:n:F F:�:n:3F F:�:FS:�:n:� S:� :�4r S:� :�B S:� :�5T:�:n:2F T:� :2F T:� :F T:� :22FF:�:n:3F F:� :3F F:� :F F:� :33FS:�:� S:�:n:�1T:�:3F T:�:n:FF:�:2F F:�:n:F

Table 3.4:The four formula types of modal logics.Extended Signatures No extension of the signatures is necessary, thus� = �� for
all modal logics and all signatures� 2 Sigmod.Labels The setLab(�) of labels is, for all signatures�, the setLab(N) of (non-
conditional) labels consisting of natural numbers (Def. 3.7.1).Expansion Rule There are four types of complex (non-atomic) tableau formulae:�-formulae (conjunctive) and�-formulae (disjunctive) as in calculi for classical logic,�-formulae (which express truth of a formula inall reachable worlds), and�-formulae
(which express truth of a formula insomereachable world); see Table 3.4.

Notation 3.7.5 The letters� and� are used to denote formulae of (and only of) the
appropriate type. 2
The differences in the expansion rules for different modal logics are mainly in the rule
schema for�-formulae, i.e., in the conclusions of a premiss containinga�-formula. In
Table 3.5, the expansion rule is given schematically for thevarious formula types. Ta-
ble 3.6 summarises which formulae are part of the conclusionof a premissffS:�:�gg
consisting of a�-formula; in that table,4d indicates the inclusion of�4 in casej�j � 2.

We give the formal definition of the expansion rule for the logic K; the formal defi-
nitions of the expansion rules for the other modal logics caneasily be extracted from
their schematical description.

52 Chapter 3: Tableau Calculi

��1�2 ��1 �2 S:�:�S:�:d�e:�1
wheren = dF e if � = T:�:3F ,
andn = d:F e if � = F:�:2F T:�:FF:�:F?S:�:�S:�:n:�K

where�:n occurs
on the branch;
for all logics

S:�:�S:�:n:�4
where�:n occurs

on the branch;
for K4, KD4, S4, S5,

and, if j�j � 2, for K5, KD5

S:�:�S:�:�T
for T, B, S4, S5.

S:�:n:�S:� :�4r
for K5, KD5, K45
KD45, KB4, S5.

S:�:n:�S:� :�B
for KB, KDB, KB4, B.

S:�:n:�S:� :�5
if � = 1 for K5, KD5.

Table 3.5:Rule schemata for modal logics.

Logic �L for L =
K, D K
T K; T
KB, KDB K, B
K4, KD4 K, 4
K5, KD5 K, 4d, 4r, 5

Logic �L for L =
K45, KD45 K, 4, 4r
KB4 K, B, 4, 4r
B K, T ,B
S4 K, T , 4
S5 K, T , 4, 4r

Table 3.6:Elements�L of the conclusion of a�-formula.

3.7 Ideal Tableau Calculi for Modal Logics 53

Definition 3.7.6 For all premisses� � TabFormmod(�), the setEK(�)(�) consists
of the the following conclusions (whered�e is any bijection from the setFormmod(�)
of formulae to the set of natural numbers):

– ff�1; �2gg for all � 2 �,

– ff�1g; f�2gg for all � 2 �,

– ffT:�:n:Fgg for all T:�:2F 2 � and all labels of the form�:n occurring
in �,

– ffF:�:n:Fgg for all F:�:3F 2 � and all labels of the form�:n occurring
in �,

– ffF:�:n:Fgg for all F:�:2F 2 � wheren = d:F e,
– ffT:�:n:Fgg for all T:�:3F 2 � wheren = dF e,
– ff?gg if T:�:F; F:�:F 2 � for anyF 2 Formmod(�). 2Semantis To define the semantics of tableaux for a modal logicL, we use the setTabInterpL(��) consisting of tableau interpretation that are (a)L-interpretations and
that are (b) canonical, i.e., interpret labels generated byrule applications to�-formulae
in the right way.

Definition 3.7.7 Let L be one of the basic modal logics; let� 2 Sig be a signature;
and letLab be the setCondLab(N) of (conditional and non-conditional) labels con-
sisting of natural numbers (Def. 3.7.1).

A tableau interpretationhm; Ii is anL-interpretationif m = hW;R; V i is a KripkeL-model and the label interpretation functionI has the following properties:

1. I(1) = w0 is the initial world ofm;

2. I(�:(n)) = I(�:n) for all �:n and�:(n) in Lab;

3. for all� 2 Lab, if I(�) is undefined for some� 2 ipr(�), thenI(�) is undefined;

4. for all�; � 2 Lab, if (a)� � � and (b)I(�) andI(�) are defined, thenI(�)RI(�).
An L-interpretation iscanonicalif, moreover:

5. For all labels� = �:n 2 Lab:

if I(�) is defined andI(�) j= 3F , thenI(�) is defined andI(�) j= F ,

whereF is the formula for whichn = dF e (d�e is the bijection from the set of
formulae to the set of natural numbers used by the expansion rule). 2

54 Chapter 3: Tableau Calculi

Because we deal only with strongly generated sets of labels with root 1, the twin re-
quirements that everyL-interpretationhm; Ii define the label1, and Condition 3 in
the above definition force the interpretation functionI to “define” as many labels inipr(�) as is possible. However, for a conditional label of the form�:(n), wheren
is parenthesised, it is perfectly acceptable thatI(�:(n)) is undefined even ifI(�) is
defined.

Example 3.7.8 The interpretation functionI must be defined for the labels 1,1:1,
and1:1:1. It need not be defined for1:(1); but if it is, thenI(1:(1):1) must be defined
as well. 2
Using the setTabInterpL(��) of canonicalL-interpretations for defining the seman-
tics of tableaux, the calculusCL has the soundness and completeness properties from
Definitions 3.5.3 and 3.5.6 (whereL is any of the basic modal logics). If a tableau is
satisfied by a canonical tableau interpretation, then all its successor tableaux are sat-
isfied by the same interpretation; and every fully expanded tableau branch that is not
closed is satisfied by a canonicalL-interpretation.

Again, the proof that fully expanded branches are satisfiable is based on an appropriate
version of Hintikka’s Lemma:

Definition 3.7.9 Let L be a basic modal logic; and let� 2 Sigmod be a signature. A
set� � TabFormmod(��) of tableau formulae not containing conditional labels is a
modalL-Hintikkaset if it satisfies the following conditions:

1. There are no complementary atomic formulaeT:�:p andF:�:p in �.

2. If � 2 �, then�1 and�2 are in�.

3. If � 2 �, then�1 or �2 is in�.

4. If S:�:� 2 �, thenS:� :�K 2 � for all � 2 Lab such that� � � .

5. If S:�:� 2 �, thenS:� :�1 2 � for some� 2 Lab such that� � � . 2
Lemma 3.7.10 LetL be a basic modal logic; and let� 2 Sigmod be a signature. If�
is a modalL-Hintikka set (Def. 3.7.9), then

1. it is satisfied by some tableau interpretation inTabInterpL(��), i.e., a canonicalL-interpretation;

2. every tableau interpretation inTabInterpL(��) satisfying the atomic tableau
formulae in� satisfies�.

3.7 Ideal Tableau Calculi for Modal Logics 55

Proof: The second part of the lemma is easy to prove by induction on the structure of
tableau formulae in�.

Because of Condition 1 in the definition of modal Hintikka sets (Def. 3.7.9), a canon-
ical tableau interpretationhhW;R; V i; Ii satisfying the atomic formulae in� can be
defined by:� LetW be the setLab of all labels occurring in�;� let I(�) = � if � 2 W , and letI(�) be undefined otherwise;� for all �; � 2 W , let � R � iff � � � ;� let V (p) = f� j T:�:p 2 �g. 2
Lemma 3.7.11 For all basic modal logicsL, the tableau calculusCL has Strong
Soundness Property 1 from Definition 3.5.8 (appropriateness of the set of tableau in-
terpretations).

Proof: Letm = hW;R; V i be anL-model satisfying a set of formulaeF. We know
thatw0 j= F for all F 2 F, wherew0 is the initial world inW .

Now, for n 2 N , let Fn be the formula for whichn = dF e (whered�e is the bijection
from the set of formulae to the set of natural numbers used by the expansion rule) and
createI as follows: LetI(1) = w0, and for every label of the form�:n:� if there is a worldw 2 W that is reachable fromI(�) such thatw j= Fn, then

put I(�:n) = I(�:(n)) = w;� else, if there is no such worldw, but there is a worldw0 that is reachable
from I(�), then putI(�:n) = I(�:(n)) = w0;� else, if there is no world reachable fromI(�), let I(�:n) andI(�:(n) be unde-
fined.

TheL-interpretationhm; Ii is canonical by way of its definition, and in addition sat-
isfies the tableau formulae on initial tableaux forF, becauseI(1) = w0 j= F for allF 2 F. 2
Lemma 3.7.12 For all basic modal logicsL, the tableau calculusCL has Strong
Soundness Property 2 from Definition 3.5.8 (soundness of expansion).

Proof: As the calculus is ideal, we can use Lemma 3.5.9. Let� � TabFormmod(��)
be a minimal premiss of a conclusionC; and assume that� is satisfied by a canonicalL-interpretationhm; Ii 2 TabInterpL(��). It can easily be checked by cases accord-
ing to the form of� thathm; Ii satisfies one of the extensions inC. 2

56 Chapter 3: Tableau Calculi

Lemma 3.7.13 For all basic modal logicsL, the tableau calculusCL has Strong Com-
pleteness Property 1 from Definition 3.5.10 (appropriateness of the set of tableau in-
terpretations).

Proof: The calculi have this property trivially, because the signatures have not been
extended, i.e.,�� = �, and therefore everyL-model inM(��) is a restriction of itself
to�. 2
Lemma 3.7.14 For all basic modal logicsL, the tableau calculusCL has Complete-
ness Property 2 (satisfiability of fully expanded branches)from Definition 3.5.6; and it
is strongly semantically analytic.

Proof: LetB be a fully expanded branch that is not closed; and let� � TabForm(��)
be a set of atomic tableau formulae such that, forno � in �, both � and� are inForm(B) [�.

The setForm(B) [� is anL-Hintikka set and Lemma 3.7.10 implies that there is
a tableau interpretationhm; Ii satisfyingForm(B) [�; thus, the calculusCPL1 has
Completeness Property 2 from Definition 3.5.6.

By construction of that tableau interpretation (see the proof of Lemma 3.7.10),I(�) = �
for all � 2 W and, thus, the second condition in Definition 3.5.16 is met aswell; and
the calculus is indeed strongly semantically analytic. 2
Theorem 3.7.15For all basic modal logicsL, the tableau calculusCL for L is sound
and complete.

Proof: According to Theorems 3.5.4 and 3.5.7, it is sufficient to prove thatCL has the
two soundness properties from Definition 3.5.3 and the two completeness properties
from Definition 3.5.6. That, however, follows immediately from Lemmata 3.7.11,
3.7.12, 3.7.13, and 3.7.14, oberving that a calculus that a semantically analytic calculus
trivially has Completeness Property 2 from Definition 3.5.6. 2
Example 3.7.16We prove thatG = 2(:p _ q) ^ 2p ^ (3:q _3:p)
is unsatisfiable in the modal logic K (and, thus, that its negation is a K-tautology). A
(fully expanded) closed tableau, that is part of a tableau proof for (the K-unsatisfia-
bility) of G is shown in Figure 3.1. The nodes of the tableau are numbered;a pair[i; j℄ is attached to thei-th node, the numberj denotes that nodei has been created by
applying the expansion rule to a premiss containing the formula in nodej.
Note, that after formula 5 has been added to the tableau, the only possible conclusion
(that is not already on the tableau) is the one consisting of formulae 6 and 7, which

3.7 Ideal Tableau Calculi for Modal Logics 57

[1;–] T:1:2(:p _ q) ^2p ^ (3:q _3:p)
[2;1] T:1:2(:p _ q)

[3;1] T:1:2p ^ (3:q _3:p)
[4;3] T:1:2p

[5;3] T:1:3:q _3:p
[6;5] T:1:3:q
[8;6] T:1:1::q
[9;8] F:1:1:q

[10;2] T:1:1::p _ q
[11;10] T:1:1::p
[13;11] F:1:1:p
[14;4] T:1:1:p

[15;13,14]?
[12;10] T:1:1:q

[16;9,12]?
[7;5] T:1:3:p
[17;7] T:1:2::p
[18;17] F:1:2:p
[19;4] T:1:2:p

[20;18,19]?
Figure 3.1: The tableau from Example 3.7.16.

is derived from 5; the two�-formulae 3 and 4 cannot be made use of at that point,
because the tableau does not contain any labels of the form1:n.

The labels that are introduced applying the tableau rule to premisses consisting of�-
formulae 5 resp. 6 are1:1 = 1:d:qe and1:2 = 1:d:pe. 23.7.4 A Calulus for the Modal Logi K with Continuous Expansion Rulefor �-Formulae
The expansion rule of the calculus for modal logics described in the previous section
is not continuous for premisses containing�-formulae, because the condition has to be
observed that the label introduced by a rule application to a�-formula must occur in the
premiss. For example, no conclusion can be deduced from the premiss� = fT:1:2pg
and nothing can be derived from�0 = fT:1:1:qg, butT:1:1:p can be derived from the
union of� and�0.
The main disadvantage of an expansion rule that is non-continuous for�-formulae
is that it makes it impossible to define a free-variable version of the calculus. The�-
formulae allow to derive many similar conclusions such as, for example,T:1:n:p for all1:n occurring on the branch; to represent all these conclusionsby a single conclusionT:1:X:p containing a free variableX is, however, only possible if all instances of

58 Chapter 3: Tableau CalculiT:1:X:p are valid conclusions (in the example that is not the case forinstancesT:1:n:p
where1:n doesnot occur on the branch).

This problem can be avoided by dropping the pre-condition that the labels that are
introduced by rule applications to�-formulae must occur in the premiss; instead the
additional position in the new labels are marked as being conditional. Thus, in the
above example,T:1:(1):p can be derived from� whether the label1:1 occurs on the
branch or not.

Then, however, to preserve soundness of the calculus, the existence of worlds corre-
sponding to conditional labels has to be checked later on when branches are closed.
For example, the (apparently contradictory) pairT:1:(1):p andF:1:(1):p is not neces-
sarily inconsistent since the worldI(1:(1)) may not exist in a tableau interpretation.
Before declaring this pair to be inconsistent, we thereforehave to ensure thatI(1:(1))
is defined in allL-interpretations satisfying the tableau branchB that is to be closed.
Fortunately, this knowledge can be deduced from other formulae onB. Thus, in our
example, a formula likeG = T:1:1:q onB would “justify” the use of the pairT:1:(1):p
andF:1:(1):p for closingB since anyL-interpretationhm; Ii satisfyingB has to sat-
isfy G, and, thus,I(1:(1)) = I(1:1) has to be a world in the chosen modelm. The
crucial point is that the label1:1 of G is unconditionalexactly in theconditionalpo-
sition of 1:(1). These observations are now extended to the general case of arbitrary
labels fromCondLab(N).
Definition 3.7.17 A label � 2 CondLab(N) with j-th position[nj℄ (1 � j � j�j) is
justifiedby a set� 2 TabFormmod of modal tableau formulae if there is some subset	
of � such that for everyj:

1. some label occurring in	 has an unconditional but otherwise identicalj-th po-
sitionnj; and

2. for all labels� occurring in	: if j� j � j, then thej-th position in� isnj or (nj).2
The provision that the labels of complementary atomic formulae have to be justified to
close a branch, makes the expansion rule more non-continuous for premisses contain-
ing such complementary formulae. That, however, is not really problematic, because
for these premisses the rule is non-continuous anyway.

Except for the expansion rule and the set of labels, which isCondLab(N) instead
of Lab(N), syntax and semantics of the new calculusConK for the modal logicK is the
same as that of the calculusCK defined in the previous section. The signatures are not
extended; and the setTabInterp of tableau interpretations defining the semantics of
tableau consists of the canonicalL-interpretations (Def. 3.7.7).

The new rule schemata for�-formulae and for closing branches are shown in Table 3.7;
and all schemata for the expansion rule of the calculusConK are summarised in Ta-
ble 3.8. The expansion ruleEonK of ConK is formally defined as follows:

3.7 Ideal Tableau Calculi for Modal Logics 59�:��K(�:(n))
for all n 2 N T:�:FF:�0:F?

where[�℄ = [�0℄, and�; �0 are justified
by formulae on the branch

Table 3.7:The new rule schemata ofConK .��1�2 ��1 �2 T:�:2FT:�:(n):F F:�:3FF:�:(n):F
for all n 2 N T:�:3FT:�:n:F

wheren = dF eF:�:2FF:�:n:F
wheren = d:F e T:�::FF:�:F F:�::FT:�:F T:�:FF:�0:F?

where[�℄ = [�0℄, and�; �0 are justified
by formulae on the branch

Table 3.8:Expansion rule schemata for the calculusConK .

Definition 3.7.18 For all premisses� � TabFormmod, the setEonK (�) is the smallest
set containing the following conclusions (whered�e is any bijection fromFormmod(�)
to the set of natural numbers):

– ff�1; �2gg for all � 2 �,

– ff�1g; f�2gg for all � 2 �,

– ffT:�:(n):Fgg for all T:�:2F 2 � and alln 2 N ,
– ffF:�:(n):Fgg for all F:�:3F 2 � and alln 2 N ,

– ffF:�:n:Fgg for all F:�:2F 2 � wheren = d:F e,
– ffT:�:n:Fgg for all T:�:3F 2 � wheren = dF e,
– ff?gg if T:�:F; F:�:F 2 � such that[�℄ = [�0℄, and�; �0 are justi-

fied by�. 2
The new expansion rule schemata for�-formulae and branch closure can as well be
used for other modal logics that are (a) serial (in which casethe justification test is
not needed anyway as the interpretation of all labels is defined), or that are (b) neither
symmetric nor euclidean. Calculi for symmetric and euclidean logics are problematic
because their expansion rules can shorten labels. For example, the tableau formulaT:1:p is derived fromT:1:(1):2p if the logic is symmetric. The semantics for serial

60 Chapter 3: Tableau Calculi

logics guarantees that all labels define worlds, but in non-serial logics, the label1 may
be defined even though1:(1) is undefined. Therefore, an additional mechanism is
needed to ensure that the formulaT:1:p is used to close a branch only if the label1:(1)
is defined. This can be achieved by attaching a set of labels to each tableau formula
that all have to be justified when the formula is used to close abranch (see (Beckert &
Goré, 1997)).

To prove completeness ofConK , the definition of Hintikka sets has to take conditional
labels into account (only Condition 1 differs from the definition of modal Hintikka sets
without conditional labels, see Def. 3.7.9):

Definition 3.7.19 A set � � TabFormmod(��) of tableau formulae is amodalK-
Hintikka set with conditional labelsif it satisfies the following conditions:

1. There are no complementary atomic formulaeT:�:p andF:�0:p in � such that[�℄ = [�0℄ and�; �0 are justified by�.

2. If � 2 �, then�1 and�2 are in�.

3. If � 2 �, then�1 or �2 is in�.

4. If S:�:� 2 �, thenS:�:(n):�K 2 � for all n 2 N .

5. If S:�:� 2 �, thenS:�:n:�1 2 � for somen 2 N . 2
Lemma 3.7.20 If � is a modalK-Hintikka set with conditional labels, then

1. it is satisfied by some tableau interpretation inTabInterpK(��), i.e., a canonicalK-interpretation;

2. every tableau interpretation inTabInterpK(��) satisfying the atomic tableau
formulae in� satisfies�.

Proof: Again, the second part of the lemma is easy to prove by induction on the struc-
ture of tableau formulae in�.

Because of Condition 1 in the definition of modal K-Hintikka sets with conditional
labels (Def. 3.7.19), a canonical tableau interpretationhhW;R; V i; Ii satisfying the
atomic formulae in� can be defined by:� LetW = f[�℄ j � 2 Lab is justified by�g;� let I(�) = [�℄ if [�℄ 2 W , and letI(�) be undefined otherwise;� for all �; � 2 W , let [� ℄ be reachable from[�℄ iff � = �:n or � = �:(n) for somen 2 N ;

3.8 Ideal Calculi for the Set Logics MLSS and MLSSF 61� let V (p) = f[�℄ j T:�:p 2 �g. 2
Theorem 3.7.21The tableau calculusConK for the modal logicK is sound and com-
plete.

Proof: The theorem can be proven in the same way as soundness and completeness of
the calculusCK (Theorem 3.7.15).

The proof for Soundness Property 1 (appropriateness of the set of tableau interpreta-
tions) remains unchanged.

Proving that the calculus has the strong soundness of expansion property is somewhat
more difficult, because now conditional labels may occur in atableau. But only in the
case of a premiss that allows to close a branch this leads to a real complication. In
that case, the following lemma has to be applied, which follows immediately from the
definitions: Lethm; Ii be a canonicalL-interpretation, and let� be a label justified by
a set� of tableau formulae. Ifhm; Ii satisfies the formulae in�, thenI(�) is defined.

The completeness properties are proved in the same way as forthe calculusCK—with
the exceptions that the alternative Definition 3.7.19 of Hintikka sets and the alternative
Hintikka Lemma 3.7.20 are used, which take conditional labels into account. 2
Example 3.7.22We continue from Example 3.7.22 and prove unsatisfiability of the
same formulaG using the new calculusConK . A closed tableauT on for G that has
been constructed using the expansion rule ofConK is shown in Figure 3.2.

Since the provision that labels introduced by applying the expansion rule to a�-
formula must already occur on the branch has been dropped, itis now possible to
add formulae 6 and 7 although their label1:(1) is new to the branch (it is, however,
conditional in its second position).

The left branchB1 of T on is closed applying the tableau rule to a premiss containing
the complementary pairT:1:(1):p andF:1:(1):p in nodes 7 and 14, respectively. The
label1:(1) of these atoms is justified onB1 by formulae 10 and 11 whose label is1:1.
In this case, the complementary formulae contain conditional labels which are only
justified by a third formula on the branch, so checking for justification is indispensable.
The middle branchB2 contains the complementary formulaeF:1:1:q andT:1:(1):q in
nodes 11 resp. 13. The label is again justified by formula 10 and formula 11, which
in this case is part of the complementary pair. The right branchB3 contains the pairF:1:2:p andT:1:(2):p of complementary atoms in nodes 18 resp. 19. The label1:(2)
of the formula in node 19 is justified by formula 18. 2

62 Chapter 3: Tableau Calculi

[1;–] T:1:2(:p _ q) ^2p ^ (3:q _3:p)
[2;1] T:1:2(:p _ q)

[3;1] T:1:2p ^ (3:q _3:p)
[4;3] T:1:2p

[5;3] T:1:3:q _3:p
[6;2] T:1:(1)::p _ q

[7;4] T:1:(1):p
[8;5] T:1:3:q
[10;8] T:1:1::q
[11;10] F:1:1:q

[12;6] T:1:(1)::p
[14;12] F:1:(1):p

[15;7,14]? [13;6] T:1:(1):q
[16;11,13]?

[9;5] T:1:3:p
[17;9] T:1:2::p
[18;17] F:1:2:p

[19;4] T:1:(2):p
[20;18,19]?

Figure 3.2: The tableauT on from Example 3.7.22.3.8 Ideal Caluli for the Set Logis MLSS and MLSSF3.8.1 Overview
In this section, we present an ideal tableau calculusCMLSS for the logic MLSS, which
is a decidable fragment of set theory. Furthermore, we describe an extensionCMLSSF
of our calculus for the bigger fragment MLSSF consisting of MLSS enriched with free
(uninterpreted) function symbols (Section 2.6). The idealcalculi CMLSS andCMLSSF
are slight variations of the calculi described in (Beckert &Hartmer, 1998; Hartmer,
1997), which are not ideal. They are extensions of the tableau-based calculus for
MLSS described in (Cantone, 1997).

The calculusCMLSS can be used to construct a sound and complete decision proce-
dure for MLSS. It does not require formulae to be in normal form, whereas Cantone’s
calculus only contains rules for normalised MLSS atoms (which are not allowed to
contain complex terms) and relies on a pre-processing transformation for normalis-
ing formulae. The handling of free function symbols in the extended calculusCMLSSF
for MLSSF employsE-unification techniques for reducing the search space by finding
term pairs that, when shown to be equal, close a tableau branch.

Several other methods for handling set theory in tableau calculi or the sequent calcu-
lus (without the restriction to a certain fragment) have been proposed: Brown (1978)

3.8 Ideal Calculi for the Set Logics MLSS and MLSSF 63��1
...�n ��1 � � � �n

Table 3.9:Generalised expansion rule schemata for�- and�-formulae.

presents a first-order sequent calculus that contains special rules for many set theoretic
symbols. De Nivelle (1997) and Pastre (1978) introduce sequent calculi for set theory.
Shults (1997) describes a tableau calculus with special settheoretic rules. All these
calculi, however, are incomplete (no semi-decision procedures).3.8.2 The Set of Labels and the Extension of SignaturesLabels The models of MLSS and MLSSF consist of only one world. We use the
label� to represent this single world. Thus,Lab = f�g, and� is the initial label. As
in calculi for PL1, the abbreviationS:G is used for tableau formulae, i.e., the label� is
omitted.Extended Signatures An inequalityF:(s � t) implies the existence of an element
that occurs in only one of the two setss andt and not in the other. The expansion rule
of our calculus makes use of that fact by introducing a Skolemconstant representing
the existing element when it is applied to an inequality. Forskolemisation we use an
infinite setF sko(�) of constants that is disjoint fromF (�).
The extension of an MLSS or MLSSF signature� = hP (�); F (�); �(�)i used for
constructing tableau formulae is thus�� = hP (�); F (�) [F sko(�); �(�) [�sko(�)i ;
where�sko(�)() = 0 for all 2 F sko(�).3.8.3 The Tableau Expansion Rule for MLSSShemata for non-atomi formulae The non-atomic MLSS and MLSSF formu-
lae are divided into�- and�-formulae as usual. The expansion ruleEMLSS of CMLSS
is defined for premisses consisting of�- and�-formulae by the standard schemata
shown in Table 3.9 (we use a generalisation where the conclusions derived from�-
and�-formulae can consist of an arbitrary number of tableau formulae resp. exten-
sions).

64 Chapter 3: Tableau Calculi

Name � �1; : : : ; �n
(R1) T:(s v t) T:(s � s u t)
(R2) F:(s v t) F:(s � s u t)
(R3) T:(s � t1 u t2) T:(s � t1); T:(s � t2)
(R4) T:(s � t1 n t2) T:(s � t1); F:(s � t2)
(R5) F:(s � t1 t t2) F:(s � t1); F:(s � t2)
(R6) F:(s �ft1; : : : ; tngn) F:(s � t1); : : : ; F:(s � tn)
Name � �1; : : : ; �n
(R7) T:(s � t1 t t2) T:(s � t1); T:(s � t2)
(R8) F:(s � t1 u t2) F:(s � t1); F:(s � t2)
(R9) F:(s � t1 n t2) F:(s � t1); T:(s � t2)
(R10) T:(s �ft1; : : : ; tngn) T:(s � t1); : : : ;T:(s � tn)

Table 3.10:Rule schemata for splitting complex set terms.Shemata for splitting omplex set terms There are ten different expansion rule
schemata for splitting complex set terms; they apply simpleset theoretic lemmata such
as “if s 2 t1 [t2 thens 2 t1 or s 2 t2” to (a) eliminate atoms containing the set inclu-
sion predicatev and replace them with (in-)equalities, and to (b) split complex terms
on the right side of the membership predicate�into their constituents. These schemata
can be described as instances of the generalised schema for�- and�-formulae from
Table 3.9; they are listed in Table 3.10.Shemata for handling equalities and inequalities There are three types of
special expansion rule schemata for handling the equality and inequality of sets. First,
there are two schemata ((EQ1) and (EQ2) in Table 3.11) that allow to “apply” an
equalityT:(t1 � t2) to other atoms in a very restricted way: an equality can only be
applied at the top level and only to the right side of a positive atom whose predicate
symbol is�. That is, an equality can only be applied to derive one of the atomsT:(s � t1) andT:(s � t2) from the other one. This restriction is important, because the
possibility to apply equalities arbitrarily to other atomswould lead to a much larger
search space.

Second, it is possible to derive the inqualityF:(s1 � s2) fromT:(s1 � t) andF:(s2 � t)
((R11) in Table 3.11). This expansion rule schema is based onthe fact that two objects
are different if one of them is an element of some set and the other is not.

Third, the opposite of the above holds as well: if two setst1 andt2 are different, then
one of them contains an elemente that is not an element of the other set. Unfortu-
nately, this leads to a branching rule schema ((R12) in Table3.11), becausee can be
an element oft1 (and not oft2) or of t2 (and not oft1). Instead of introducing anew
symbol to represent the unknown element, we use aSkolem constant assignmentthat

3.8 Ideal Calculi for the Set Logics MLSS and MLSSF 65T:(t1 � t2)T:(s � t1)T:(s � t2)
(EQ1)

T:(t1 � t2)T:(s � t2)T:(s � t1)
(EQ2)

T:(s1 � t)F:(s2 � t)F:(s1 � s2)
(R11)F:(t1 � t2)T:(� t1) F:(� t1)F:(� t2) T:(� t2)

where = skoMLSSF(F:(t1 � t2))
(R12)

T:(s � t) F:(s � t)
wheres resp.f: : : ; s; : : :g
andt resp.f: : : ; t; : : :g are

top-level terms on the branch
(Cut)

Table 3.11:Rule schemata handling equalities and inequalities, and the cut rule
schema.

uniquely assigns a constant to each inequality (similar to the Skolem term assignment
from Definition 3.6.2 that is used to assign a Skolem term to each Æ-formula of PL1);
thus, monotonicity and idealness of the expansion rule is preserved.

Definition 3.8.1 Given an MLSS or MLSSF signature�, a Skolem constant assign-
ment(for MLSS resp. MLSSF) is a functionskoMLSSF assigning to each inequality� = F:(t1 � t2) in TabForm(��) a constantskoMLSSF(�) = 2 F sko(�) such that,
for all 0 2 F sko(�), if 0 occurs in�, then > 0 where> is an arbitrary but fixed
ordering onF sko(�). 2The ut rule shema The cut rule schema (Table 3.11) may be applied to extend
a tableau branchB using any atoms � t as cut formula where the set termss andt
occur� as top-level arguments of an atom onB, or� as arguments on the second level if the top-level function symbol isf�gn.

In practice, the cut rule schema is rarely needed to construct a proof; it is, for example,
needed to detect implicit membership cycles on a branch; seeSection 3.8.3.

Example 3.8.2 If T:(t1 �ft2; t3 u t4g) andT:(t5 u t6 � t7) are atoms on the branch,
thent1; t2; (t3 u t4); (t5 u t6); t7 may be used in a cut rule application andt3; t4; t5; t6
may not be used (unless that is justified by other atoms on the branch). 2

66 Chapter 3: Tableau CalculiShemata for branh losure An application of the expansion rule ofCMLSS adds
formulae to a tableau branch being true in all set structuresthat are models of the ex-
panded branch; the purpose of schemata for branch closure isto detect inconsistencies,
i.e., formulae on a branch that are false in all set structures. There are four types of
inconsistencies that have to be considered:

1. In no set structure both a formula� and its complement� are true; thus, as in all
calculi, a premiss containing a pair�; � allows to deduce? (for completeness it
is sufficient to only consider complementaryatoms).

2. No object is an element of the empty set; thus, an atom of theform T:(t �;) is
unsatisfiable.

3. As no object is different from itself, atoms of the formF:(t � t) are unsatisfi-
able.

4. The existence of a membership cycle, i.e., of setsu1; : : : ; uk such thatui 2 ui+1
(1 � i < k) anduk 2 u1, would contradict the Axiom of Foundation. In fact,
there are by construction no sets in the von Neumann hierarchy that form a
membership cycle. Thus, atoms defining a membership cycle allow to close a
branch; in particular,T:(t � t) is unsatisfiable.

The following is a formal definition of the expansion rule of the calculusCMLSS:
Definition 3.8.3 Let� be an MLSS signature.

For all premisses� � TabFormMLSS(��), the setEMLSS(��)(�) consists of the the
following conclusions:

– ff�1; : : : ; �ngg
for all � 2 � (Tables 3.1 and 3.10);

– ff�1g; : : : ; f�ngg
for all � 2 � (Tables 3.1 and 3.10);

– ffT:(s � t2)gg
for all (a)T:(s � t1) and (b)T:(t1 � t2) orT:(t2 � t1) in �;

– ffF:(s1 � s2)gg
for all T:(s1 � t) andF:(s2 � t) in �;

– ffT:(s � t)g; fF:(s � t)gg
for all set termss and t such that (a)s or f: : : ; s; : : :gn and (b)t or f: : : ; t; : : :gn
occur as top-level terms in atoms in�;

– ffT:(� t1) ; F:(� t2)g, fF:(� t1) ;T:(� t2)gg
for all F:(t1 � t2) in �, where = skoMLSSF(F:(t1 � t2));

3.8 Ideal Calculi for the Set Logics MLSS and MLSSF 67

– ff?gg
if

1. T:�:G; F:�:G 2 � for any atomG,

2. T:(t �;) 2 �,

3. F:(t � t) 2 �,

4. for somek � 1, there are atomsT:(ti � ti+1) (1 � i < k) andT:(tk � t1) in�.23.8.4 Soundness, Completeness, Termination
The calculusCMLSS defined in the previous section is sound and complete (a proof
can be found in (Hartmer, 1997)). It has the soundness and completeness ensuring
properties from Definitions 3.5.6 and 3.5.8.

Theorem 3.8.4 The calculusCMLSS for MLSS is sound and complete.

Without further restrictions, the calculusCMLSS is not a decision procedure. The rule
schema for inequalities ((R12) in Table 3.11) introduces additional constants, and the
cut rule schema can—in connection with schema (R11)—be usedto construct new
inequalities from these constants; the interaction of these expansion rule schemata can
lead to infinite branches.

Fortunately, the calculus can easily be turned into a decision procedure, observing
the completeness preserving restriction that chains1; 2; : : : wherei is added to the
branch applying the schema (R12) for inequalities to an inequality that contains the
constanti�1 must not be infinite; their maximal length is the number of (sub-)terms
the formula set whose satisfiability is to be checked.

Definition 3.8.5 LetT1; : : : ; Tk be a sequence of tableaux for a setF of MLSS-formulae
that has been constructed using the expansion ruleEMLSS (Def. 3.8.3).

The rank rk(s) of a set terms in this sequence of tableaux is defined as follows: Ifs
occurs inF or has been generated by an application of rule schemata (R1)and (R2),
thenrk(s) = 0; otherwise, i.e., ifs is a constant that has been introduced by applying
rule (R12) to an inequalityF:(t1 � t2), then its rank isrk(s) = 1 + maxfrk(t1); rk(t2)g.2
Definition 3.8.6 A tableauT for a setF of MLSS-formulae isexhausted, if no expan-
sion rule application toT is possible without� introducing a constant whose rank is greater than the numberof (sub-)terms inF,

or

68 Chapter 3: Tableau Calculi� adding only tableau formulae to a branchB of T that already occur onB.

Note that a tableau that is exhausted (Def. 3.8.6) is not necessarily fully expanded
(Def. 3.5.5).

Theorem 3.8.7 There is an exhausted non-closedCMLSS-tableau for a setF of MLSS-
formulae if and only ifF is satisfiable.

Thus, if a sequence of tableaux for a setF of MLSS-formulae is constructed in afair
way (i.e., all possible rule applications are executed sooner or later), then the construc-
tion will terminate after a finite number of steps with a tableau that is (a) closed, in
which caseF is unsatisfiable, or (b) exhausted, in which caseF is satisfiable.3.8.5 Restriting the Searh Spae
Although the search space for aCMLSS-tableau proof is finite if the restriction described
in the previous section is used, it is very large because of the indeterminism of the cut
rule schema and because the number of constants that can be introduced is exponential
in the size of the formula set whose unsatisfiability it to be proven.

Fortunately, it is possible to impose a strong restriction on cut rule applications, which
at the same time restricts the number of constants that are introduced, because a con-
stantk of rank k can only be created from an inequality containing a constantk�1
of rank k � 1 after the cut rule has been applied using an atom as cut formula that
containsk�1. The idea is to apply all rule schemata except the cut rule schema until
further applications do not add new formulae to branches, and then to construct areal-
isationof an open branch. The realisation of a branchB approximates a set structure
satisfying the formulae onB (if the branch is satisfiable); it satisfies at least all atoms
of the formT:(t1 � t2) onB. If the realisation does not satisfy all the other atoms onB
as well, it can be used to find cut rule applications that are (at least potentially) useful.

The switching between the expansion of tableau branches andthe construction of pos-
sible models, and the way in which we construct models are similar to the method
described in (Cantone, 1997).

Definition 3.8.8 Let � be an MLSS signature; and let� be a set of MLSS-tableau
formulae over��.� G denotes the set of all set (sub-)terms over� occurring in�;� V denotes the set of (a) all set termst 2 G such thatT:(t � s) occurs in� and

(b) all constants from� that occur in�;� T denotes the set of all constants occurring in� that are not inV;

3.8 Ideal Calculi for the Set Logics MLSS and MLSSF 69� � denotes the equivalence relation onG [T induced by the equalities in�;� T 0 denotes the set of all 2 T such that 6� s for all s 2 G;� V 0 denotes the set(V [T) n T 0;� u is, for each 2 T 0, an element of the von-Neumann hierarchyV that is dif-
ferent from allu0 with 6= 0. 2

Note, thatT 0 contains the constants that have been introduced by applying the expan-
sion rule schema for inequalities (R12) and that are not equal to other terms (w.r.t. the
equalities on the branch). The interpretation of these constants has to be different from
the interpretation of all other terms, whereas different terms inV 0 may have the same
interpretation.

Definition 3.8.9 Let � be an MLSS signature; let� be a set of tableau formulae
over��; and lett be a set term in�. Then the setP�(t) of implicit predecessors
of t is defined by:

1. P�(;) = ;;
2. P�() = fs 2 V [T j T:(s �) 2 �g for constants;
3. P�(t1 t t2) = P�(t1) [P(t2);
4. P�(t1 u t2) = P�(t1) \ P�(t2);
5. P�(t1 n t2) = P�(t1) n P�(t2); and

6. P�(ft1; : : : ; tngn) = fs 2 V [T j T:(s �ft1; : : : ; tngn) 2 �g [ft1; : : : ; tng.2
The sets of implicit predecessors can be used to detect implicit membership cycles. If,
for example,s 2 P�(t); t 2 P�(s) for some termss; t, then the branch can be closed,
and it is not necessary to apply the expansion rule (especially the cut rule schema)
to make the cycle explicit. Thus, using the predecessor sets, we can strengthen the
calculus by adding another rule schema for closing branches:

Definition 3.8.10 The calculusC 0MLSS is identical toCMLSS except for its expansion
ruleE 0MLSS, which is defined as follows:

For all MLSS signatures� and all premisses� � TabFormMLSS(��), the setE 0MLSS(�)(�)
consists of

– the conclusions inEMLSS(�)(�) (Def. 3.8.3) and

70 Chapter 3: Tableau Calculi

– the conclusionff?gg if the sets of implicit predecessors of terms in� contain a
cycle, i.e., there are set termst1; : : : ; tn occurring as (sub-)terms in� such thatt1 2 P�(t2), . . . ,tn�1 2 P(tn), tn 2 P�(t1). 2

Theorem 3.8.11The calculusC 0MLSS for MLSS is sound and complete.

The setP�(t) of implicit predecessors contains those terms denoting elements of the
set represented byt whose membership can be deduced from atoms in� of the formT:(s �a) (wherea is a constant) and applying the definition of the set operators. The
realisationof a set of tableau formulae goes beyond that: it is a partial definition of a
set structure (different terms may be interpreted by the same set).

Definition 3.8.12 Let� be an MLSS signature; and let� be a set of tableau formulae
over�� not containing?. TherealisationR�(t) of a termt occurring in� is defined
by:

1. R�(t) = ; if t = ;,
2. R�(t) = fR�(s) j s 2 P�(t)g [futg if t 2 T 0,3 and

3. R�(t) = fR�(s) j s 2 P�(t)g otherwise. 2
The realisation of a term can be effectively computed and canbe used to restrict the
application of the cut rule schema: provided a branchB is exhausted w.r.t. all other
expansion rule schemata, the cut rule schema has only to be applied to terms occurring
in atoms that are not satisfied by the realisationR�(t) where� = Form(B) (if there
is no such atom, thenB is satisfiable and we are done).

If, for example,F:(t1 � t2) is in� butR�(t1) 2 R�(t2), then there has to be a terms
such that (a)R�(s) = R�(t1), i.e., the realisation ofs is the same as that oft1, and
(b) s is an implicit member oft2, i.e., s 2 P�(t2)—but that membership is not (yet)
made explicit on the branch (there is no atomT:(s � t2) in �). In that case, the cut
rule schema is applied using the atomT:(s � t2) as cut formula.

The following theorem states that completeness of the calculus C 0MLSS is preserved if
realisations are used to restrict applications of the cut rule schema (a proof can be
found in (Hartmer, 1997)). Note that that the calculus is notweakened, but that this
restriction is a technique for making proof procedures based onC 0MLSS more efficient.

Definition 3.8.13 If F is an unsatisfiable set of MLSS-formulae, then there is aC 0MLSS-
tableau proofT1; : : : ; Tn for F that is constructed observing the following restriction:

The cut rule schema may only be applied to construct a tableauTi+1 from Ti if the
branchB of Ti that is expanded3 One has to make sure that theu’s are different fromR�(t) for all termst; it is always possible to

choose suchu’s.

3.8 Ideal Calculi for the Set Logics MLSS and MLSSF 71

1. is not closed; and

2. no other expansion rule schema can be used to add a formula to B that is not
already onB;

and the cut formulaT:(s � t) used for expansion satisfies one of the following condi-
tions, where� = Form(B):

1. (a) T:(t � t0) 2 �,

(b) R�(t) 6= R�(t0), and

(c) i. s 2 P�(t), s =2 P�(t0), andF:(s � t) 62 �, or

ii. s 2 P�(t0), s =2 P�(t), andT:(s � t0) =2 �,

2. (a) F:(t � t0), F:(� t), andT:(� t0) 2 � (for some constant),
(b) R�(t) = R�(t0),R�(s) = R�(), and

(c) s 2 P�(t), s =2 P�(t0), andT:(s � t) =2 �,

3. (a) F:(t0 � t) 2 �,

(b) R�(t0) 2 R�(t),R�(s) = R�(t0), and

(c) s 2 P�(t), andT:(s � t) =2 �. 23.8.6 A Comparison with Cantone's Calulus
The calculusCMLSS for MLSS described in the previous sections is similar to that pre-
sented by Cantone (1997). The main difference is that Cantone’s calculus is restricted
to normalisedatoms, i.e., atoms not containing complex set terms:

Definition 3.8.14 An atomic MLLS-tableau formula� is normalisediff it is of the
form

– S:(a � b),
– S:(a � b),
– T:(a � b t),
– T:(a � b u),
– T:(a � b n), or

– T:(a � fb1; : : : ; bngn) (n � 1),

wherea; b; andb1; : : : ; bn are constants. 2

72 Chapter 3: Tableau Calculi

There is a satisfiability preserving transformation of arbitrary finite sets of MLSS-
tableau formulae into sets of normalised atoms by introducing new constants as abbre-
viations for complex set terms. For example,T:(a � (b u b0))
is replaced by T:(� (b u b0)) and T:(a �)
where is a new constant. The overhead for computing the transformation is negli-
gible, because its complexity is polynomial in the size of the set to be transformed.
However, the introduction of new constants leads to a much bigger search space, even
more so as all these new constants occur in equalities.

Our rule schemata (R7), (R3), (R4), and (R10) are—in combination with rule schemata
(EQ1) and (EQ2)—extensions for handling atoms withcomplexset terms of the cor-
responding rule schemata in Cantone’s calculus. For example, our rule schema (R3),
that allows to deriveT:(a � b) and T:(a � b0) from T:(a � (b u b0)) ;
corresponds to Cantone’s rule schema that allows to deriveT:(a � b) and T:(a � b0) from T:(� (b u b0)) and T:(a �)
(for all a; b;).
There are no rule schemata in Cantone’s calculus corresponding to our rule schemata
(R5), (R8), and (R9) for atoms expressing negated membership. Consider the three
atoms � = F:(� (b1 t b2) n b3); 1 = T:(� b1); 2 = F:(� b3)
whose conjunction is unsatisfiable. To close a branch containing these atoms, our rule
schemata (R9) and (R5) are applied to split the atom� and derive that one of the
complements 1 and 2 holds, which allows to close the two resulting sub-branches
(see the tableau4 in Figure 3.3 (a)). Since no rule schemata for splitting� exist in
Cantone’s calculus, instead schemata for positive membership atoms have to be used
to derive� from 1 and 2: first,� has to be normalised, the result are the atomsF:(�d1); T:(d1 � d2 n b3); T:(d2 � b1 t b2)
whered1 abbreviates(b1 t b2) n b3 andd2 abbreviatesb1 t b2. Then, with two rule
applications,T:(�d2) andT:(�d1) are derived. The latter atom can be used to
close the branch; it corresponds to the non-normalised atom� (see the tableau Fig-
ure 3.3 (b)).4 The i-th node in the tableau is labelled with[i; j; (R)℄, which indicates that its formula has been

derived applying the expansion rule schema (R) ofCMLSSF to a premiss consisting of the formula in
thej-th node.

3.8 Ideal Calculi for the Set Logics MLSS and MLSSF 73

[1;�] F:(� (b1 t b2) n b3)
[2; 1] T:(� b1)
[3; 2] T:(� b3)

[4;1;(R9)] F:(� (b1 t b2))
[6;4;(R5)] F:(� b2)

[8;(2,6);(Compl)]? [5;1;(R9)] T:(� b3)
[9;(3,5);(Compl)]?

(a)

[1;�] F:(� (b1 t b2) n b3)
[2; 1] T:(� b1)
[3; 2] T:(� b3)

[4;1;(Norm)] F:(�d1)
[5;1;(Norm)] T:(d1 � d2 n b3)
[6;1;(Norm)] T:(d2 � b1 t b2)

[7;(2,6)] T:(�d2)
[8;(3,5)] T:(�d1)

[9;4,8);(Compl)]?
(b)

Figure 3.3: Constructing a closed sub-tableau with (a) the calculusCMLSS and
(b) Cantone’s calculus.

The need (and possibility) to derive more complex terms fromsimpler ones leads to a
larger search space. Our calculus, that splits complex terms into simpler ones, is more
goal directed.3.8.7 An Ideal Calulus for MLSSF
To extend the calculusCMLSS described in the previous sections to a calculusCMLSSF
for the larger fragment MLSSF, it suffices� to relax the restrictions on the equality rule schemata (thenew schemata (EQ1’)

and (EQ2’) are shown in Table 3.12 on the left), and� to add a cut rule schema that uses equalities as cut formulae (the schema (Cut’) in
Table 3.12).

The new rule schemata only need to be applied to functional set terms. Non-functional
terms, even if they are not pure, can be handled by the expansion rule schemata
of CMLSS. Below, the expansion ruleEMLSSF of CMLSSF is formally defined.

Definition 3.8.15 Let� be an MLSSF signature.

For all premisses� � TabFormMLSSF(��), the setEMLSSF(��)(�) consists of the fol-
lowing conclusions:

– ff�1; : : : ; �ngg
for all � 2 � (Tables 3.1 and 3.10);

74 Chapter 3: Tableau CalculiT:(s � t)�[s℄�[t℄ T:(t � s)�[s℄�[t℄
where the occurrence ofs in �

is inside a functional term
(EQ1’) (EQ2’)

T:(t1 � t2) F:(t1 � t2)
wheret1; t2 occur on the branch

and at least one is a functional term
(Cut’)

Table 3.12:Additional expansion rule schemata for MLSSF.

– ff�1g; : : : ; f�ngg
for all � 2 � (Tables 3.1 and 3.10);

– ff�[t℄gg
for all (a) �[s℄ and (b)T:(s � t) or T:(t � s) in � such thats occurs as a proper
subterm of a functional term in�[s℄, where�[t℄ is constructed from�[s℄ by replacing
one occurrence ofs in �[s℄ by t;

– ffF:(s1 � s2)gg
for all T:(s1 � t) andF:(s2 � t) in �;

– ffT:(s � t)g; fF:(s � t)gg
for all set termss and t such that (a)s or f: : : ; s; : : :gn and (b)t or f: : : ; t; : : :gn
occur as top-level terms in atoms in�;

– ffT:(t1 � t2)g; fF:(t1 � t2)gg
for all set termst1 and t2 occurring in� such that at least one oft1 and t2 is a
functional set term;

– ffT:(� t1) ; F:(� t2)g, fF:(� t1) ;T:(� t2)gg
for all F:(t1 � t2) in �, where = skoMLSSF(F:(t1 � t2))

– ff?gg
if

1. T:�:G; F:�:G 2 � for any atomG,

2. T:(t �;) 2 �,

3. F:(t � t) 2 �,

4. for somek � 1, T:(ti � ti+1) 2 � (1 � i < k) andT:(tk � t1) 2 � 2
The calculusCMLSSF for MLSSF is sound and complete (a proof can be found in (Hart-
mer, 1997)); it is, however, not a decision procedure.

Theorem 3.8.16The calculusCMLSSF for MLSSF is sound and complete.

3.8 Ideal Calculi for the Set Logics MLSS and MLSSF 753.8.8 Using Rigid E-Uni�ation to Restrit the Cut Rule Shema
The additional rule schemata ofCMLSSF introduced in the previous section are highly
non-deterministic. In this section, we describe an expansion rule schema for MLSSF
that is much more goal-directed and leads to a smaller searchspace. It is based on the
concept ofrigid E-unification.

Definition 3.8.17 Let� be an MLSSF-signature.

A rigid equalityis a rigid variable formula over��fv of the formt � t0.
A rigid E-unification problemhE; s; ti consists of a finite setE of rigid equalities and
termss andt over��fv.
A substitution� 2 Subst(��fv) is asolutionto the problemhE; s; ti iff s� andt� are
identical in the free algebra defined byE� where the free variables inE� are treated
as constants. 2
The problem of deciding whether a given rigidE-unification problem has a solution
is decidable (it is NP-complete). In general, the number of solutions is infinite. An
overview of methods for rigidE-unification can be found in (Beckert, 1998b).

The basic idea is to use rigidE-unification for handling the functional part of MLSSF
and to use the MLSS expansion rule for handling the non-functional (i.e. set theoretic)
part. The additional expansion rule schema, we describe in the following, forms the
connecting link between the two parts.

Consider, for example, a branchB containing the two atomsT:(f(a) � b) and T:(g(f(a u (b t a))) �g(b)) :
The branchB is unsatisfiable, becausea \ (b [a) = a and, thus,g(f(a \ (b [a))) = g(f(a)) = g(b) ;
that impliesg(b) 2 g(b), which is a membership cycle. To extend the branchB by a
closed sub-tableau using the expansion rule ofCMLSSF, one first has to discover the
important set theoretic identities that have to be proven (an identity is proven by using
it as a cut formula; after the branch that contains its negation has been closed, it is
available on the remaining open branch). In the above example, the identity that has to
be proven isa \ (b [a) = a. It is not easy to discover the right identities; it is futile,
for example, to try to show thata \ (b [a) = b.
The question of which set theoretic identities have to be proven to close a branchB
is transformed into rigidE-unification problems as follows: for each pairs; t of terms
that, if they were identical would allow to close the branch (e.g., termss; t such thatF:(s � t) is onB), one rigidE-unification problem is generated. Ins andt all max-
imal non-functional sub-terms are replaced by rigid variables; the resulting termssrv

76 Chapter 3: Tableau Calculi

andtrv and the equalities on the branch form a rigidE-unification problem. Each so-
lution to the problem corresponds to identities between non-functional sub-terms that,
when proven, allow to close the branch. The corresponding inequalities are used as a
conclusion, i.e., they are (disjunctively connected) added to the branch.

Definition 3.8.18 Given a set� of atomic MLSSF-tableau formulae, the set�rv is
constructed from� by replacing all non-functional (sub-)termst in � by a rigid vari-
ableXt.
Let the substitution�� be defined by:�(Xt) = t for all termst occurring in� that
have been replaced (i.e.,�� is the inverse of the transformation that turns� into �rv:�rv� = �). 2
Example 3.8.19 If � = fT:((a u) t b �); T:[f() �g(a u ; f(d n e))℄g, then the
result of the transformation is�rv = fT:(X1 � X2); T:[f(X2) �g(X3; f(X4))℄g. 2
Definition 3.8.20 Let � be an MLSSF signature; let� � TabFormMLSSF(��) be a
premiss; let�� be the set of all atoms in� of the formT:(t1 � t2), T:(t1 � t2), orF:(t1 � t2); and letErv� be the set of all rigid variable equalities in�rv� .

Further let� = fx1 r1; : : : ; xn rng (n � 1) be a simultaneous solution5 to

1. rigidE-unification problemshErv� ; s1; t1i andhErv� ; s2; t2i such thatT:(s1 � t1)
andF:(s2 � t2) are in�rv� , or

2. rigid E-unification problemshErv� ; t1; t01i, . . . , hErv� ; tn; t0ni (n � 1) such that
atomsT:(t1 � t02; : : : ; tn�1 � t0n), andT:(tn � t01) in �rv� form a potential mem-
bership cycle.

Then, the conclusionffF:(���(X1) � r1��B)g; : : : ; fF:(��B(Xn) � rn��B)g :
is anEU-conclusionof �. 2
Using the notion of EU-conclusions, the expansion ruleEEUMLSSF of CEUMLSSF is defined
as follows.5 The substitution� has to be the simultaneous solution of several rigidE-unification problems, i.e.,

a simultaneous rigidE-unification problem has to be solved. In general,simultaneousrigid E-
unification is undecidable. But the simultaneous problems that have to be solved here belong to
a decidable subclass, namely the class of simultaneous rigid E-unification problems of the formfhE; s1; t1i; : : : ; hE; sn; tnig where the sets of equalities are identical. In that case, anysubstitution
that (a) is a solution to the non-simultaneous problemhE; f(s1; : : : ; sn); f(t1; : : : ; tn)i and (b) does
not instantiate variables with terms containingf is a solution to the original problem (the function
symbolf must not occur in the original problem).

3.8 Ideal Calculi for the Set Logics MLSS and MLSSF 77T:(f(a) � b)T:(g(f(a u (b t a))) �g(b))T:(a 6� a u (b t a))T:(�a)F:(�a u (b t a))F:(�a)? F:(� b)F:(�a)?
F:(�a)T:(�a u (b t a))T:(�a)T:(� b t a)?

Figure 3.4: A closed sub-tableau that is constructed using the expansion rule
of CEUMLSSF (Example 3.8.22).

Definition 3.8.21 Let� be an MLSSF signature.

For all premisses� � TabFormMLSSF(��), the setEEUMLSSF(��)(�) consists of the con-
clusions inEMLSS(��)(�) (Def. 3.8.3) and, in addition, all EU-conclusions of�. 2
Example 3.8.22We continue the example from the beginning of this section and ap-
ply the expansion rule the new calculus ofCEUMLSSF to construct a closed sub-tableau
below a branch containing the atomsT:(f(a) � b) and T:(g(f(a u (b t a))) �g(b)) :
The only rigidE-unification problem that can be extracted from these atoms ishff(Xa) � Xbg; g(f(Xau(bta))); g(Xb)i :
A most general solution of this problem is the substitutionfXa 7! Xau(bta)g. Thus,
the new rule schema ofCEUMLSSF allows to addF:(a � a u (b t a)) to the branch; the
branch can then be extended to a closed sub-tableau (see Figure 3.4). 2
The new expansion rule schema partly overlaps with other schemata. It allows, for
example, to deriveF:(s1 � s2) from T:(s1 � t) andF:(s2 � t) if s1 ands2 are non-
functional set terms. This is also possible applying the schema (R11).

It is not necessary to consider rigidE-unification problems that can be constructed
from inequalitiesF:(s � t) in Lrv� because, when rule schema (R11) has been applied,
the branch contains atomsT:(�s), F:(� t), or F:(�s), T:(� t).
The expansion rule ofCEUMLSSF is sound, and the new schema helps to reduce the search
space. It is a conjecture thatCEUMLSSF is complete, i.e., that the schema based on rigidE-unification can replace the schemata (EQ1’), (EQ2’), and (Cut’) of CMLSSF, but this
has not been proven this yet.

78 Chapter 3: Tableau Calculi

Theorem 3.8.23The calculusCEUMLSSF for MLSSF is sound.

Conjecture 3.8.24 The calculusCEUMLSSF for MLSSF is complete.

Example 3.8.25We proof that the formulaG = [a � [(f(a) n f(a t (b u a))) t d t e℄ ^ e t b �a℄ ! a �d
is an MLSSF tautology; it contains the free function symbolf . Intuitively, the reason
for the validity ofG is the following: We assume thata is an element of (at least)
one of the three setsu = f(a) n f(a [(b \ a)), d, ande, and thate [b is an element
of a. Now, the setu cannot containa, becausea = (a [(b \ a)) and thereforeu is
empty for all interpretations off ; the sete cannot containa, otherwise there would be
a membership cyclea 2 (e [b) 2 a. Therefore,d containsa.

Figure 3.5 shows a closed tableau for:G.6 The unsatisfiability of:G implies the
validity of G.

Formula (11) is derived from formulae (9) and (10) applying theE-unification rule
schema. The substitutionfxa xat(bua)g is a solution to the rigidE-unification prob-
lemsh;; Xa; Xai and h;; hf(Xa); f(Xat(bua))i, which is constructed from 9 and 10.
Accordingly, the inequalityF:(a � a t (b u a)) is added to the branch.

When the rule schema (R12) is applied to formula (11) to derive formulae (12)–(15),
the Skolem constant1 = skoMLSSF(F:(a � a t (b u a))) is introduced.

The branch ending in node (30) is closed by the membership cycle e t b �a anda �e t b (formulae (6) and (28)). All other branches are closed by pairs of com-
plementary atoms.

If the rule schema for closing branches is used that relies oncomputing sets of implicit
predecessors to detect implicit membership cycles (Def. 3.8.10), then the cut rule ap-
plication that generates formulae (28) and (29) is not needed. Instead, the branch
ending in node (26) can be closed immediately; it contains animplicit cycle becausea 2 e implies a 2 e [b (this cycle is made explicit by the cut application). The set
of all possible implicit predecessors for terms on the branch ending in node (26) isfa; b; d; e; f(a); f(a t (b u a)); (e t b)g. The predecessor sets of the constants areP�(a) = fe t bgP�(b) = ;P�(d) = ;P�(e) = fag6 Thei-th node in the tableau is labelled with[i; j;R℄, which indicates that its formula has been derived

applying the expansion rule schemaR of CEUMLSSF to a premiss consisting of the formula in thej-th
node.

3.8 Ideal Calculi for the Set Logics MLSS and MLSSF 79

The predecessor set ofe t b isP�(e t b) = P�(e) [P�(b) = fag :
Thus, we havea 2 P�(e t b) ande t b 2 P�(a), which indicates the presence of an
implicit membership cycle. 2

8
0

C
h

ap
ter

3
:Tab

leau
C

alcu
li

[1;–;(Init)] T::�[a � [f(a) n f(a t (b u a))℄ t d t e ^ e t b �a℄! a �d�
[2;1;(�)] F:�[a � [f(a) n f(a t (b u a))℄ t d t e ^ e t b �a℄! a �d�

[3;2;(�)] T:(a � [(f(a) n f(a t (b u a))) t d t e℄ ^ e t b �a)
[4;2;(�)] F:(a �d)

[5;3;(�)] T:(a � [(f(a) n f(a t (b u a))) t d t e℄)
[6;3;(�)] T:(e t b �a)

[7;5;(R7)] T:(a �f(a) n f(a t (b u a)))
[9;7;(R4)] T:(a �f(a))

[10;7;(R4)] F:(a �f(a t (b u a)))
[11;(9,10);(EU)] F:(a � a t (b u a))

[12;11;(R12)]T:(1 �a)

[13;11;(R12)] F:(1 �a t (b u a))
[16;13;(R5)] F:(1 �a)

[17;13;(R5)] F:(1 � b u a)
[18;(12,16);(Compl)]?

[14;11;(R12)] F:(1 �a)
[15;11;(R12)]T:(1 �a t (b u a))

[19;15;(R7)]T:(1 �a)
[21;(14,19);(Compl)]? [20;15;(R7)]T:(1 � b u a)

[22;20;(R3)]T:(1 � b)
[23;20;(R3)]T:(1 �a)

[24;(14,23);(Compl)]?
[8;5;(R7)] T:(a �d t e)

[25;8;(R7)] T:(a �d)
[27;(4,25);(Compl)]? [26;8;(R7)] T:(a � e)

[28;–;(Cut)] T:(a � e t b)
[30;(6,28);(Cycle)]? [29;–;(Cut)] F:(a �e t b)

[31;30;(R5)] F:(a �e)

[32;30;(R5)]T:(a � b)

[33;(26,31);(Compl)]?

F
igure

3.5:Tableau
prooffor

an
M

L
S

S
F

form
ula

(E
xam

ple
3.8.25).

4 Enhanements
4.1 Overview
In this chapter, we present techniques for improving a tableau calculus for automated
deduction in such a way that proof procedure based on it are more efficient. Only
those techniques are the subject of this chapter that require the calculus to be chan-
ged; heuristics and techniques for organising the proof search, i.e., for constructing an
efficient proof procedure based on a given calculus are discussed in the next chapter.Strengthening the alulus A calculus is strengthened if it is changed in such a
way that shorter proofs for at least some formulae exist (forexample, by enhancing its
expansion rule such that it allows the deduction of additional conclusions from certain
premisses). In most cases, strengthening adds non-determinism, i.e., there are more
possibilities to proceed at each expansion step. Thus, there is a trade-off between the
advantage of shorter proofs and the disadvantage that theseshort proofs may be harder
to find, because there are more choice points in the search space.

Unfortunately, there is no general rule for judging whethera certain enhancement
is useful for automated deduction. Some automated deduction systems even use re-
stricted calculi that have less choice points than the standard version of the calculus
at the expense of an increase in the size of smallest proofs (including, for example,
proof procedures for first-order clause logic with the strong connectedness condition,
see Section 5.5).

The non-analytic cut rule, which allows to deduce the conclusionff�:T:�g; f�:F:�gg
from the empty premiss for all labels� and formulae�, is a typical example for an en-
hancement where the disadvantage of additional non-determinism outweighs the ad-
vantage of the existence of shorter proofs. Therefore, in automated deduction systems
the cut rule isneverused unrestrictedly. There are, however, restricted version of the
cut rule, such as the generation of local lemmata (Section 4.5), that still reduce the size
of the smallest proofs for certain formula classes exponentially, but do not lead to too
many additional choice points.

A method for strengthening tableau calculi that is always useful is thepruning tech-
nique described in Section 4.6, as it reduces the size of proofs without introducing
additional choice points.

81

82 Chapter 4: Enhancements

Another very useful way of strengthening tableau calculi isthe introduction ofuni-
versal variables(Section 4.3); this technique can lead to exponentially smaller proofs,
and adds only very few additional choice points.Post-poning hoie points Often, it is possible to uniformly represent different
tableaux—and thus different parts of the search space—by a single tableau using ad-
ditional syntactical devices. A typical example is therigid variable technique (Sec-
tion 4.2), where tableaux that are identical up to the replacement of terms by other
terms are all represented by a single tableau in which a free (or dummy) variable is
used as a place holder for the different terms.

In a certain sense, post-poning choice points leads to a breadth-first search where dif-
ferent parts of the search space are investigated simultaneously, until additional infor-
mation has been gathered that allows to make an informed decision about which part
of the search space should be further investigated. For example, if a tableau rule ap-
plication requires a rigid variableX to be instantiated with a certain termt, then the
decision to instantiateX with t is informed in the sense that the instantiation is known
to be useful as an expansion rule application exists which isnot possible without it.

Techniques that post-pone choice points are always of advantage if the only measure
considered is the number of expansions steps that have to be executed to find a tableau
proof. These techniques can, however, be difficult to implement. For example, if a
rigid variable is instantiated with a term that later turns out to be the wrong choice,
then it might become much more difficult to find a tableau proof(though not impos-
sible provided that the calculus is proof confluent); thus, it is of advantage not to
instantiate rigid variables as long as it is not absolutely certain that a certain instan-
tiation is useful. An instantiation that may or may not be useful should instead be
used as a heuristic, i.e., expansion rule applications thatare compatible with such an
instantiation are preferred but are not necessarily the only ones that are considered.
However, because this is difficult to implement, virtually all tableau-based deduction
systems for first-order predicate logic apply a rigid variable substitution to the whole
tableau as soon as it is found to allow the closure of a single branch—instead of first
searching for closing substitutions for all branches, and then trying to combine these
substitutions to construct a single substitution that allows to simultaneously close all
branches.

Another disadvantage of techniques for post-poning choicepoints is that they make
it more difficult for the deduction system to interact with a human user (where the
reason for interaction may either be that the system is not fully automated or that a
proof that has been constructed is communicated to the user). Humans prefer cal-
culi with a simple tableau expansion rule; its applicationsshould be syntactically (not
necessarily semantically) simple, i.e., each applicationshould be easy to validate, the
pre-conditions should be easy to check, and rule applications should not have any side
effects. Enhancements for post-poning choice points, however, typically result in a

4.2 Rigid Variable Tableau Calculi 83

calculus that is syntactically more complicated; rule applications may have non-local
side effects such as the instantiation of free variables (the problem of user interaction
is discussed for the case of calculi for first-order predicate logic in (?)).4.2 Rigid Variable Tableau Caluli4.2.1 The Idea of Rigid Variables
The concept of rigid variables1, which is well known from theorem proving in first-
order predicate logic, is based on the observation that the expansion rule of many
calculi for logics with terms is stable for certain premisses � w.r.t. the replacement
of terms in� by other terms; in particular, there are premisses that allow to derive
conclusionsC(t) for all termst.
Example 4.2.1 A typical example is the expansion rule of the calculusCPL1 from
Section 3.6. It is stable for premisses consisting of�-, �-, -, andÆ-formulae. For
example, the conclusionff�1[t 7! t0℄; �2[t 7! t0℄gg can, for all termst0, be derived
from a premiss containing an�-formula�[t 7! t0℄. Premisses containing a-formula
allow to derive the conlcusionC(t) = ff1(t)gg for all termst.
The expansion rule ofCPL1 is only unstable for premisses that allow to deduce?,
i.e., to close a branch; for example, the premissfT:�(s); F:�(t)g[t 7! t0℄ allows the
deduction of? = ?[t 7! t0℄ only in caset0 = s. 2
If a calculus has an expansion rule that is stable for certainpremisses, then instead of
guessing terms when they are introduced, they can be represented by a rigid variable
that is later instantiated “on demand” when the expansion rule is applied to a premiss
w.r.t. which it is not stable, i.e., in case the application requires the instantiation of
the rigid variable. Usually unification is used to find amost generalsubstitution that
allows a certain expansion rule application. Using rigid variables reduces the number
of choice points in the construction of a tableau proof and thus the size of the search
space.

Intuitively, a formula containing a rigid variableX stands for a single (but unknown)
element of the set of all formulae that are the result of replacing X by some term
(cf. Section 4.3 where rigid variables are introduced that representall term and that are,
thus, calleduniversalvariables). All occurrences of a rigid variable in a tableauhave
to be instantiated by the same term (which is why these variables are called “rigid”).
Thus, instantiating a rigid variable to make a non-stable expansion rule application1 In the literature—in particular on calculi for first-order predicate logic—, several other names have

been used for free and, in particular, for rigid variables, includingparameter, dummy variable, and
meta variable.

84 Chapter 4: Enhancements

possible can make other expansions impossible, which is particularly problematic if
the calculus is not proof confluent.

Rigid variable tableau calculi are usually constructed by “lifting” a ground tableau
calculus. Unfortunately, this is often done in anad hocmanner. Starting point is the
observation that the expansion rule of a calculus is stable under replacement of terms
by terms for some or most premisses. Then, as a first step, the expansion rule is lifted
for those premisses that allow the deduction of a conclusionC(t) for all termst; then,
in the rigid variable version, the conclusionC(X) can be deduced from such premisses
whereX is an arbitrary rigid variable. In a second step, the rigid variable expansion
rule for other premisses is designed in such a way that the calculus is sound and com-
plete; that, however, can be difficult and there may be hiddentraps—in particular if
the ground calculus is not ideal. One has to carefully check for which premisses the
ground expansion rule is stable and for which it is not.

Example 4.2.2 The fact that lifting a ground calculus can be difficult is exemplified
by the history of rigid variable tableau calculi for first-order predicate logic: When
the first versions were defined, some authors missed to note the fact that the ground
rule they used was not stable forÆ-formulae, as it demanded the Skolem constant
introduced by an application to aÆ-formula to benew. Other authors solved (resp.
avoided) this problem by designing an expansion rule schemafor Æ-formulae that does
not result from lifting the ground version (see Section 4.4 for a discussion of improving
the expansion rule schema forÆ-formulae). 2
Such hidden traps can be avoided by altering the ground calculus and making it as
stable as possible before it is lifted. The design problem isthen to make the rule of
the ground calculus stable; an example is the ground expansion rule from Section 3.6,
which might be somewhat non-intuitive but is stable forÆ-formulae.

If a rigid variable calculusCfv has been constructed by lifting a stable ground cal-
culusCgd, then soundness and completeness ofCfv follow from soundness and com-
pleteness ofCgd and do not have to be proven separately. In particular, as therelation
between the rigid variable and ground calculus is purely syntactical, one does not have
to come up separately with an appropriate semantics for the rigid variable tableaux.
The semantics of a tableau containing rigid variables can bedefined based on the se-
mantics of its ground instances (Section 4.2.9).4.2.2 Syntax of Free Variable Tableau Caluli
The replacement of terms by free variables is not restrictedto the formula partG of a
tableau formulaS:�:G, but they can as well be introduced into the label� and the truth
value signS. That is, we assume that the set of tableau formulae is a language with
terms. Labels and formulae may or may not contain free variables of the same sort

4.2 Rigid Variable Tableau Calculi 85

(and, thus, can have variables in common). Free variables used as truth value signs
have to be of a special sorts, such that the only terms of sorts areT andF.

Definition 4.2.3 A calculusCfv for a logicL is a free variable calculus(w.r.t. the setVar of free variables) if, for each signature� 2 Sig , the extension��fv of� that is used
to build tableau formulae is an extension of a signature��gd 2 Sig (that is an extension
of �, too) such that:

1. the setTabForm(��gd) of tableau formulae over�gd is a language with terms
(Def. 2.2.1);

2. the setTabForm(��fv) of tableau formulae over�fv is the free variable language
constructed fromTabForm(��gd) and the setVar of free variables (according to
Definition 2.2.2), i.e.,TabForm(��fv) = (TabForm(��gd))fv :

The sets of terms ofTabForm(��fv) andTabForm(��gd) are denoted byTabTerm(��fv)
resp.TabTerm(��gd).
A calculusCgd for a logicL is aground calculus(w.r.t. the setVar of free variables)
if its tableau formulae do not contain any of the free variables inVar . 2
Example 4.2.4 One of the rare examples where free variables in truth value signs are
useful, is the design of an expansion rule that allows to deduce the non-branching
conclusionffX:F; X:Ggg from premiss containing the equivalencyfT:(F $ G)g.2
The class of free variable tableau calculi is only characterised by the fact that they use
tableau formulae containing free variables. All definitions from Chapter 3 of notions
such as branch, tableau, tableau proof, proof confluence, monotonicity, etc. remain
unchanged. The notions of calculi with expansion rule and ofidealness as defined in
Chapter 3, however, are not appropriate and for the rigid variable case and have to be
adapted (see Sections 4.2.3 and 4.2.5).4.2.3 Rigid Variable Tableau Caluli with Expansion Rule
The notions of a calculus with expansion rule (Section 3.3.3)—and, thus, that of an
ideal calculus (Section 3.3.7)—are not appropriate for rigid variable calculi, because
in a calculus with expansion rule all tableau formulae on a tableauT must remain
unchanged when it is expanded; it is not allowed to instantiate rigid variables occurring
in T . Therefore, we introduce the notion ofrigid variable expansion rules, where a
conclusionC contains (besides a finite set of extensions) a substitutionthat is applied

86 Chapter 4: Enhancements

to the whole tableau whenC is used for expansion. Apart from the application of that
substitution, tableau rule applications are still only allowed to have onlylocal effects.
That is, a tableau rule application extends only asinglebranch of a tableau, and, what
the possibilities for extending a branchB are, only depends onB itself; no additional
pre-conditions are allowed such as the presence of certain formulae on other branches.

Definition 4.2.5 LetC be a free variable tableau calculus for a logicL; and let� 2 Sig
be a signature.

A rigid variable conclusionis a pair hC; �i consisting of a finite setC of branch
extensions (Def. 3.3.4) and a substitution� 2 Subst(��fv) such thatC = C�.

A rigid variable expansion ruleE(�) is a function that assigns to each (finite) tableau
branch whose nodes are labelled with formulae fromTabForm(��fv) a setE(�)(B) of
(possible) rigid variable conclusions, which may be infinite but has to be enumerable.2
Definition 4.2.6 LetC be a free variable tableau calculus for a logicL; and let� 2 Sig
be a signature.

A rigid variable expansion ruleE(�) characterisesthe tableau ruleR(�) of C if, for
all tableauxT over��fv: a tableauT 0 is a successor tableau ofT (i.e.,T 0 2 R(�)(T)) if
and only if there is a branchB of T and a rigid variable conclusionhC; �i in E(�)(B)
such that the tableauT 0 can be constructed fromT by

1. extending the branchB by a new sub-branch for each extensionE in C where
the nodes in that sub-branch are labelled with the elements of E, and

2. applying the substitution� to the tableau.

If the rigid variable expansion ruleE(�) characterises the tableau ruleR(�) of C for
all signatures�, thenE is said to bethe rigid variable expansion rule ofC; andC is
said to be arigid variable calculus with expansion ruleE . 24.2.4 Rigid Variable Expansion Rules that are Monotoni w.r.t. Substitu-tion
The intuition behind the substitution� that is part of a rigid variable conclusionhC; �i
is that its application is a pre-condition for the derivation of C from the formulae on
the branch. If a (ground) calculus is monotonic as defined in Section 3.3.5, the pre-
condition for deriving a certain conclusion is the presenceof certain formulae on the
branch that is expanded—and not the absence of formulae. Accordingly a notion of
monotonicity w.r.t. the application of substitutions can be defined: Only that a certain
variableis resp.can beinstantiated in a certain way is allowed as a pre-condition—
and not that the variable isnot instantiated that way. Note, however, that a different,
incompatible instantiation can very well prevent the derivation.

4.2 Rigid Variable Tableau Calculi 87

Definition 4.2.7 Let C be a rigid variable tableau calculus with expansion ruleE for a
logicL.

The expansion ruleE and the calculusC are calledmonotonic w.r.t. substitutionif for all
signatures� 2 Sig and all branchesB over�� the following holds: ifhC; �i 2 E(B)
and�; � 2 Subst(��) are substitutions such that� = � Æ � , thenhC; �i 2 E(B�). 2
Example 4.2.8 Assume that—in a calculus for PL1 that is monotonic w.r.t. substitution—hffT:p(a; b)gg; fX 7! a; Y 7! bgi is a possible conclusion for a branch branchB(X; Y),
thenhffT:p(a; b)gg; fY 7! bgi is a possible conclusion forB(a; Y), andhffT:p(a; b)gg; idi
is a possible conclusion forB(a; b). 24.2.5 Ideal Rigid Variable Tableau Caluli
Idealness, the important property of tableau making them well-behaved, is defined for
rigid variable calculi in a similar same way as for. A ground calculus is ideal if it
is non-structural, monotonic, and is a calculus with expansion rule. A rigid variable
calculus is ideal, if it is non-structural (as in the ground case), it is montonic (as in the
ground case) and moreover is monotonic w.r.t. substitution, and it has arigid variable
expansion rule allowing the application of substitutions (instead of a ground expansion
rule).

Definition 4.2.9 A rigid variable tableau calculus with expansion rule that is (a) non-
structural, (b) monotonic, and (c) monotonic w.r.t. substitution is calledideal. 2
As in the ground case (see Lemma 3.3.11), the expansion ruleE of an ideal rigid
variable calculus can be represented as a function~E on premisses; and we identify the
expansion ruleE and the function~E.

Lemma 4.2.10 LetC be an ideal rigid variable tableau calculus with expansion ruleE
for a logicL. Then, for all signatures�, there is a (single) function~E(�) that assigns
to each (finite) premiss� � TabForm(��fv) a set~E(�)(�) of (possible) rigid variable
conclusions such that E(�)(B) = ~E(�)(Form(B))
for all tableau branchesB over��fv.
The notion ofminimal premisses of a rigid variable conclusion is defined as in the
ground case (Def. 3.3.13).

Expansion rules of ideal rigid variable calculi can be described by means of rule sche-
mata with an explanation attached to them that describes howto compute the substi-
tution that is to be applied when an instance of the schema is used to extend a tableau
branch (see Sections 4.2.10 and 4.2.11 for examples).

88 Chapter 4: Enhancements4.2.6 A Subsumption Relation on Rigid Variable Conlusions
The subsumption (or is-more-general-than) relation�W defined on substitutions can
be extended to rigid variable conclusions as follows:

Definition 4.2.11 Let C be an ideal rigid variable calculus for a logicL; let hC; �i
andhC 0; �0i be rigid variable conclusions over the same signature��fv 2 Sig; and letW � Var be a finite set of rigid variables.

The conclusionhC; �i subsumesthe conclusionhC 0; �0i, which is denoted byhC; �i �W hC 0; �0i ;
if there is a substitution� 2 Subst(��fv) such that

1. � �W � �W �0 where�W is the subsumption relation on substitutions from Def-
inition 2.2.6;

2. C� = C 0. 2
Lemma 4.2.12 The subsumption relation�W on rigid variable conclusions is transi-
tive.

Proof: Assume thathC; �i �W hC 0; �0i andhC 0; �0i �W hC 00; �00i.
The substitutions� and�0 that exist according to the definition of the relation�W sat-
isfy the conditions� �W � �W �0 and�0 �W �0 �W �00; as the relation�W is transitive
on substitutions, that implies� �W �0 �W �00.
In addition, we haveC�0 = (C�)�0 = C 0�0 = C 00. Thus,hC; �i �W hC 00; �00i, as the
substitution�0 has the required properties. 2
Lemma 4.2.13 If hC; �i andhC; �0i are rigid variable conclusions that only differ in
their substitutions and� �W �0, thenhC; �i �W hC; �0i.
Example 4.2.14A conclusion with a more general substitution is more general, i.e.,hff?gg; idi subsumeshff?gg; fX 7! agi ;
and, ifY 62 W , thenhff?gg; fX 7! f(Y)gi subsumeshff?gg; fX 7! f(a)gi : 2

4.2 Rigid Variable Tableau Calculi 89

Intuitively, completeness of a an ideal rigid variable calculus is preserved if only most
general conclusions w.r.t.�W are derived from a given premiss. However, the setW
of variables has to be chosen carefully. If the context is known (e.g., a certain tableau),
then it is sufficient ifW contains all variables occurring in that context; otherwise, one
has to make sure that for any finite setW of variables that may occur in the context,
completeness is preserved.

Example 4.2.15 If X 62 W , then the conclusionCX = hffp(X)gg; idi subsumes the
conclusionCt = hffp(t)gg; idi for all termst, in which case the single conclusionCX
can replace all the conclusionsCt.
If, however, the context is not known and, thus, the setW may or may not con-
tain the variableX, one has to be careful asCX doesnot subsumeCt if X 2 W .
In that case, one can use the setfCX j X 2 Varg of conclusions to replace the setfCt j t 2 TabTermg, because the number of variable in a given context is always fi-
nite and there are, thus, always variablesX 2 Var not occurring in the context. 24.2.7 The Rigid Variable Version of an Ideal Ground Tableau Calulus
As said before, a rigid variable tableau calculusCrv is constructed by lifting a ground
calculusCgd. The following definition clarifies the relationship between Crv andCgd.
Definition 4.2.16 Let Crv be an ideal rigid variable calculus for a logicL, and letCgd
be an ideal ground calculus forL such that, for all signatures� 2 Sig, the extended
signature��gd used byCgd is the signature for whichTabForm(��fv) = (TabForm(��gd))fv
holds, that has to exist according to the definition of free variable tableau calculi
(Def. 4.2.3).

The calculusCrv is a rigid variable versionof the calculusCgd (andCgd is a ground
versionof Crv) if, for all (rigid variable) premisses�rv � TabForm(��fv), all (ground)
premisses�gd � TabForm(��gd), and all substitutions� 2 Subst(��fv) with finite do-
main such that �fv� = �gd ;
the following holds, whereEgd andE rv are the expansion rules ofCgd resp.Crv, andW = dom(�):Egd(�gd) = fCgd j there is ahCrv; �i 2 E rv(�rv) such thathCrv; �i �W hCgd; �ig :2

90 Chapter 4: Enhancements� Cgd fT:�:(8x)(p(x;))g ffT:�:p(t;)gg for all termstrv fT:�:(8x)(p(x; Y))g hffT:�:p(X; Y)gg; idi for all X 2 Var� = fY 7! g � = fY 7! ; X 7! tg� Cgd fT:�:p(t) ^ q(t)g ffT:�:p(t);T:�:q(t)ggrv fT:�:p(X) ^ q(X)g hffT:�:p(X);T:�:q(X)gg; idi� = fX 7! tg � = fX 7! tg� Cgd fT:�:p(t); F:�:p(t)g ff?ggrv fT:�:p(t0); F:�:p(t00)g hff?gg; �i where� an MGU oft0; t00� such thatt = t0� = t00� � = �
Table 4.1:Examples for the relationship between the expansion rules of a ground
calculus for PL1 and its rigid variable version (see Example4.2.17).

Example 4.2.17Table 4.1 shows examples from first-order predicate logic for the
three main types of ground premisses (and their conclusions) for which an expansion
rule is liftable and their rigid variable versions.

In each case, the ground expansion rule (see Section 3.6) allows to derive the con-
clusionCgd from the premiss�gd, and the rigid variable expansion rule (see Sec-
tion 4.2.10) allows to derive the conclusionCrv from the premiss�rv.
Using the notation from Definition 4.2.16, the relationshipis indicated by the substi-
tutions� for which�rv� = �gd and the substitution� for whichCrv� = Cgd.
In the first example, it isnot sufficient if hffT:�:p(X; Y)gg; idi is a conclusion offT:�:(8x)(p(x; Y))g for just some rigid variableX 2 Var , because a different substi-
tution� 0 = fY 7! ;X 7! dgmight instantiateX, in which caseX 2 W and, thus,hffT:�:p(X; Y)gg; idi 6�W hffT:�:p(t;)gg; fY 7! ;X 7! dgi : 2
A ground version of any rigid variable calculus can easily beconstructed by defining
that, if some pairhCrv; �i is a rigid variable conclusion of some premiss�rv and� is
some substitution grounding forCrv and�rv such that� � �, thenCgd = Crv� is a
ground conclusion of the premiss�gd = �rv.
The advantage of using lifting for constructing a rigid variable calculusCrv from a
ground calculusCgd is that soundness and completeness ofCrv follows from soundness
and completeness ofCgd.

4.2 Rigid Variable Tableau Calculi 91

Theorem 4.2.18Let Crv be an ideal rigid variable calculus for a logicL, and letCgd be an ideal ground calculus forL such thatCrv is a rigid variable version ofCgd
(Def. 4.2.16).

Then, for all signatures� 2 Sig and all finite setsG � Form(�) of formulae, there is
a Crv-tableau proof forG if and only if there is aCgd-tableau proof forG.

Proof: If-part: Assume thatT gd0 ; : : : ; T gdn (n � 0) is a tableau proof forG constructed
using the ground calculusCgd.
By induction oni, we prove that there is a rigid variable tableau proofT rv0 ; : : : ; T rvn
such thatT rvi �i = T gdi for substitutions�i 2 Subst(��fv) (0 � i � n).i = 0: SinceG does not contain rigid variables, andCrv is non-structural,T rv0 �0 = T gd0
for T rv0 = T gd0 and�0 = id .i! i + 1: If T gdi+1 has been constructed fromT gdi applying the expansion rule ofCgd
to a premiss�gd on a branchBgdi of T gdi and deriving a conclusionCgd, then there is
a premiss�rv on a branchBrvi of T rvi such that�rvi �i = �gd andBrvi �i = Bgdi . Thus,
according to the relationship between a ground calculus andits rigid variable version
(Def. 4.2.16), there is a rigid variable conclusionhCrv; �i that is derivable from�rv
using the expansion rule ofCrv, and there is a substitution�i such thatCrv�i = Cgd
and �i �W �i whereW is the domain of�i (that contains all rigid variables occur-
ring in T rvi), which impliesT rvi �i = T gdi . Thus, the substitution�i+1 = �i and the
tableauT rvi+1 that is derived fromT rvi expanding the branchBrvi of T rvi using the con-
clusionCrv satisfy the conditionT rvi+1�i+1 = T gdi+1.
Only-if-part: Assume thatT rv0 ; : : : ; T rvn (n � 0) is a tableau proof forG constructed
using the rigid variable calculusCrv.
Again, by induction oni, we prove that there is a ground tableau proofT gd0 ; : : : ; T gdn
such thatT gdi = T rvi �i for substitutions�i 2 Subst(��fv) (0 � i � n).i = 0: SinceG does not contain rigid variables, andCgd is non-structural,T gd0 = T rv0 �0
for T gd0 = T rv0 and�0 = id .i! i + 1: If T rvi+1 has been constructed fromT rvi applying the rigid variable expan-
sion rule ofCrv to a premiss�rv on a branchBrvi of T fvi and deriving a rigid variable
conclusionhCrv; �i, then there is a premiss�gd on a branchBgdi of T gdi such that�gd = �rvi �i andBgdi = Brvi �i. Thus, according to the relationship between a ground
calculus and its rigid variable version (Def. 4.2.16), there is a substitution� such that� �W �i �W �i and the ground conclusionCgd = Crv�i is derivable from�gd using
the expansion rule ofCgd. Since� �W �i �W �i, we haveT gdi = Ti�i = Ti��i andCgd = C�i = C��i. Thus, the substitution�i+1 = �i and the tableauT gdi+1 that is de-
rived fromT gdi expanding the branchBgdi of T gdi using the conclusionCgd satisfy the
conditionT gdi+1 = T rvi+1�i+1. 2

92 Chapter 4: Enhancements

Corollary 4.2.19 LetCrv be an ideal rigid variable calculus for a logicL, and letCgd
be an ideal ground calculus forL such thatCrv is a rigid variable version ofCgd.
Then,Crv is sound and complete if and only ifCgd is sound and complete.

Theorem 4.2.18 also implies that soundness and completeness of a rigid variable cal-
culusCrv1 follows from soundness and completeness of a rigid variablecalculusCrv2 ifCrv1 andCrv2 have the same ground versionCgd.4.2.8 Lifting: Construting a Rigid Variable Calulus
In this section, we discuss how to actually construct a rigidvariable versionCrv of a
ground calculusCgd.
A trivial rigid variable versionCrv can easily be constructed by defining that, given
some ground conclusionCgd of some ground premiss�gd and some substitution� that
is grounding for a rigid variable premiss�rv such that�rv� = �gd, thenhCgd; �i is a
rigid variable conclusion of�rv.
Consider the following example from first-order predicate logic: AsCgd = ffT:p(a)g; fT:q(a)gg
is a ground conclusion of �gd = fT:(p(a) _ q(a))g ;
and�rv� = �gd for � = fX 7! ag and�rv = fT:(p(X) _ q(X))g
we conclude that hCrv; �i = hffT:p(a)g; fT:q(a)gg; fX 7! agi
is a rigid variable conclusion of�rv in the rigid variable calculus. Such trivial rigid
variable conclusions are, of course, not what we want. We intend to construct a rigid
variable calculus where the conclusion of the above premiss�rv is the more general
conclusion C 0rv = hffT:p(X)g; fT:q(X)gg; idi :
Thus, the general idea of lifting is to (repeatedly) replaceconclusions (or sets of con-
clusions) of the trivial rigid variable calculus by more general conclusions in such a
way that soundness and completeness is preserved.

4.2 Rigid Variable Tableau Calculi 93

Theorem 4.2.20Let C and C 0 be ideal rigid variable calculi for a logicL that are
identical except for their expansion rulesE resp.E 0.
If C is sound and complete and, for all signatures� 2 Sig , all rigid variable pre-
misses� over��fv, and all finite setsW of rigid variables,

1. for each rigid variable conclusionhC 0; � 0i 2 E 0(�)(�), if Cgd is any ground
conclusion over��gd such thathC 0; � 0i �W hCgd; idi, then there is a rigid vari-
able conclusionhC; �i 2 E(�)(�) such thathC; �i �W hCgd; idi (soundness),
and

2. for each rigid variable conclusionhC; �i 2 E(�)(�) there is a rigid variable
conclusionhC 0; � 0i 2 E 0(�)(�) such thathC 0; � 0i �W hC; �i (completeness),

then the calculusC 0 is sound and complete as well.

The above theorem states the properties that a set of conclusions replacing a set of less
general conclusions must have to preserve soundness and completeness of the calculus.
It does not answer the question of how to construct such an appropriate set of more
general conclusions. Unfortunately, there is no uniform method for constructing an
optimal set containing only most general conclusions. There is, however, a method that
yields good results in most cases; it is the method that is usually used (in an informal
way) when a ground calculus is lifted in anad hocmanner. The idea is to replace
all occurrences of terms in a certain ground premiss�gd and in one of its ground
conclusionsCgd by arbitrary terms containing rigid variables and then to check what
most general substitution� has to be applied and what other properties the new terms
have to have to make sure that using the resulting rigid variable conclusionhCrv; �i as
a possible conclusion for the resulting rigid variable premiss�rv leads to an expansion
rule satisfying the conditions of Theorem 4.2.20 and, thus,to a sound and complete
calculus.

Example 4.2.21Assume thatffT:p(f(b))gg is a ground conclusion of the ground
premissfT:(a � b); T:p(f(a))g, i.e., the expansion rule allows the “application” of
equalities to terms in formulae.

We replace the term occurrences in the premiss and the conclusion by arbitrary rigid
variable terms, namely the occurrence off(a) by t, the occurrence ofa in a � b by t0,
the occurrence ofb in a � b by s, and the occurrence off(b) in the conclusion bys0.
Now, it is easy to check that usinghffT:p(s0)gg; �i as a conclusion for the pre-
missfT:(t0 � s); T:p(t)g preserves soundness and completeness according to The-
orem 4.2.20 if� is a unifier oft0 and a subtermt00 of t ands0 is the result of replacingt00 in t0 by s� . 2

94 Chapter 4: Enhancements

In some cases a more general conclusionhC 0; � 0i cannot be used, because it just
slightly violates the soundness condition in Theorem 4.2.20, i.e., for many or even
most—but not for all—ground conclusionCgd such thathC 0; � 0i �W hCgd; idi there
is a (less general) rigid variable conclusionhC; �i with hC; �i �W hCgd; idi. This
problem can be overcome if decidable symbolic (i.e., syntactical) constraintscan be
formulated that separate the “good” from the “bad” ground conclusionsCgd.
The syntactical objects that are constituents of symbolic constraints have to be included
in the extended signatures�� that are used to construct tableau formulae, which imme-
diately implies that no constraints are attached to (a) the formulae in an initial tableau
and (b) the special tableau formula?. The constraints are made part of the label of a
tableau formula. A special set of tableau interpretations is used to define the semantics
of the ground calculus with constraints; in these interpretations all labels containing a
constraint that evaluates tofalse represent a special world in which all formulae are
false (thus, if the constraint in a label� evaluates tofalse, a tableau formula of the
form �:T:� is not satisfied byany tableau interpretation and a tableau formula of the
form �:F:� is satisfied byall tableau interpretations).

Example 4.2.22Assume that the ground conclusionffT:�(su(pred(n)))gg can be
derived from the premissffT:�(pred(su(n)))gg for all termsn that cannot (syn-
tactically) be reduced to0. In that case, it is not sound to derive the rigid variable
conclusionffT:�(su(pred(X)))gg from the premissffT:�(pred(su(X)))gg.
If, however, the restriction thatn cannot (syntactically) be reduced to0 can be formu-
lated as a symbolic constraintfn 6� 0g, then it is sound forall termsn to derive the
ground conclusionffT:fn 6� 0g:�(su(pred(n)))gg from ffT:�(pred(su(n)))gg;
and it is, thus, sound to derive the rigid variable conclusionffT:fX 6� 0g:�(su(pred(X)))gg
from the rigid variable premissffT:�(pred(su(X)))gg. 2
The symbolic constraints attached to tableau formulae thatare necessary to preserve
soundness of expansion rule applications have to be clearlyseparated from constraints
that are used to organise proof search such as, for example, ordering constraints that
implement selection functions (see Section 5.5).4.2.9 Semantis of Rigid Variable Tableaux
Rigid variable calculi usually do not have a model semanticsbased on tableau inter-
pretations, because the truth of different tableau formulae containing the same rigid
variable is interrelated. Nevertheless, it is possible to define a semantics for rigid
variable tableaux based on the semantics of the ground version of a rigid variable
calculusCrv; this semantics can be used to prove soundness ofCrv by showing that ex-
pansion rule applications preserve satisfiability. For proving completeness, however,
one cannot use this semantics, because the completeness criteria from Definition 3.5.6

4.2 Rigid Variable Tableau Calculi 95

and Theorem 3.5.7 only apply to non-destructive calculi, and rigid variable calculi are
inherently destructive.

Definition 4.2.23 Let Crv be an ideal rigid variable calculus for a logicL, and letCgd
be an ideal ground calculus forL such thatCrv is a rigid variable version ofCgd.
A rigid variable tableauT rv over a signature��rv is satisfiedby a tableau interpreta-
tion hm; Ii 2 TabInterp(��gd) of Cgd iff for all substitutions� 2 Subst(��fv) that are
grounding forT rv, the ground tableauT gd = T rv� is satisfied byhm; Ii (Def. 3.4.1).2
Definition 4.2.24 Let Crv be an ideal rigid variable calculus for a logicL, and letCgd
be an ideal ground calculus forL such thatCrv is a rigid variable version ofCgd.
The calculusCrv has thestrong soundness of expansion property for rigid variable
calculi if, for all signatures�fv and all tableauT; T 0 over��fv: if T 0 is a successor
tableau ofT , thenT 0 is satisfied by the all tableau interpretations inTabInterp(��gd)
that satisfyT (Def. 4.2.23). 2
Lemma 4.2.25 Let Crv be an ideal rigid variable calculus for a logicL, and letCgd
be an ideal ground calculus forL such thatCrv is a rigid variable version ofCgd.
The calculusCrv has the strong soundness of expansion property for rigid variable
calculi (Def. 4.2.24) if and only ifCgd has the strong soundness of expansion property
for ground calculi (Property 2 in Def. 3.5.8).

Proof: The lemma follows trivially from the definitions of the soundness properties
and the relation between a rigid variable calculus and its ground version. 2
Theorem 4.2.26Let Crv be an ideal rigid variable calculus for a logicL, and letCgd
be an ideal ground calculus forL such thatCrv is a rigid variable version ofCgd.
If Crv has Property 1 from Definition 3.5.8 (appropriateness of theset of tableau inter-
pretations) and the strong soundness of expansion propertyfor rigid variable calculi
(Def. 4.2.24), thenCrv is sound.

Proof: As Crv has Property 1 from Definition 3.5.8, thenCgd has that property as
well, because the initial tableaux for a setF of formulae are the same in both calculi.
SinceCrv has the strong soundness of expansion property for rigid variable calculi,Cgd has the strong soundness of expansion property for ground calculi (Property 2 in
Def. 3.5.8) according to Lemma 4.2.25.

Thus,Cgd is sound (Theorem 3.5.4), which implies thatCrv is sound as well (Corol-
lary 4.2.19). 2

96 Chapter 4: Enhancements4.2.10 An Ideal Rigid Variable Calulus for PL1
In this section, as an example, an ideal rigid variable calculusCrvPL1 for first-order pred-
icate logic is defined, which is a rigid variable version of the ground calculusCgdPL1
from Section 3.6 and can constructed fromCgdPL1 using the lifting technique described
in Section 4.2.8.

For each first-order signature� (see Section 2.3), the extended signature��fv contains
the free variables fromVar as constants (see Section 2.3) and, in addition, the setF sko(�) of Skolem function symbols containing infinitely many symbols of each arityn � 0. Consequently, the setTabForm(��fv) is a language with the setTerm(��fv) of
terms (where all free variables and terms are of the same sort), and it is easy to verify
that TabForm(��fv) = (TabForm(��gd)fv
where��gd is the extensions of� by the setF sko(�) of Skolem function symbols.

Example 4.2.27 If a is a constant of the signatur� but it is not a Skolem constant,
then the atomp(a) is a formula over� and the extended signatures��gd and��fv. If is
a Skolem constant, thenp() is a formula over��gd and��fv but not over�. The atomsp(X) andp(;X) are formulae only over��fv. Note thatp(; x) is not a formula over
any signature, as formulae must not contain free object variables. 2
The set of labels and the initial label ofCrv are the same as that ofCgd, i.e., the label�
represents the single world of PL1-models.

To define the expansion rule ofCrv, we again useunifying notation, i.e., tableau for-
mulae with rigid variables are devided into�-, �-, Æ-, and-formulae according to
Table 3.1 in the same way as ground tableau formulae.

The expansion rule schemata ofCrv are constructed lifting the schemata ofCgd. The
schemata for premisses consisting of�-, �-, and-formulae are obviously stable w.r.t.
replacement of terms by terms; new rigid variables are introduced by rule applications
to premisses containing-formulae.

The schema for premisses consisting ofÆ-formulae can be lifted as well, provided
that an appropriate version of the schema is used. As is easy to check, the version
of the schema is stable where all ground terms occurring in a formulaÆ(x) are made
arguments of the Skolem term that replaces the bound object variablex. Thus, the
main difficulty in designing an ideal rigid variable calculus for PL1 has already been
overcome by designing a stable ground expansion rule schemafor Æ-formulae.

Definition 4.2.28 Given a signature� 2 SigPL1, a free variable Skolem term assign-
mentis a functionskofv assigning to eachÆ-formula� 2 TabFormPL1(��fv) a termskofv(�) = f(X1; : : : ; Xk) 2 Term0PL1(��fv)
such that

4.2 Rigid Variable Tableau Calculi 97

1. (a) f 2 F sko(�),
(b) k = �sko� (f), und

(c) X1; : : : ; Xk are the free variables occurring in�;

2. for all f 0 2 F sko(�), if f 0 occurs in�, thenf > f 0 where> is an arbitrary but
fixed ordering onF sko(�); and

3. for all Æ-formulae 2 TabFormPL1(��), if sko() = f(X 01; : : :X 0k), then the
formulae� and are identical up to renaming of bound object variables and up
to replacing all occurrences of free variablesXi byX 0i (1 � i � k). 2

The expansion rule of the ground calculusCgd is only unstable for premisses allowing
to close a branch. It requires the formulae in the two complementary atomsT:�:G andF:�:G that form the minimal premiss for the deduction of? to be identical. Thus,
the rigid variable version of the rule schema for closing branches is that a premiss� = fT:�:G; F:�:G0g allows the deduction of a conclusionhff?gg; �i if � is a unifier
of G andG0. As it is sufficient to use set of most general conclusions (Section 4.2.8),
the restriction to conclusionshff?gg; �iwhere� is amost generalunifier ofG andG0
preserves completeness.

In Table 4.2, the rigid variable expansion ruleE rvPL1 of CrvPL1 is given schematically; and
the following is its formal definition:

Definition 4.2.29 The expansion ruleE rvPL1 of CrvPL1 is, for all signatures� 2 SigPL1
and all premisses� � TabFormPL1(��rv), defined by: the setE(�)rvPL1(�) of possible
conclusions is the smallest set containing the following rigid variable conclusions:

– fhf�1; �2g; idig for all � 2 �,
– fhf�1g; f�2g; idig for all � 2 �,
– fhf1(X)g; idig for all 2 � and all rigid variablesX 2 Var ,
– fhfÆ(t)g; idig for all Æ 2 � wheret = skofv(Æ) (Def. 4.2.28),
– fhf?g; �ig if T:�:G; F:�:G0 2 � such thatG;G0 2 AtomPL1(��fv) are

unifiable atoms, and� is an MGU ofG andG0 2
It is easy to check that the calculusCrvPL1 is a rigid variable version of the sound and
complete ground calculusCPL1 defined in Section 3.6, which (using Corollary 4.2.19)
implies soundness and completeness ofCrvPL1.
Theorem 4.2.30The calculusCrvPL1 is sound and complete.

98 Chapter 4: Enhancements��1�2 ��1 �2 (x)1(X)
whereX is any
rigid variable

Æ(x)Æ1(t)
wheret = skofv(Æ)
(see Def. 4.2.28)� ?

where� and are unifiable atomic formulae and
an MGU of� and is applied to the tableau

Table 4.2:Rigid variable rule schemata for first-order predicate logic.4.2.11 An Ideal Rigid Variable Tableau for the Modal Logi K
As a second example, we define a rigid variable versionCrvK of the ground calculusConK
for the modal logicK from Section 3.7.4, which an expansion rule that is continuous
w.r.t. premisses containing�-formulae and that is, thus, for these premisses liftable.

SinceFormmod(�) is a not a language with terms, rigid variables are not introduced
into the formula part of a tableau formulae but into labels; the set of labels ofConK is a
language with terms (where terms are natural numbers). Thus, the set of labels ofCrvK
is Labfv = CondLab(N [Var) (whereCondLab(N [Var) is defined analogously toCondLab(N), see Definition 3.7.1), with the initial label1. Using this setLabfv of
labels, we trivially haveTabFormfv(�mod) = (TabFormgd(�mod))fv (the signatures
are not extended by additional [Skolem] symbols).

As in calculi for first-order predicate logic, the expansionrule schemata is obviously
stable for premisses consisting of�- and �-formulae. The rôle of the schema for-formulae inCrvPL1, however, is now played by the schema for the�-formulae of
modal logics. This schema allows, for example, to derive from a premiss� containingT:1:2G the conclusionffT:1:(n):pgg for all n 2 N . The schema is liftable, and its
rigid variable version allows to deduce from� the conclusionffT:1:(X):pgg for all
rigid variablesX.

When a branch is closed, all rigid variables occurring in thelabels of the involved
complementary atoms are instantiated because the labels have to be justified by other
labels on the branch, and all non-conditional positions in labels are ground (i.e., they
consist of natural numbers and not of variables). For example, complementary atoms�1 = T:1:(X):p and�2 = F:1:(Y):p can only be used to close a branch if the branch
contains formula such as = T:1:1:q whose label justifies (instances of) the label1:(X) and1:(Y). Thus, the conclusionhff?gg; fX 7! 1; Y 7! 1g is derived from the
premissf�1; �2; g.
In Table 4.2, the rigid variable expansion ruleE rvmod of Crvmod is given schematically; and

4.2 Rigid Variable Tableau Calculi 99��1�2 ��1 �2 T:�:2GT:�:(X):G F:�:3GF:�:(X):G
for all X 2 VarT:�:3FT:�:n:G

wheren = dGe F:�:2GF:�:n:G
wheren = d:Ge T:�::GF:�:G F:�::GT:�:GT:�:GF:�0:G?

if there is a substitution� such that[��℄ = [�0�℄ and
that label is justified by formulae on the branch

after� has been applied;
a most general such substitution� has to be applied to the tableau

Table 4.3: Expansion rule schemata of the rigid variable calculusCrvK for the
modal logicK].

it is formally defined as follows:

Definition 4.2.31 For all premisses� � TabFormmod, the setE rvK (�)(�) is the small-
est set containing the following conclusions (whered�e is any bijection from the setFormmod(�) of modal formulae to the set of natural numbers):

– hff�1; �2gg for all � 2 �,

– hff�1g; f�2gg; idi for all � 2 �,

– hffT:�:(X):Ggg; idi for all T:�:2G 2 � and allX 2 Var ,
– hffF:�:(X):Ggg; idi for all F:�:3G 2 � and allX 2 Var ,

– hffF:�:n:Ggg; idi for all F:�:2G 2 � wheren = d:Ge,
– hffT:�:n:Ggg; idi for all T:�:3G 2 � wheren = dGe,
– hff?gg; �i if T:�:G; F:�0:G 2 � and� is a most general substitution

such that[��℄ = [�0�℄, and��; �0� are justified by��. 2
There may be different ways to instantiate variables in a label such that it is justified
on a tableau branch.

Example 4.2.32Consider the premiss� = fT:1:1:1:q; T:1:2:r; T:1:(X):p F:1:(X):pg :

100 Chapter 4: Enhancements

The setE rvmod(�) of consists of the conclusionshff?gg; fX 7! 1gi and hff?gg; fX 7! 2gi : 2
The calculusCrvK is sound and complete, because it is a rigid variable versionof the
sound and complete calculusConK defined in Section 3.7.4.

Theorem 4.2.33The calculusCrvK for the logicK is sound and complete.

Example 4.2.34As an example, we again prove unsatisfiability of the formulaG from
Examples 3.7.16 and 3.7.22, now using the rigid variable calculusCrvK defined above.
A closed rigid variable tableauT onrv for G that has been constructed using the expan-
sion rule ofConK is shown in Figure 4.1 (the figure shows the tableau formulae with
uninstantiated rigid variables; the substitutions that have to be applied during the con-
struction of the tableau proof are listed separately).

The proof has the same structure as that shown in Figure 3.2, which is constructed
using the ground version of the calculus. The difference is that, when the expansion
rule schema for�-formulae is applied to add formulae 6, 7, and 19, the label that is
introduced does not have to be “guessed”. Instead, the rigidvariable labels1:(X1),1:(X2), and1:(X3) are introduced, respectively. The rigid variables are instantiated
later on when the expansion rule is applied to close the left and the right branch of the
tableau.

When the left branch is closed, it is not sufficient to apply the substitutionfX1 7! X2g,
i.e., hff?gg; fX1 7! X2gi is not a valid conclusion of any premiss on the left branch
of the tableau, because the label1:(X2) is not justified. BothX1 andX2 have to be
instantiated with 1, such that the justified label1:(1) is created.

After �1 = fX1 7! 1; X2 7! 1g has been applied to the tableau, closing the middle
branch does not require a further instantiation of rigid variables. However, to close the
right branch, the substitution�2 has to be applied, that instantiatesX3 with 2.

This example demonstrates the advantage of using rigid variables. When the branches
are closed, there is only one most general substitution thatcan be applied (in this ex-
ample), i.e., in each case the choice of instantiations for free variables is deterministic.
Contrary to that, when the ground version of the calculus is used, new labels indeed
have to be guessed because at the points where labels are introduced, it is not obvious
whether the label1:(1) or the label1:(2) should be used, which corresponds to the
alternative of instantiating any of the rigid variables with either 1 or 2. 2

4.3 Universal Variable Calculi 101

Substitutions
to be applied:�1 = fX1 7! 1; X2 7! 1g�2 = fX3 7! 2g [1;–] T:1:2(:p _ q) ^ 2p ^ (3:q _3:p)

[2;1] T:1:2(:p _ q)
[3;1] T:1:2p ^ (3:q _3:p)

[4;3] T:1:2p
[5;3] T:1:3:q _3:p
[6;2] T:1:(X1)::p _ q

[7;4] T:1:(X2):p
[8;5] T:1:3:q
[10;8] T:1:1::q
[11;10] F:1:1:q

[12;6] T:1:(X1)::p
[14;12] F:1:(X1):p

[15;7,14]? [13;6] T:1:(X1):q
[16;11,13]?

[9;5] T:1:3:p
[17;9] T:1:2::p
[18;17] F:1:2:p

[19;4] T:1:(X3):p
[20;18,19]?

Figure 4.1: The tableauT onrv from Example 4.2.34 is the result of applying the
listed substitutions to the above tree.4.3 Universal Variable Caluli4.3.1 The Idea of Universal Variable Caluli

Under certain conditions, there is an alternative use of free variables for strengthen-
ing a tableau calculus. Instead of using a free variable to represent a single but un-
known term, it can be used as well to representall terms. Then, a formula containing
such a free variablex stands for the set ofall formulae that are the result of replac-
ing x by some term. Intuitively, these free variables can be seen as being universally
quantified on the meta-level; accordingly they are calleduniversal variables. In the
following, to clearly separate rigid and universal variables, we use the variables in
the setVar only as rigid variables; universal variables are taken fromthe separate setUVar = fx1;x2; : : :g that is disjoint fromVar = fX1; X2; : : :g. Universal variables
are never instantiated; no substitutions are applied to tableaux containing universal
(and no rigid) variables.

Definition 4.3.1 Let L be a logic. A free variable calculusCuv for L is a universal
variable calculus(for L) if its tableau formulae only contain free variables from the
setUVar and not from the setVar . 2

102 Chapter 4: Enhancements

Definition 4.3.2 Let Cuv be a universal variable calculus for a logicL; let� 2 Sig be
a signature; and let� � TabForm(��fv) be a set of tableau formulae.

The setInst(�) � TabForm(��gd) of instancesof formulae in� is defined by:Inst(�) = f�� j � 2 Subst fv(��) is grounding for�g : 2
Idealness and other syntactical notions such as conclusions and expansion rules are
defined for universal variable calculi in the same way as for ground calculi.

The advantage of using universal variables is the following: Often several different
instances of a tableau formula containing free variables have to be used to close a
branch (or a subtableau). In rigid variable calculi the mechanism to do so is to ap-
ply the expansion rule more than once to premisses that allowthe introduction of
new rigid variables to generate variants of the tableau formulae. Rigid variables are
not implicitly universally quantified (as it is, for instance, the case with variables in
clauses when using a resolution calculus). Suppose a tableau branchB contains a
formula�(X); assume further that the expansion of the tableau then proceeds with
creating new branches. Some of these new (sub-)branches contain occurrences of the
rigid variableX; whenX is instantiated, the same substitution forX has to be used
on all of them. In particular situations, however, it may be possible—without destroy-
ing soundness of the calculus—to add the formula�(x) toB. In such cases, different
instances�(t) of �(x) can be used to expand the branchB—without first generating
variants�(X 0); �(X 00); : : : of �(X). Recognising such situations and exploiting them
yields shorter tableau proofs, and in most cases reduces thesearch space. If both uni-
versal and rigid variables are used in a calculus, then more general substitutions can be
used in rigid variable conclusions as compared to the corresponding calculus that uses
only rigid variables.

Intuitively, if a branchB contains a tableau formula�(x), that means that one could
add�(t) toB for arbitrary termst without creating any new non-closed branches (this
intuition, however, is only appropriate if no information is hidden in the structure of a
tableau branch, i.e., if the calculus is ideal).

Example 4.3.3 Figure 4.2 shows an example for the usefulness of universal variables.
The tableauT rv1 (top left in the figure) for the setF = f(8x)(p(x)); :p(a) _ :p(b)g
of PL1-formulae cannot be closed immediately as no single substitution forX allows
to add? to both branches. To find a proof, the expansion rule has to be applied again
to the-formulaT:(8x)(p(x)) to add a variant�(X 0) = T:p(X 0) of �(X) = T:p(X).
Then, the closed tableauT rv2 (top right in the figure) can be deduced.

The tableauT uv1 (bottom left in the figure), however, that contains the formulaT:p(x)
instead ofT:p(X) can expanded to a closed tableauT uv2 (bottom right in the figure)
without applying a substitution, becauseT:p(x) represents all formulae of the formT:p(t), includingT:p(a) andT:p(b). 2

4.3 Universal Variable Calculi 103

T:(8x)(p(x))T:(:p(a) _ :p(b))T:p(X)T::p(a)F:p(a) T::p(b)F:p(b)
T:(8x)(p(x))T:(:p(a) _ :p(b))T:p(X)T::p(a)F:p(a)? T::p(b)F:p(b)T:p(X 0)?

with fX 7! ag andfX 0 7! bg appliedT:(8x)(p(x))T:(:p(a) _ :p(b))T:p(x)T::p(a)F:p(a) T::p(b)F:p(b)
T:(8x)(p(x))T:(:p(a) _ :p(b))T:p(x)T::p(a)F:p(a)? T::p(b)F:p(b)?

Figure 4.2: Example for the usefulness of universal variables; the tableauxT rv1 (top left), T rv2 (top right), T uv1 (bottom left),T uv2 (bottom right) from Ex-
ample 4.3.3.

104 Chapter 4: Enhancements

An additional advantage of universal variables is that theyhelp to avoid redundan-
cies inherent to rigid variable calculi. If, for example, a rigid variable tableau branch
contains the formulae �(X1) = T:p(X1)�(X2) = T:p(X2) 1 = F:p(a) 2 = F:p(b)
then there are four different possibilities to close the branch. If, however, the branch
contains the universal variable formula�(x) = T:p(x) instead of�(X1) and�(X2),
then there is only one conclusion that closes the branch, namely ff?gg, and not vari-
able has to be instantiated.

Universal variables in a tableau can be renamed arbitrarily, as long as all occurrences of
a variable in the same tableau formula are replaced by the same new variable. There-
fore, a premiss containing the complementary atomsT:p(x) and F:p(f(x)) can be
used to close a branch, as the universal variablex can be renamed in one of the two
atoms.

The method of using universal variables in a tableau calculus for first-order predicate
logic has first been described in (Beckert & Hähnle, 1992) and has been further im-
proved in (Beckert & Hähnle, 1998). A universal variable calculus for modal logics
has been described in (Beckert & Goré, 1997). In (Bibel, 1982), a technique called
splitting by needhas been proposed for the connection method; it is—like the uni-
versal variable method—based on the idea to avoid copying a universally quantified
formula in cases where it is sound to use a single copy with different instantiations for
its variables.4.3.2 The Universal Variable Version of a Ground Calulus
Universal variable calculiCuv are usually constructed by lifting a ground calculusCgd
(similar to rigid variable calculi), such that soundness and completeness ofCuv follows
from soundness and completeness ofCgd.
Definition 4.3.4 Let Cuv be an ideal universal variable calculus for a logicL; and letCgd be an ideal ground calculus forL such that, for all signatures� 2 Sig, the extended
signature��gd used byCgd is the signature for whichTabForm(��fv) = (TabForm(��gd))fv
holds, that has to exist according to the definition of free variable tableau calculi
(Def. 4.2.3).

4.3 Universal Variable Calculi 105

The calculusCuv is a universal variable versionof Cgd (andCgd is a ground version
of Cuv) if, for all (universal variable) premisses�uv � TabForm(��fv), the sets[fEgd(�gd) j �gd is a finite subset ofInst(�uv)g
andffE1�1; : : : ; En�ng j fE1; : : : ; Eng 2 Euv(�uv) and, for1 � i � n,�i 2 Subst fv(��fv) is a substitution that is grounding forEig
are identical. 2
The following theorem relates soundness and completeness of an ideal universal vari-
able calculus and soundness and completeness of its ground version. The proof ot the
theorem is constructive; thus, it provides an algorithm forconstructing a ground ta-
bleau proof from a universal variable tableau proof. As the ground tableau proof may
be exponentially larger, the only-if part of the proof is somewhat tricky; there is no
one-to-one correspondence between expansion rule applications in the ground an the
universal variable proof (in Example 4.3.7 an example for the transformation is given).

Theorem 4.3.5 Let Cuv be an ideal universal variable calculus for a logicL; and letCgd be an ideal ground calculus forL such thatCuv is a universal variable version
of Cgd (Def. 4.3.4).

Then, for all signatures� 2 Sig and all finite setsG � Form(�) of formulae, there is
a Cuv-tableau proof forG if and only if there is aCgd-tableau proof forG.

Proof: If-part: Assume thatT gd1 ; : : : ; T gdn (n � 1) is a tableau proof forG constructed
using the ground calculusCgd.
By induction oni, we prove that a sequenceT uv1 ; : : : ; T uvn of universal variable tableaux
for G exists such that for each branchBuv of T uvi there is a branchBgd of T gdi withForm(Bgd) � Inst(Form(Buv)) :
That implies, as all branches of the closed tableauT gdn contain?, that all branches
of T uvn contain?. ThereforeT uvn is closed.i = 1: An arbitrary initial tableauT uv1 for G does not contain any universal variables;
therefore,Form(Bgd) = Form(Buv) = Inst(Form(Buv)).i! i + 1: Let Bgdi be the branch ofT gdi that has been expanded using a premiss� � Form(Bgdi) and a conclusionCgd = fEgd1 ; : : : ; Egdk g. According to the definition
of the relationship between universal variable calculi andtheir ground version, there
has to be a premiss�uv on each branchBuvi with Form(Bgdi) � Inst(Form(Buvi))
such that a universal variable conclusionCuv = fEuv1 ; : : : ; Euvk g can be derived from

106 Chapter 4: Enhancements

the premiss�uv whereEgdj � Inst(Euvj) (1 � j � k). Let the tableauT uvi+1 be con-
structed from the tableauT uvi by extending all such branches using the premiss�uv
and the conclusionCuv.
Now, let Buvi+1 be an arbitrary branch inT uvi+1. The only interesting case is whereForm(Buvi+1) = Form(Buvi) [Euvj for somej 2 f1; : : : ; kg. But then the branchBgdi+1
in T gdi+1 that has been constructed by extendingBgdi with Egdj satisfies the condition in

the induction hypothesis, becauseForm(Bgdi) � Inst(Form(Buvi)) and, therefore,Form(Bgdi+1) = Form(Bgdi) [Egdj� Inst(Form(Buvi)) [Inst(Euvj)= Inst(Form(Buvi) [Euvj)= Inst(Form(Buvi+1)) :
Only-if part: Assume thatT uv1 ; : : : ; T uvn (n � 1) is a tableau proof forG constructed
using the universal variable calculusCuv.
By induction oni, starting fromi = n, we prove the following:

Induction hypothesis:For each branchBuvi in T uvi there is a set�gd � Inst(Buvi) of
ground tableau formulae such that every ground tableau branchBgd containing these
formulae can be expanded to a closed (sub-)tableau.

The use a kind of “backward” induction, starting fromi = n, reflects the fact that
one first has to know which instances of universal variable formulae are needed as
premisses to derive the leaves of the ground tableau, which then allows to compute the
instances needed in the premisses of the premisses, etc.

Once the induction hypothesis has been proven to hold fori = 1, we can conclude
that the single branchBgd1 of the initial ground tableau can be extended to a closed
ground tableau, asForm(Bgd1) = Form(Buv1) = Inst(Form(Buv1)) whereBuv1 is the
single branch of the initial universal variable tableauT uv1 .i = n: As T uvn is closed, each of its branchesBuvn contains?; therefore, the set�gd
can be chosen to bef?g. Every ground tableau branch containing? trivially can be
extended to a closed sub-tableau.i+1! i: LetBuvi be an arbitrary branch ofT uvi . If Buvi is a branch ofT uvi+1 as well, we
are done. Otherwise,T uvi+1 has been constructed fromT uvi extending the branchBuvi
using some premiss�uv � Form(Buvi) and a conclusionCuv = fEuv1 ; : : : ; Euvk g.
Let�gdi+1;j � Form(Buvi+1;j) be the set of ground tableau formulae that exists according
to the induction hypothesis for the branchBuvi+1;j of T uvi+1 that has been constructed by
expandingBuvi by Euvj (1 � j � k). Further, for allj 2 f1; : : : ; kg, let � j1 ; : : : ; � jlj be
substitutions grounding forEuvj such that all tableau formulae inInst(Euvj) that occur

in �gdi+1;j are in
Sljr=1Euvj � jr .

4.3 Universal Variable Calculi 107

Choose�gdi � Inst(Form(Buvi)) to be the smallest set such that:

1. containing all ground formulae inInst(Form(Buvi)) that occur in any of the
sets�gdi+1;j (1 � j � k), and

2. containing all minimal premisses�gd � Inst(Form(Buvi)) as subsets that are
necessary to derive the conclusionsCgd = fEuv1 � 1r1 ; : : : ; Euvk � 1rkgwhererj 2 f1; : : : ; ljg
for 1 � j � k. Such premisses�gd exist as subsets ofInst(Form(Buvi)) accord-
ing to the definition of the relationship between a universalvariable calculus and
its ground version.

Now, every ground tableau branchBgdi such that�gdi � Form(Bgdi) can be extended
to a closed sub-tableau as follows: ExpandBgdi repeatedly using all the conclusionsCgd = fEuv1 � 1r1 ; : : : ; Euvk � 1rkg in such a way that in the construction of each resulting

new sub-branch each of these conclusions has been used once.There are
Qkj=1 lj

of these conclusions; thus, the number of new sub-branches is exponential in
Qkj=1 lj.

The pigeon-hole principle implies that each of the new sub-branches contains for somej 2 f1; : : : :kg the formulae ofall the extensionsEuvj � jr (r 2 f1; : : : ; ljg); as otherwise
there would be a branch that does not contain someEuvj � jrj for all j 2 f1; : : : ; kg,
in contradiction to the assumption that all the conclusionsfEuv1 � 1r1 ; : : : ; Euvk � 1rkg have
been used in the expansion of all new sub-branches.

We can conclude that each of the new sub-branches contains all tableau formulae
in �gdi+1;j for somej 2 f1; : : : ; kg, because a formulae in�gdi+1;j � Inst(Form(Buvi+1;j)) = Inst(Form(Buvi)) [Inst(Euvj)
is either an element ofInst(Form(Buvi)), in which case it occurs in�gdi according to
condition 1 in the definition of�gdi and thus onBgdi , or it is an element ofInst(Euvj)
and occurs, thus, by construction on the new sub-branch.

The induction hypothesis applies to each of the new sub-branches as they all contain
the formulae of one of the sets�gdi+1;j, and they can all be extended to a closed sub-

tableau. Therefore, the branchBgdi can be extended to a closed sub-tableau. 2
Corollary 4.3.6 LetCuv be an ideal universal variable calculus for a logicL; and letCgd be an ideal ground calculus forL such thatCuv is a universal variable version
of Cgd (Def. 4.3.4).

Then,Cuv is sound and complete if and only ifCgd is sound and complete.

Example 4.3.7 As the ground tableau proofs that are constructed from universal vari-
able proofs are exponentially larger, we can only present a small example for one step
in that construction.

108 Chapter 4: Enhancements�T:(8x)(8y)(p(x) _ q(y))T:(p(x) _ q(y))T:p(x)T uvp T:q(y)T uvq
Figure 4.3: A universal variable tableau proof (see Example 4.3.7).

Consider the universal variable tableau proof shown in Figure 4.3 (it is constructed
using the universal variable calculusCuvPL1 for PL1 presented in Section 4.3.6); as-
sume that the sub-tableauxT uvp andT uvq are closed (the set� of tableau formulae in
the initial tableau might, for example, contain the formulae T:(:p(a) _ :p(b)) andT:(:q() _ :q(d))).
Assume further that the construction of a ground tableau proof (according to the proof
of Theorem 4.3.5) has already been applied to all expansion steps necessary to gen-
erate the sub-tableauxT uvp andT uvq . We now consider the expansion step in which
the universal variable conclusionffT:p(x)g; fT:p(y)gg is derived from the premissfT:(p(x) _ p(y))g. Let Buv be the single branch of the tableau before andBuvp
andBuvq the two branches of the tableau after that expansion rule application. The
construction of the ground tableau proof has already proceeded to the step where we
have closed sub-tableauxT gdp andT gdq that can be generated by expanding any ground
tableau branches containing certain instances of the formulae onBuvp andBuvq , respec-
tively. Assume that�gdp = fT:p(a);T:p(b)g and�gdq = fT:q();T:q(d)g are these sets
of instances.

Figure 4.4 shows the completed ground tableau proof. It is easy to check that on
each of the new sub-branches either bothT:p(a) andT:p(b) or bothT:q() andT:q(d)
occur.2. 2
For many logics, the same decrease in the length of shortest proofs that results from
using the universal variable technique can be achieved using a non-analytic cut rule.
In the above example, one could use the cut formulaG = (8x)(8y)(p(x) _ q(y))! (8x)(p(x)) _ (8y)(q(y)) :
Then, the resulting branch that containsF:G could be closed using a sub-tableau proof
of constant size, whereas the branch containingT:G could be closed using a sub-
tableau proof of the same size as the universal variable tableau proof. Thus, in some
sense, the universal variable technique can be seen as a restricted application of the2 Note that both in the ground and the universal variable case,an expansion rule schema for-formulae

is used that allows to deriveT:(p(t) _ q(t0)) in one step fromT:(8x)(8y)(p(x) _ q(y)) without
deriving first an intermediate formulaT:(8y)(p(t) _ q(y))

4.3 Universal Variable Calculi 109�(8x)(8y)(p(x) _ q(y))p(a)p(a)p(b)p(b)T gdp q(d)T gdp q()p(b)T gdp q(d)T gdq
q(d)p(b)p(b)T gdp q(d)T gdp q()p(b)T gdq q(d)T gdq

q()p(a)p(b)p(b)T gdp q(d)T gdp q()p(b)T gdp q(d)T gdq
q(d)p(b)p(b)T gdq q(d)T gdq q()p(b)T gdq q(d)T gdq

Figure 4.4: A ground tableau proof constructed from the universal variable ta-
bleau proof in Figure 4.3 (see Example 4.3.7); to enhance readability, the labels
and truth-value signs are omitted (which are� resp.T in all cases).

non-analytic cut rule (using the cut rule in an unrestrictedway leads to an explosion in
the size of the search space).

In (Stenz, 1997), a transformation of tableau proofs constructed using a universal vari-
able calculus for PL1 into ground tableau proofs is described. That transformation,
however, only works if universal variables do never occur inin a conclusion with more
than one extension in the original proof, in which case a ground tableau proof can be
constructed whose size is polynomial in the size of the universal variable proof.4.3.3 Construting a Universal Variable Calulus
In this section, we discuss the problem of how to construct a universal variable ver-
sionCuv of a ground calculusCgd.
One possibility is to turn an ideal rigid variable versionCrv of Cgd that has been con-
structed using the lifting technique described in Section 4.2 into a universal variable
calculus. That can be done as follows: Given a universal variable premiss�uv, re-
place the universal variables in�uv by rigid variables to construct a rigid variable pre-
miss�rv, where occurrences of a universal variablex in the same formula are replaced
by the same rigid variable, but occurrences ofx in different formulae are replaced by
different rigid variables; and different universal variables are alway replaced by dif-
ferent rigid variables. Then, the set of possible universalvariable conclusions for�uv
consists of allCuv that can be constructed from rigid variable conclusionshCrv; �i
of �rv by

1. replacing each rigid variable that occurs in only one extension ofCrv by a uni-
versal variable, and

2. replacing each rigid variable that occurs in more than oneextension ofCrv by a
ground termt 2 TabTerm.

110 Chapter 4: Enhancements

All occurrences of a rigid variable are replaced by the same universal variable resp.
the same term. Note that the substitution� in the free variable conclusion does not
play any rôle in the construction of the universal variableconclusion. The resulting
universal variable calculus is by construction ideal.

Example 4.3.8 Table 4.4 shows examples for the most important phenomena that may
occur when the above method for computing universal variable conclusions is used.

(a) A new universal variable is introduced.

(b) A variable is distributed over two extensions; it loosesits universal power and
has to replaced by ground terms.

(c) A variable occurs in only one extension and, therefore, remains universal.

(d) A combination of cases (b) and (c); the variablex has to be replaced by ground
terms whereas the variabley remains universal.

(e) In the rigid variable version a substitution has to be applied to the tableau; in the
universal variable version it is not applied as the variablethat would have to be
instantiated is universal.

(f) In this case, the method for constructing a universal variable conclusion does not
lead to an optimal result. Each of the two universal variables is distributed over
both extensions and they are therefore replaced by ground terms. However, the
alternative schema T:p(x)$ q(y)T:p(x) F:p(x)T:q(y) F:q(y)
for PL1-formulae of the formp(x)$ q(y) describes a sound expansion rule as
well; the two veriables remain universal although they are distributed over two
extensions. This schema is sound provided that the universal variablesx andy
each occur in only one subformula of the premiss.3 2

As Cases (a) and (b) in the above example demonstrate, in universal variable calculi,
different variants (or instances) of a conclusion are generated by branching rule sche-
mata and not by the schemata that introduce new variables as in rigid variable calculi.

For certain formula classes, using a universal variable calculusCuv constructed from
a free variable calculusCfv can lead to proofs that are exponentially smaller than the
shortest proofs built usingCfv or its ground versionCgd. That notwithstanding, as3 Intuitively, this more liberal schema is sound because, ifp(t) and q(t0) are equivalent for allt; t0 2 Term , thenp(t) andq(t) are either both true for allt 2 Term or both false for allt 2 Term.

4.3 Universal Variable Calculi 111

�uv = T:(8x)(p(x;y))�rv = T:(8x)(p(x; Y))hCrv; �i = hT:p(X; Y) ; idiCuv = T:p(x;y)
(a)

�uv = T:p(x) _ q(x)�rv = T:p(X) _ q(X)hCrv; �i = hT:p(X) T:q(X) ; idiCuv = T:p(t) T:q(t)
for all t 2 Term
(b)�uv = T:p(x) ^ q(x)�rv = T:p(X) ^ q(X)hCrv; �i = hT:p(X)T:q(X) ; idiCuv = T:p(x)T:q(x)

(c)

�uv = T:p(x) _ q(x;y)�rv = T:p(X) _ q(X; Y)hCrv; �i = hT:p(X) T:q(X; Y) ; idiCuv = T:p(t) T:q(t;y)
for all t 2 Term
(d)�uv = T:p(f(a))T:f(x) � x�rv = T:p(f(a))T:f(X) � XhCrv; �i = hT:p(a) ; fX 7! agiCuv = T:p(a)

(e)

�uv = T:p(x)$ q(y)�rv = T:p(X)$ q(Y)hCrv; �i = hT:p(X)T:q(Y) F:p(X)F:q(Y) ; idiCuv = T:p(t)T:q(t0) F:p(t)F:q(t0)
for all t; t0 2 Term

(f)

Table 4.4: Examples for the construction of universal variable conclusions (see
Example 4.3.8).

112 Chapter 4: Enhancements

Case (f) in Example 4.3.8 shows, this construction not always yields an optimal uni-
versal variable calculus. In fact, the question whether a universal variable occurring
in the premiss can remain universal in the conclusion or has to be replaced by ground
terms is undecidable in general (for the case of first-order predicate logic, this problem
is discussed in (Beckert & Hähnle, 1998)).4.3.4 Semantis of Universal Variable Tableaux
It is usually not possible to define model semantics for universal variable calculi if both
truth value signsF andT can occur in tableaux. The reason is that, if one defines�(x)
to be true inI(�) if �(t) is true inI(�) for all termst, then�(x) is false inI(�) if
there is a single termt such that�(t) is false inI(�), i.e.,F:�:�(x) is satisfied if there
is a single termt such thatF:�:�(t) is satisfied, which is not the intended semantics of
the universal variablex.

Therefore, we define semantics tableaux of a universal variable calculusCuv based on
the semantics of the tableaux of the ground versionCgd of Cuv; where the relationship,
however, is different from that between the semantics ofrigid variable and ground
tableaux.

Definition 4.3.9 Let Cuv be an ideal universal variable calculus for a logicL, and letCgd be an ideal ground calculus forL such thatCuv is a universal variable version
of Cgd.
A universal variable tableau formula� 2 TabForm(��uv) is satisfiedby a tableau inter-
pretationhm; Ii 2 TabInterp(��) of Cgd iff all ground tableau formulae inInst(f�g)
are satisfied byhm; Ii. 2
As in the ground case, a branchBuv of a universal variable tableau is satisfied by a ta-
bleau interpretationhm; Ii if it satisfies all formulae onBuv (or, equivalently, if it sat-
isfies all formulae inInst(Buv)); and,hm; Ii satisfies a universal variable tableauTuv
if it satisfies at least one branch ofTuv.
Lemma 4.3.10 Let Cuv be an ideal universal variable calculus for a logicL, and letCgd be an ideal ground calculus forL such thatCuv is a universal variable version
of Cgd.
The calculusCuv has the strong soundness of expansion property w.r.t. the tableau
interpretations ofCgd if and only ifCgd has the strong soundness of expansion property
(Property 2 in Def. 3.5.8).

Proof: The lemma follows trivially from the definitions of the soundness property and
the relation between a universal variable calculus and its ground version. 2

4.3 Universal Variable Calculi 113

Theorem 4.3.11LetCuv be an ideal universal variable calculus for a logicL, and letCgd be an ideal ground calculus forL such thatCuv is a universal variable version
of Cgd.
If Cuv has the soundness properties from Definition 3.5.8 (appropriateness of the set of
tableau interpretations and strong soundness of expansion), thenCuv is sound.

Proof: As Cuv has Property 1 (strong appropriateness of the set of tableauinterpre-
tations) from Definition 3.5.8, thenCgd has that property as well, because the initial
tableaux for a setF of formulae are the same in both calculi. SinceCuv has Prop-
erty 2 (strong soundness of expansion),Cgd has that property as well (according to
Lemma 4.3.10).

Thus,Cgd is sound (Theorem 3.5.4), which implies thatCuv is sound as well (Corol-
lary 4.3.6). 24.3.5 Mixing Rigid and Universal Variables
A universal variable calculus can syntactically be considered to be a ground calculus
(as it does not contain rigid variables) and can thus be lifted and enriched by introduc-
ing rigid variables. Then, both universal and free variables occur in tableaux. We call
such a calculusmixedvariable calculus.

The method from Section 4.3.3 for constructing auniversal variable version of a
ground calculusCgd from a rigid variable versionCrv of Cgd can be adapted such that it
can be used to construct a mixed variable calculusCmv that is a rigid variable version
of a universal variable version ofCgd and thus uses both the universal and the rigid
variable technique.

The construction starts in the same way as for building a pureuniversal variable cal-
culus: Given a mixed variable premiss�mv (i.e., a premiss containing both rigid and
universal variables), construct pure rigid variable premiss�rv by replacing the univer-
sal variables in�mv by rigid variables, where—as before—occurrences of a universal
variablex in the same formula are replaced by the same rigid variable, but occurrences
of x in different formulae are replaced by different rigid variables; and different uni-
versal variables are alway replaced by different rigid variables. In addition, we now
assume that the new rigid variables that are introduced are different from the rigid
variables that already occur in�mv. Then, the set of possible mixed variable con-
clusions for�mv consists of allCmv that can be constructed from a rigid variable
conclusionhCrv; �i of �rv by

1. replacing all rigid variables inCrv that have been introduced as a replacement
for a universal variablex and occur in only one extension ofCrv by the original
variablex,

114 Chapter 4: Enhancements

2. replacing all rigid variables inCrv that have been introduced as a replacement for
a universal variable and occur in more than one extension ofCrv by an arbitrary
rigid variable,

3. restricting the substitution� to the rigid variables that occur in the original mixed
variable premiss�mv.

The second step above may seem redundant; but it is needed because, for example,ffT:p(X)g; T:q(X)gg must be a conclusion offfT:p(x) _ q(x)gg for all rigid vari-
ablesX. Intuitively, expansion rule applications that destroy universality of a vari-
ablex must allow the deduction of an arbitrary number of variants of the conclusion
containing different rigid variablesX instead of the universal variablex.

Example 4.3.12Tables 4.5 and 4.6 show examples for mixed variable premisses and
the mixed variable conclusions that are computed for these premisses using the method
described above (cf. Table 4.4 and Example 4.3.8 where similar examples are used to
demonstrate the construction of (pure) universal variableconclusions).

(a) A new universal variablex is introduced. The rigid variableZ is not affected.

(b) The universal variablex is distributed over two extensions; it looses its universal
power and has to replaced by an arbitrary rigid variableX. The rigid variableY
is not affected.

(c) The universal variablex occurs in only one extension and, therefore, remains
universal. The rigid variableY is not affected.

(d) A combination of cases (b) and (c); the universal variablex has to be replaced
by an arbitrary rigid variableX whereas the variabley remains universal. The
rigid variableZ is not affected.

(e) In the rigid variable version, a substitution has to be applied to the tableau; one of
the instantiated variables (the rigid variableX) has been introduced as a replace-
ment for the universal variablex, the other instantiated variable (the rigid vari-
ableY) already occurred in the mixed variable premiss. In the mixed variable
conclusion only the rigid variableY that occurred in the premiss is instantiated.

(f) This example demonstrates that a universal variablex looses its universal power
and has to be replaced by an arbitrary rigid variableX if it occurs in a term in
the range of the substitution that is part of the free variable conclusion. 2

As shown in Case (f) in the above example, a universal variable has to be replaced by
a rigid variable if it occurs in the range of a substitution that is applied to the tableau.
Consequently, if one has the choice to either instantiatex with Y or instantiateY with
(a rigid replacement) forx, it is better to choose the former possibility.

4.3 Universal Variable Calculi 115

�mv = T:(8x)(p(x;y; Z))�rv = T:(8x)(p(x; Y; Z))hCrv; �i = hT:p(X; Y; Z) ; idihCmv; �i = hT:p(x;y; Z) ; idi
(a)�mv = T:p(x; Y) _ q(x; Y)�rv = T:p(X; Y) _ q(X; Y)hCrv; �i = hT:p(X; Y) T:q(X; Y) ; idihCmv; �i = hT:p(X; Y) T:q(X; Y) ; idi
for all X 2 Var
(b)�mv = T:p(x; Y) ^ q(x; Y)�rv = T:p(X; Y) ^ q(X; Y)hCrv; �i = hT:p(X; Y)T:q(X; Y) ; idihCmv; �i = hT:p(x; Y)T:q(x; Y) ; idi
(c)�mv = T:p(x; Z) _ q(x;y; Z)�rv = T:p(X;Z) _ q(X; Y; Z)hCrv; �i = hT:p(X;Z) T:q(X; Y; Z) ; idihCmv; �i = hT:p(X;Z) T:q(X;y; Z) ; idi
for all X 2 Var
(d)

Table 4.5: Examples for the construction of mixed variable conclusions (first
part), see see Example 4.3.12.

116 Chapter 4: Enhancements�mv = T:p(f(a; b))T:f(x; Y) � x�rv = T:p(f(a; b))T:f(X; Y) � XhCrv; �i = hT:p(a) ; fX 7! a; Y 7! bgihCmv; �i = hT:p(a) ; fY 7! bgi
(e)�mv = T:p(f(x))F:p(Y)�rv = T:p(f(X))F:p(Y)hCrv; �i = h? ; fY 7! f(X)gihCmv; �i = h? ; fY 7! f(X)gi
for all X 2 Var
(f)

Table 4.6: Examples for the construction of mixed variable conclusions (second
part), see Example 4.3.12.

In the design of mixed variable calculi, a generalised notion of unification, which
we calluv-unification, plays an important rôle. In the rigid variable as well as inthe
universal variable case, standard unification as defined in Section 2.2.3 is sufficient (the
difference is that in the universal variable case unifiers are not applied to the tableau).
In the mixed variable case, however, both types of variablescan occur simultaneously,
and uv-unification has to be used, which takes the different nature of both types of
variables into account.

Definition 4.3.13 Let � and be tableau formulae over a signature��mv containing
both rigid and universal variables; and let� = fx1 7! X1; : : : ;xk 7! Xkg and � = fy1 7! Y1; : : : ;yk 7! Ylg
be substitutions that replace all universal variables in� resp. by new rigid variables,
i.e.,

1. x1; : : : ;xk are all the universal variables occurring in�, andy1; : : : ;yl are all
the universal variables occurring in ,

2. X1; : : : ; Xk; Y1; : : : ; Yl are pairwise distinct rigid variables neither occurring in� nor in .

4.3 Universal Variable Calculi 117

A substitution� 2 Subst(��mv) is auniversal variable unifier (uv-unifier)of � and
if it is the restriction of a unifier of�� and � to the rigid variables occurring in�
and/or . 2
Note that both the domain and the range of a uv-unifier containonly rigid and no
universal variables.

Example 4.3.14The substitutionfY 7! bg is a uv-unifier of the tableau formu-
laeT:p(x; Y) andT:p(a; b); the empty substitutionid is a uv-unifier ofT:p(x) andT:p(f(x)); andfX 7! f(Y)g is a uv-unifier ofT:p(X) andT:p(f(y)). 2
The definitions of the semantics of rigid and universal variable tableaux (Def. 4.2.23
and Def. 4.3.9) can easily be combined to define a semantics for mixed variable ta-
bleaux:

Definition 4.3.15 Let Cmv be an ideal mixed variable calculus for a logicL; and letCgd be an ideal ground calculus forL such thatCmv is a rigid variable version of a
universal variable version ofCgd.
A mixed variable tableauTmv is satisfied by a tableau interpretationhm; Ii of the
ground calculusCgd iff, for all substitution� 2 Subst(��rv) such thatTmv� does not
contain rigid variables, the tableauTmv� is satisfied byhm; Ii according to Def. 4.3.9
(satisfiability of universal variable tableaux), i.e., if there is a branchB of Tmv� such
thathm; Ii satisfies all (ground) tableau formulae inInst(Form(B)). 24.3.6 An Ideal Mixed Variable Calulus for PL1
In this section, we define a mixed variable calculusCmvPL1 for PL1. It is constructed from
the pure rigid variable calculusCrvPL1 described in Section 4.2.10 using the method for
computing mixed variable conclusions from Section 4.3.5.

For each first-order signature� (see Section 2.3), the extended signatures��mv now
contains the rigid variables fromVar and the universal variables fromUVar as con-
stants (see Section 2.3) and, in addition, the setF sko(�) of Skolem function symbols
containing infinitely many symbols of each arityn � 0. All free (rigid and universal)
variables are of the same sort.

The set of labels and the initial label ofCmv are the same as that ofCgd andCrv, i.e.,
the label� represents the single world of PL1-models.

As before, unifying notation is used to describe the expansion rule ofCmv, and the set
of tableau formulae divided into�-, �-, -, andÆ-formulae according to Table 3.1.

As said above, the expansion rule schemata ofCmv are constructed from the sche-
mata ofCrv using the method described in the previous section. The schemata ofCmv

118 Chapter 4: Enhancements��1�2 ��1� �2�
for all substitutions� = fx1 7! X1; : : : ;xk 7! Xkg

wherex1; : : : ;xk are the universal variables occurring
in both�1 and�2 andfX1; : : : ; Xkg are rigid variables(x)1(x)

for some
universal variablex
not occurring in

Æ(x)Æ1(t)
wheret = skofv(Æ)
(see Def. 4.2.28)� ?

where� and are unifiable atomic formulae; and
a most general uv-unifier of�; is applied to the tableau

Table 4.7: Rule schemata for first-order predicate logic using both universal and
rigid variables.

differ notably in two ways from the corresponding schemata of the rigid variable cal-
culusCrv: First. it is not the schema for-formulae any more that introduces variants
of a formulae with different rigid variables but the schema for �-formulae. Second,
the schema for closing branches applies substitutions onlyrequires thatrigid variables
are instaniated (and no universal variables); that is, it applies a most general uv-unifier
(Def. 4.3.13) of the complementary atoms.

The same Skolem terms are used as in the rigid variable case (Def. 4.2.28); however,
all free variables, i.e., both universal and rigid variables, are made arguments of the
Skolem term.

In Table 4.7, the expansion rule for premisses that contain both rigid and universal
variables is given schematically for the different formulatypes.

The following is the formal definition of the expansion ruleEmvPL1 of the mixed variable
calculusCmvPL1.
Definition 4.3.16 The expansion ruleEmvPL1 of CmvPL1 is, for all signatures� 2 SigPL1
and all premisses� � TabFormPL1(��mv), defined by: the setE(�)mvPL1(�) of possible
conclusions is the smallest set containing the following mixed variable conclusions:

4.3 Universal Variable Calculi 119

– fhf�1; �2g; idig for all � 2 �,
– fhf�1�g; f�2�g; idig for all � 2 � and all� = fx1 7! X1; : : : ;xk 7! Xkg wherex1; : : : ;xk are the universal variables occurring in both�1

and�2 andfX1; : : : ; Xkg are rigid variables,
– fhf1(x)g; idig for all 2 � wherex is a universal variable not occurring

in ,
– fhfÆ(t)g; idig for all Æ 2 � wheret = skofv(Æ) (Def. 4.2.28),
– fhf?g; �ig if T:�:G; F:�:G0 2 � such thatG;G0 2 AtomPL1(��mv) are

unifiable atoms;� is a uv-unifier ofG andG0. 2
Theorem 4.3.17The calculusCmvPL1 is a rigid variable version of a universal variable
version of the calculusCPL1 defined in Section 3.6.

Corollary 4.3.18 The calculusCmvPL1 is sound and complete.4.3.7 An Ideal Mixed Variable Calulus for the Modal Logi K
In this section, we define a mixed variable versionCmvK of the calculusConK for the
modal logicK from Section 3.7.4, i.e., a calculus with continuous expansion rule
schema for�-formulae. As in the rigid variable version, free variablesare introduced
into labels (and not in the formula part of tableau formulae). The set of labels of the
mixed variable calculus isLabmv = CondLab(N [Var [UVar)
with the initial label1.

The relationship between the mixed variable calculusCmvK and the rigid variable calcu-
lusCrvK is similar to that between the mixed variable calculusCmvPL1 and the rigid variable
calculusCrvPL1 for PL1: InCrvPL1, variants of a formula are generated by applying the ex-
pansion rule to-formulae, whereas inCmvPL1 such rule application introduce universal
variables, and variants are generated by expansion rule applications to�-formulae that
distribute universal variables over different branches. Similarly, in CrvK , variants of ta-
bleau formulae are generated by applying the expansion ruleto �-formulae, whereas inCmvK universal variables are introduced by rule applications to�-formulae, and variants
are generated by expansion rule applications to�-formulae when universal variables
are distributed over different branches and loose their universal power.

In the rigid variable calculusCrvK , because of the justification test, all variables occur-
ring in a pair of complementary atoms are instantiated when the pair is used to close a
branch. For example, a pairT:1:(X):p, F:1:(Y):p can only be used to close a branch if
formulae such asT:1:1:q are available to justify the labels of the complementary pair.

120 Chapter 4: Enhancements��1�2 ��1� �2�
for all substitutions� = fx1 7! X1; : : : ;xk 7! Xkg

wherex1; : : : ;xk are the universal variables occurring
in both�1 and�2 andfX1; : : : ; Xkg are rigid variablesT:�:2GT:�:(x):G F:�:3GF:�:(x):G

for somex 2 UVar not in� T:�:3GT:�:n:G
wheren = dGe F:�:2GF:�:n:G

wheren = d:GeT:�::GF:�:G F:�::GT:�:GT:�:GF:�0:G?
if there are a substitution� 2 Subst rv and substitutions�; �0 2 Substuv

such that[���℄ = [�0�0�℄ and
the labels��� and�0�0� are justified by formulae inInst(B�)

whereB is the branch being expanded; a most general such substitution� is to be applied to the tableau

Table 4.8:Expansion rule schemata for the calculusCmvK .

Thus, the substitutionfX 7! 1; Y 7! 1g has to be applied in that case. If, however,
complementary atoms containing universal variables are used, such asT:1:(x):p andF:1:(y):p, then one still has to check that there are formulae on the branch that justify
an instance1:(n) of 1:(x) and1:(y), but it is not necessary to actually instantiate the
universal variablesx andy to close the branch.

In contrast to the expansion rule of the mixed variable calculus CmvPL1 for PL1, the
expansion rule of the mixed variable calculusCmvK for K is not defined using the notion
of uv-unification, because the free variables in labels are not instantiated with complex
terms but only with other free variables or with natural numbers. Mixed variable labels
are unifiable if there are substitutions instantiating the universal variables they contain,
respectively, and another common substitution instantiating their rigid variables, such
that the combination of these substitutions is a unifier of the labels. The substitutions
instantiation universal variables and the substitution instantiation rigid variables cannot
influence each other, and only the rigid variable substitution is applied to the tableau.

The expansion ruleEmvK of CmvK is shown schematically in Table 4.8. Formally it is
defined as follows:

4.3 Universal Variable Calculi 121

Definition 4.3.19 The expansion ruleEmvK of CmvK is, for all signatures� 2 Sigmod and
all premisses� � TabFormmod(�), defined by: the setE rvK (�)(�) is the smallest set
containing the following conclusions (whered�e is any bijection fromFormmod(�) to
the set of natural numbers):

– hff�1; �2gg for all � 2 �,

– hff�1�g; f�2�gg; idi for all � 2 � and all� = fx1 7! X1; : : : ;xk 7! Xkg wherex1; : : : ;xk are the universal variables occurring in both�1
and�2 andfX1; : : : ; Xkg are rigid variables,

– hffT:�:(x):Ggg; idi for all T:�:2G 2 � wherex 2 UVar is a universal variable
not occurring in�,

– hffF:�:(x):Ggg; idi for all F:�:3G 2 � wherex 2 UVar is a universal variable
not occurring in�,

– hffF:�:n:Ggg; idi for all F:�:2G 2 � wheren = d:Ge,
– hffT:�:n:Ggg; idi for all T:�:3G 2 � wheren = dGe,
– hff?gg; �i if T:�:G; F:�0:G 2 � and� is a most general substitution

in Subst rv for which there are substitutions�; �0 2 Substuv
such that[���℄ = [�0�0�℄ and the labels��� and�0�0� are
justified by��. 2

Theorem 4.3.20The calculusCmvK is a rigid variable version of a universal variable
version of the calculusCK defined in Section 3.7.4.

Corollary 4.3.21 The calculusCmvK is sound and complete.

Example 4.3.22We continue from Examples 3.7.22 and 4.2.34 and again prove the
formula G = 2(:p _ q) ^ 2p ^ (3:q _3:p)
to beK-unsatisfiable, now using the mixed variable calculusCmvK defined above. A
closed mixed variable tableauT onmv for G is shown in Figure 4.5.4

When the expansion rule is applied to the�-formulae 2 and 4 to add formulae 6 resp. 7
to the tableau, the universal variablesx1 resp.x2 are introduced (instead of introducing
rigid variables).

When the expansion rule is applied to formula 6, and formulae12 and 13 are added
to the tableau, the universal variablex in the premiss loses its universal power as it is
distributed over both extensions; in 12 and 13 it is replacedby the rigid variableX1.
In the rigid variable version of the proof, the substitutionfX1 7! 1; X2 7! 1g has to be
applied to close the left branch of the tableau. Now, however, the tableau contains the4 The figure shows the tableau formulae with uninstantiated rigid variables; the substitutionfX1 7! 1g

that has to be applied during the construction of the proof islisted separately.

122 Chapter 4: Enhancements

Substitution
to be applied:�1 = fX1 7! 1g [1;–] T:1:2(:p _ q) ^ 2p ^ (3:q _3:p)

[2;1] T:1:2(:p _ q)
[3;1] T:1:2p ^ (3:q _3:p)

[4;3] T:1:2p
[5;3] T:1:3:q _3:p
[6;2] T:1:(x1)::p _ q

[7;4] T:1:(x2):p
[8;5] T:1:3:q
[10;8] T:1:1::q
[11;10] F:1:1:q

[12;6] T:1:(X1)::p
[14;12] F:1:(X1):p

[15;7,14]? [13;6] T:1:(X1):q
[16;11,13]?

[9;5] T:1:3:p
[17;9] T:1:2::p
[18;17] F:1:2:p

[19;7,18]?
Figure 4.5: The tableauT onmv from Example 4.2.34 is the result of applying the
substitution�1 to the above tree.

universal variablex2 instead ofX2. Thus, it is sufficient to check that an instantiation
of x2 existsthat allows to close the branch. Only the substitutionfX1 7! 1g that
instantiates the rigid variableX1 is applied to the tableau.

As in the rigid variable case, afterfX1 7! 1g has been applied, closing the middle
branch does not require a further instantiation. But now, asthe variablex2 is universal
and hasnot been instantiated with1 when closing the left branch, it is not necessary
to generate a second variant of formula 7. The right branch can be closed using the
complementary atoms 7 and 18, becausex2 could be instantiated with 2 in which case
the label1:(x2) of formula 7 were justified by formulae on the right branch (namely
formula 18); again, it is not necessary to actually apply thesubstitutionfx2 7! 2g to
the tableau, which instantiates a universal variable; its existence is sufficient. 24.4 Improved Skolemisation
Skolemisation is a satisfiability preserving deduction of the following general form:
When a formula (in our framework a premiss)� is given that implies the existence of
objects with certain properties in all models of�, then a Skolem symbol, a Skolem
term, or other syntactical construct is introduced to represent an arbitrary one of these

4.4 Improved Skolemisation 123

objects whose existence is known, and a formula is deduced expressing the fact that
the object represented by the Skolem symbol has the propertyit is known to have.

Example 4.4.1 A formula Æ = (9x)(�(x)) of first-order predicate logic implies the
existence of elementsd in the domain of all first-oder structurehD; Ii satisfyingÆ that
have the property thatvalI;[x7!d℄(�(x)) = true. A Skolem constant or a termt is
introduced that representsd; and the formula�() resp.�(t) is deduced. 2
Example 4.4.2 An inequalityF:(s � t) implies, if s andt are interpreted as sets, the
existence of an elementd that occurs in only one of the two sets and not in the other.

Thus, the expansion rule of the calculusCMLSS from Section 3.8 for the fragment MLSS
of set theory introduces a constant representing the existing elementd when it is
applied to an inequality. 2
The objects whose existence is known do not have to be elements of a universe or
domain. They can as well be functions, relations, or possible worlds (as is the case in
calculi for modal logics).

Tableau calculi for many logics have to use some sort of skolemisation. Often, how-
ever, the “standard” way of skolemising does not yield optimal results. These calculi
can be improved as follows: Instead of introducing a new but arbitrary Skolem sym-
bol, each premiss from which the existence of objects with certain properties can be
deduced is assigned its own unique symbol, constant, or term. When the same pre-
miss is used again for expansion, the same Skolem symbol is used. Since the set of all
premisses is enumerable, they can only express enumerably many different properties
such that an enumerable set of Skolem symbols is sufficient.

Such an improved skolemisation rule is used by the ideal tableau calculi for first-
order predicate logic PL1 and for the modal logicK described in Chapter 3 and in
Sections 4.2 and 4.3. It was first described for the case of first-order predicate logic
in (Beckertet al., 1993), namely in form of a liberalised expansion rule schema for Æ-
formulae. An improved version of the expansion rule schema for �-formulae in modal
logics was first introduced in (Beckert & Goré, 1997). Improved skolemisation in first-
order predicate logic in not a new idea; using a Skolem term assigned to the formula
to be skolemised, resembles the�-terms first defined in (Hilbert & Bernays, 1939) (a
good introduction to epsilon logic can be found in (Meyer Viol, 1995)).

Employing this improved skolemisation in tableau calculi for automated deduction has
several important advantages: First, it preserves the monotonicity of expansion rules,
whereas a rule that introduces symbols that have to benew is non-monotonic (and
calculi using such a rule are not ideal). Second, using the improved skolemisation re-
stricts the search space as the number of different Skolem symbols that are used in a
proof is smaller. And third, calculi using standard skolemisation usually do not have
thestrongsoundness of expansion property (Property 2 in Def. 3.5.8),i.e, they do not

124 Chapter 4: Enhancements

necessarily preserve satisfiability by thesametableau interpretation. The reason is that
a conclusion constructed using standard skolemisation is only satisfied by tableau in-
terpretations in which the new Skolem symbol is interpretedin the right way, namely
by one of the objects known to exist. If the improved Skolemisation is used, however,
it is known beforehand what the properties of the object ist that is represented by a
certain Skolem symbol. Thus, it is possible to choose the setof tableau interpretations
such that it only containscanonicalinterpretations in which the Skolem symbols are
interpreted by object that have the appropriate properties. If such canonical interpre-
tations are used, then (improved) skolemisation not only preserves satisfiability, but
the premiss and the conclusion are satisfied by thesame(canonical) tableau interpreta-
tions. Of course, to prove soundness, one has to guarantee inaddition that every initial
tableau for a satisfiable formula set is satisfied by acanonicalinterpretation. That,
usually, is only possible, if the Skolem symbols are known not to occur in an initial
tableau—which is the main reason why we allow the use of an extended signature for
the construction of tableau proofs, as the additional symbols of the extended signature
do not occur in initial tableaux.

Often—depending on the expressivity of the particular logic—it is also possible to
syntacticallyprove soundness of an expansion rule using the improved version of
skolemisation, based on soundness of an expansion rule using standard skolemisa-
tion. For example, Egly (1998) proved that in a tableau calculus for PL1 with standard
skolemisation rule and non-analytic cut (since the cut ruleis trivially sound, using it
does not impair the argument), it is possible to derive (in several steps) from the empty
premiss the tableau formulaT:(8x)((9y)(G(x; y)! G(x; f(x)))) ;
wheref = skofv((9y)(G(X; y)), for all formulaeG. That implies soundness of the
improved skolemisation rule for first-order predicate logic, as this formula allows to
deriveT:G(X; f(X)) fromT:(9y)G(X; y)) anywhere in a tableau proof.

Besides the question of which Skolem symbol to use there is the problem of ensuring
soundness of skolemisation in the presence of free variables (both rigid and universal).
One has to make sure that the instantiation of rigid variables with Skolem symbols (or
terms that contain Skolem symbols) does not lead to undesired results.

Example 4.4.3 For all instantiationsfY 7! tg of the rigid variableY , the formula(9x)(p(x; Y))fY 7! tg implies the existence of an objectd for whichvalI;[x7!d℄(p(x; Y)fY 7! tg) = true :
In general, however, there is not a singled with this property for allt. 2
The problem exemplified in the above example is usually solved by using a complex
Skolem term instead of a Skolem constant and using the free variable on which the

4.5 Local Lemmata 125

choice of the objectd depends as arguments of that Skolem term, i.e., in the above
example, the formulap((Y); Y) is derived instead ofp(; Y).
The difficulty in designing a sound rule schema with skolemisation is to find out what
exactly influences what the objects are whose existence is known. All free variables
whose instantiations may have an influence have to be used as arguments of the Skolem
term. On the other hand, if too many variables are included inthe Skolem terms, the
calculus is weakened and the size of the search space increased.

For example, earlier versions of rigid variable calculi forPL1 used a skolemisation
where, when the expansion rule is applied to a premiss containing aÆ-formula Æ, all
rigid variables occurring on the tableau branch being expanded were used as argu-
ments of the new Skolem term. Later, it was realised that whatthe objects are in the
domain of a tableau interpretation whose existence is implied byÆ only depends on the
instantiation of the rigid variables occurring inÆ and not on the instantiation of other
rigid variables on the branch and that, thus, it is sufficientto use the rigid variables inÆ as arguments of the Skolem term (Hähnle & Schmitt, 1994).

Of course, one can get around the problems resulting from theuse of free variables
by skolemising the input formulae in a preprocessing step, as it is done in all calculi
using clausal normal form. However, in some logics that is not possible such as, for
example, in intuitionistic predicate logic. In addition, skolemisation results in a loss
of information (and early skolemisation in an early loss of information). Consider,
for example, the formula� = T:(9x)(p(x)) and its skolemised version�0 = T:p().
If a local lemma� resp.�0 is generated (see Section 4.5), then the lemma�, which
is equivalent toT:(8x)(:p(x)), is much more useful than the lemma�0, which is
equivalent toT::p(). In fact, tableau calculi for PL1 with lemma generation and
dynamic skolemisation have non-elementary shorter proofsfor certain formula classes
than calculi with lemma generation and skolemisation as a preprocessing step (Egly,
1998).4.5 Loal Lemmata
A simple and in many cases useful way of strengthening tableau calculi with expansion
rule is to make sure that the extensions of a conclusion do notintersect semantically:

Definition 4.5.1 Let C be a (ground) tableau calculus for a logicL; and let� 2 Sig
be a signature.

Two branch extensionsE1; E2 � TabForm(��) intersect semanticallyif there is a ta-
bleau interpretation inTabInterp(��), that satisfies bothE1 andE2. 2
Example 4.5.2 Consider the tableau calculusCPL1 for PL1 from Section 3.6. The two
extensionsfT:pg andfT:qg of the conclusion for the premissfT:(p _ q)g intersect

126 Chapter 4: Enhancements

semantically, asT:p andT:q can both be satisfied by a single tableau interpretation
of CPL1. 2
The application of an expansion rule using a conclusion withsemantically intersecting
extensions adds, in some sense, less information to the tableau. Intuitively, to close a
tableau, one has to show that no tableau interpretation satisfies any of its branches; and
if there are branches that are satisfied by the same tableau interpretations, then these
interpretations have to be considered more than once.

Extensions can be made intersection-free by adding tableauformulae; this may require
to use additional extensions, and one has to be careful to preserve soundness.

Theorem 4.5.3 LetC be a (ground) ideal tableau calculus for a logicL that (1) has the
soundness properties from Definition 3.5.3 (and is thus sound) and that is (2) complete.

For each conclusionC = fE1; : : : ; Ekg (k � 1) over some signature�� 2 Sig whereEi = f�i1; : : : ; �irig (1 � i � k), the conclusionC ! is defined byC ! = fEi [i�1[j=1f�jlj ; �j1; : : : ; �jlj�1g j 1 � i � k, and1 � lj � rj for 1 � j � ig :
Let the calculusC ! be defined as follows: The expansion ruleE ! of C ! is, for all signa-
tures� 2 Sig and all premisses� 2 TabForm(��), given byE !(�)(�) = fC ! j C 2 E(�)(�)g
whereE is the expansion rule ofC; and C ! is identical toC except for the expansion
rules.

Then,

1. the calculusC ! has the soundness properties from Definition 3.5.3 (and is thus
sound);

2. the calculusC ! is complete;

3. for all signatures� 2 Sig and all premisses� 2 TabForm(��), any two exten-
sions in a conclusion inE !(�)(�) do not intersect semantically.

Proof: Soundness properties:The first soundness property from Definition 3.5.3 is
trivially preserved asC andC ! only differ in their expansion rule.

To prove that the second soundness property (soundness of expansion) is preserved,
we can make use of Lemma 3.5.9. It suffices to show that if one ofthe extensions
in a conclusionC = fE1; : : : ; Ekg is satisfied by some tableau interpretationhm; Ii,

4.5 Local Lemmata 127

then one of the extensions inC ! is satisfied byhm; Ii. Let Ei be the first extension
in C that is satisfied byhm; Ii, i.e., hm; Ii does not satisfy any of theE1; : : : ; Ei�1;
and let�jlj be the first tableau formulae inEj that is not satisfied (1 � j � i� 1), i.e.,�j1; : : : ; �jlj�1 are satisfied byhm; Ii. Consequently, the extensionEi [i�1[j=1f�jlj ; �j1; : : : ; �jlj�1g ;
which is an element ofC !, is satisfied byhm; Ii.
Completeness:The completeness ofC ! follows trivially from the completeness ofC as
both calculi are ideal and, therefore, the additional formulae in the extensions ofC ! do
not impede the construction of aC !-tableau proof using the same rule application that
are used to construct aC-tableau proof (note that for each extensionE ! in a conclu-
sionC ! there is an extensionE 2 C such thatE � E !.
No semantical intersection:LetEi andEi0 be two different extensions inC !; then, by
construction ofC !, there is a tableau formula� such that� 2 Ei and� 2 Ei0, which
implies thatEi andEi0 do not intersect semantically. 2
Example 4.5.4 Assume thatp; q; r; s; t are tableau formulae and that�p r tq s
is an expansion rule schema of a tableau calculusC. Then, the corresponding expan-
sion rule schema without semantical intersection of the calculusC ! (Theorem 4.5.3)
is �p r r t t t tq s sp q p p q qp p pr s r sr r 2
The formulae that are added to extensions to make them intersection-free can be con-
sidered to belocal lemmata. If in the above example, a branchB has been extended
by C ! and the new sub-branch containingp andq has been closed, one can conclude
that in all tableau interpretations satisfyingB eitherp or q is not satisfied and, more-
over, either (a)p is not satisfied or (b)p is satisfied andq is not satisfied. Thus, these

128 Chapter 4: Enhancements

formulae can be added as “lemmata” to the subsequent extensions. The lemmata are
“local”, because they are only used in the local conclusion.

As Example 4.5.4 demonstrates, making sure that all extensions in all conclusions that
an expansion rule generates are intersection-free may leadto a drastic increase in the
number of extensions per conclusion, and is therefore not always of advantage. Never-
theless, the method is useful, because one is free to either use the original conclusionC
or the intersection-free conclusionC ! constructed according to Theorem 4.5.3 depend-
ing on the number of extensions inC resp.C !; in many cases the conclusionC ! can be
simplified as some of its extensions are inconsistent.

Example 4.5.5 Consider the following expansion rule schema that may be used by a
calculus for the three-valued Łukasiewicz logicL3:T:f12g:F _GT:f0; 12g:F T:f12g:FT:f12g:G T:f0; 12g:G
The labels are subsets of the setf0; 12 ; 1g of truth-values. Appropriate tableau interpre-
tations for this calculus can be constructed as follows: Foreach model of Łukasiewicz
logic, there is a tableau interpretationhm; Iiwith a worldI(�) for each possible label;
such thatI(�) j= F iff the truth value ofF in the corresponding many-valued model
is an element of�.

Applying the construction from Theorem 4.5.3 yields the newintersection-free schemaT:f12g:F _GT:f0; 12g:F T:f12g:F T:f12g:FT:f12g:G T:f0; 12g:G T:f0; 12g:GF:f0; 12g:F F:f12g:GT:f0; 12g:F
The second extension in this schema is unsatisfiable as the truth value ofF cannot
be both an element off12g andnot be an element off0; 12g. The third extension can
be simplified as the first of its formulae subsumes the last one; and the second and
third formula together imply that the truth value ofG is 0. The result is the following
schema that is intersection-free and has the same number of extensions as the original
rule schema: T:f12g:F _GT:f0; 12g:F T:f12g:FT:f12g:G T:f0g:G 2
The above example has been taken from (Hähnle, 1993), wherean algorithm is de-
scribed for constructing intersection free expansion rules for arbitrary many-valued
logics.

4.5 Local Lemmata 129

Making extensions intersection-free is also useful for free variable and universal vari-
able calculi; but, since these do not have semantics defined by tableau interpretations,
the construction from Theorem 4.5.3 is not applicable immediately. Instead one has to
make sure that the extensions in the ground version of a calculus are intersection-free
before the calculus is lifted, and its free variable versionis constructed.

Example 4.5.6 The expansion rule of the calculusCPL1 for PL1 allows to derive con-
clusions from�-formulae that are not intersection-free. An alternative version of the
schema ��1 �2
for �-formulae is the schema ��1 �2�1
which preduces intersection-free conclusions; it can be used in rigid variable versions
of CPL1 as well.

Using this new schema has been shown to non-elementary reduce the size of the short-
est proofs for certain classes of PL1-formulae (Egly, 1998). 2
The following example shows that care has to be taken if locallemmata are generated
that contain universal variables, and that the result of theuniform construction from
Theorem 4.5.3 is not always optimal.

Example 4.5.7 Consider the rule schemaT:(F (t) _G)T:F (t) T:G
for all termst

It can be lifted to construct the universal variable schemaT:(F (x) _G)T:F (x) T:G
provided thatx does not occur inG

Unfortunately, if the ground schema is made intersection-free by adding the comple-
ment ofT:F (t) as a lemma to the right extension, then the resulting schemaT:(F (t) _G)T:F (t) T:GF:F (t)

for all termst

130 Chapter 4: Enhancements

does not have a universal variable version anymore, becausethe termt now occurs in
both extension.

It is, however, possible to use the lemmaF:(8x)(F (x)) instead ofF:F (t). Then, the
rule produces conclusions that are not not completely intersection-free but there are
less tableau interpretation satisfying both extensions and the schema has a universal
variable version: T:(F (x) _G)T:F (x) T:GF:(8x)(F (x))

provided thatx does not occur inG 24.6 Pruning
The pruning method, which is closely related to the technique calledcondensing(Op-
pacher & Suen, 1988), allows to reduce both the size of the search space and the size
of generated tableau proofs.

Suppose a branchB of a tableau is extended using a conclusionC = fE1; : : : ; Ekg,
and subsequently a closed sub-tableau is constructed belowone of the extensionsEi
wherenoneof the tableau formulae inEi has been used in a premiss for the construc-
tion of that sub-tableau; then the sub-tableau can be appended to any of the other sub-
branches below any of the extensionsEj (j 6= i) or even immediately to the branchB.

There are several possible ways of making use of such situations:

1. The calculus can be strengthened by changing the tableau rule in such a way that? can be added to all sub-branches below any of the extensionsEj (j 6= i); this,
however, makes the calculus non-ideal, as? in that case is not deduced from
premisses on the branches that it is added to.

2. One can change the calculus in such a way that it is possibleto post-pone the
decision of whether a conclusion should be used to expand a tableau branch. The
conclusionC is used preliminarily for expansion ofB. Only if later on formulae
of all its extensions are actually used to close a branch, thedecision is made
thatC has indeed to be used for expandingB; otherwise, the decision is made
thatC should not be used, the preliminary expansion is undone, andthe closed
sub-tableau belowEi is attached immediately toB. This, however, again makes
the calculus non-ideal, as in an ideal calculus formulae cannot be deleted once
they have been added to a tableau.

3. The calculus remains unchanged; the information that theclosed sub-tableau
belowEi can be constructed without using formulae fromEi in premisses is

4.6 Pruning 131

made use attaching this sub-tableau to all open branches below any of the exten-
sionsEj (j 6= i). Then, the calculus remains ideal; and pruning is merely con-
sidered to be a technique for deterministically constructing closed sub-tableaux.
Of course, an implementation does not have to actually construct the sub-tableau
repeatedly; the information that this would be possible (and how) is sufficient.5

Definition 4.6.1 Let C be an ideal calculus for a logicL; let � 2 Sig be a signature;
and letT0; : : : ; Tn be a sequence of tableaux for a setG � Form(�) of formulae such
thatTi+1 is a successor tableau ofTi (1 � i < n).

An occurrence of a tableau formula� in some nodeN of a tableauTi has beenused
for the construction ofTi+1; : : : ; Tn if

1. � = ? (i.e., all occurrences of the tableau formula? are used); or

2. there is a tableauTj (i � j � n� 1) and a branchBj through the nodeNj in Tj
that corresponds toN such thatTj+1 has been constructed fromTj expanding the
branchBj using a premiss containing� and a conclusionCj = fE1; : : : ; Ekg;
and an occurrence inTj+1 of at least one formula in each of the extensionsE1; : : : ; Ek is used for the construction ofTj+1; : : : ; Tn. 2

If there are several occurrences of the same formula on a branchB one of which has
to be used to expandB, then, by definition, they are all used. One could instead only
consider one of the occurrences to be used (preferably the one closer to the root of the
tableau); however, too many occurrences of the same formulaon a branch should be
avoided anyway (see Section 5.2).

Example 4.6.2 Consider the tableau shown in Figure 4.6 (a); and assume thatthe
tableau has been constructed by first using the conclusionfE1; E2g of the premiss�,
then using the conclusionfE 01; E 02; E 03g of the premiss�0 = E1, and then adding a
closed sub-tableauT1 to the branch belowE 01 and the closed sub-tableauT2 to the
branch belowE 02; the branches containingE 03 andE2 are still open.

Further assume that none of the formulae inE1 has been used for the construction
of the sub-tableauT1, and that none of the formulae inE1 andE 02 has been used for
the construction ofT2. Then, by definition, all the formulae in� are considered to
be unused. Whether formulae fromE 01 have been used for the construction ofT1 is
irrelevant.

If the first of the possibilities for using pruning is employed, then? can be added to
the remaining open branches (Figure 4.6 (b)). If the second possibility is employed,
i.e., all branch extensions that turn out to be unnecessary are deleted, the tableau in5 Note, however, that the sub-tableau has to be assumed to be (at least implicitly) present below each

of theEj the regularity of an expansion rule application is checked (see Section 5.2).

132 Chapter 4: Enhancements

unused
��0 = E1E 01T1 E 02T2 E 03 E2

(a)

��0 = E1E 01T1 E 02T2 E 03? E2?
(b)

�T2
(c)

��0 = E1E 01T1 E 02T2 E 03T2
E2T2

(d)

Figure 4.6: Using the pruning technique (Example 4.6.2).

Figure 4.6 (c) can be constructed. And the tableau in Figure 4.6 (c) results from em-
ploying the third possibility for using pruning, which preserves idealness. Note that
the different pruning techniques all have to be applied twice, namely once for each of
the two expansion rule applications that add the (unused) extensionsE1 resp.E 02 to the
tableau. 24.7 Additional Rule Shemata
A simple but often effective way of strengthening a calculusis to use additional rule
schemata. If a certain sequence of rule applications occursfrequently, the expansion
rule is enhanced such that a one-step rule application that has the same effect as the
frequently occurring sequence of applications.

Example 4.7.1 Assume that in a certain application domain frequently formulae of
the formT:(true ! �) occur, which may happen if the formulae to be proven are
generated automatically.

Then, it is useful to enhance the expansion rule ofCPL1 with the additional schemaT:(true ! �)T:�

4.7 Additional Rule Schemata 133

such thatT:� can be derived in one step without first extending the branch with the
conclusionffF:trueg; fT:�gg and closing one of the two new sub-branches by deriv-
ing? from the premissfF:trueg. 2

134 Chapter 4: Enhancements

5 Construting an EÆientProof Proedure
5.1 Overview5.1.1 Searh Trees
In the previous chapter we discussed methods for improving atableau calculus such
that shorter proofs can be constructed. The subject of this chapter is how to efficiently
search for proofs in the remaining smaller search space.

The proof search space can be visualised as a search tree where each possible choice
of the next expansion rule application to a tableauxT creates a node with as many
successor nodes asT has different successor tableaux.

There are two main concepts for proof search:breadth firstanddepth firstsearch.
Depth first search requires that either there are no paths in the search tree that do not
contain proofs or it is possible to avoid such paths using fairness strategies for the
construction of tableaux.5.1.2 Breadth First Proof Searh and Iterative Deepening
As fairness strategies that allow depth first search are difficult to construct for rigid
variable calculi, breadth first search is used by most automated deduction systems.
Breadth first search allows to find shorter proofs than depth first search because all
paths of the search tree are considered whereas, using depthfirst search, paths in the
search tree that contain short proofs may be missed; fairness strategies only guarantee
that some proof is found but it may not the shortest one. However, the length of found
proofs is not of great importance in automated deduction (the only advantage of short
proofs is that they require less expansion rule applications and are thus easier to find);
and breadth first search is very expensive as compared to depth first search because
neighbouring paths in the search tree contain many similar or even identical tableaux
that using breadth first search all have to be considered. This disadvantage of breadth
first search by far outweighs any advantages it may have.

For all (practical) completion modes, i.e., (monotone) functionsm from N to sets of
tableaux such that

Si2Nm(i) includes all constructible tableaux, the sizejm(i)j of the
search tree grows exponentially ini. It is—even for smalli—usually not possible to

135

136 Chapter 5: Constructing an Efficient Proof Procedure

store all tableaux inm(i) in the memory of a machine. Therefore, most implementa-
tions (see, for example, (Beckert & Posegga, 1995)) usedepth first iterative deepen-
ing (DFID) (Korf, 1985): the partial, finite search space consisting of all tableaux inM(i) = Sj�im(j) for somei 2 N is searched for proofs in a depth first manner using
backtracking, and if it turns out not to contain a proof, theni is increased. The ta-
bleaux inM(i) are not available for the construction of the tableaux inM(i+1); they
have to be constructed again from scratch, which, however, merely causes polynomial
overhead as compared to a breadth first search at the “right” leveli becauseM(i + 1)
is exponentially larger thanM(i). Although DFID search leads to acceptable perfor-
mance of tableau-based automated theorem provers, it should be stressed that it is only
a compromise used when no completeness preserving fairnessstrategy for depth first
search is available.5.1.3 Depth First Proof Searh and Fairness Strategies
The advantage of depth first proof search is that the information represented by the
tableaux that are constructed, increases at each proof step; no information is lost since
there is no backtracking. In addition, considering similartableaux or sequences of
tableaux repeatedly that different paths of the search treemay contain are avoided.

In the case of ground tableau calculi, it is relatively easy to use depth first proof search.
Their rules are not destructive; thus it suffices to systematically add all possible con-
clusions until all branches of the tableau that is constructed are either fully expanded
or closed.

The situation is much more complicated in rigid variable calculi, which are destructive
even if they are proof confluent. Applying a substitution maydestroy formulae on a
tableau that are needed for the proof such that they have to bededuced again from their
premisses.

Up to now there was no practical solution to the problem of constructing deterministic
proof procedures for rigid variable calculi that performs depth first search and are
complete, i.e., that never fail to find a proof. Such procedure were only known for
the special case of non-destructive rigid variable calculi, where branches are expanded
without instantiating variables and only a single substitution is finally applied that is
known to allow to close all branches simultaneously.

In this chapter, we analyse the problem of constructing a deterministic proof procedure
for rigid variable calculi; and we present a solution for thegeneral case of arbitrary
rigid variable calculi that are ideal (and, in particluar, proof confluent). No other as-
sumptions are made; in particular, the method is not restricted to calculi for certain
logics or formulae in certain normal forms (such as clausal normal form).

The deterministic search strategy we propose is based onregularity (Section 5.2) to
make sure that there are no “cycles” in the search (it is not possible to deduce the same
formulae or sub-tableau again and again), andweight orderings(Section 5.3), i.e.,

5.1 Overview 137

each tableau formula is assigned a “weight” in such a way thatthere are only finitely
many different formulae (up to variable renaming) of a certain weight; thus, if tableau
formulae with lesser weight are deduced first, then sooner orlater each conclusion is
added to all branches containing its premiss, i.e., the strategy isfair.

The main difficulty is to define a regularity condition that onthe one hand is restrictive
enough to avoid all cycles in the proof construction and on the other hand is not too
restrictive such that completeness is preserved.1

Our fairness strategy considers the whole tableau (and not only a single branch) both
for checking regularity and for choosing a conclusion of minimal weight; a procedure
based on this strategy may extend any branch of a tableau at any time. Note that
this does not imply a large memory consumption; at least it isnot worse than that of
proof strategies where a “current” branch is extended untilit is closed before other
branches are considered and where DFID-based breadth first search is used to ensure
completeness, as in that case all closed branches have to be stored for backtracking.5.1.4 When is a Proof Proedure Pratial?
As said above, nopractical deterministic proof procedures for rigid variable calculi
were known up to now. By “practical” we mean that the computational complexity of
deciding what the next expansion rule application should bein each situation has to be
reasonably low. In addition, the number of expansion steps that are necessary to find a
proof has to be reasonably small as compared to the number of necessary steps when
a breadth first search strategy is used.

There is trivially a (non-practical) deterministic proof procedure for all monotonic ta-
bleau calculi—namely the trivial procedure that performs abreadth firstsearch in the
background. Until a proof is found (in the background), it chooses arbitrary (fore-
ground) expansion rule applications. When a proof has been found, it is appended as a
sub-tableau to all open branches, which is possible becausethe calculus is monotonic.
Such a proof procedure is of course completely useless. Note, that such a procedure
can even be defined if the computational complexity of each expansion step is, for
example, restricted to be polynomial in the size of the tableau that is expanded.

If the fairness strategy we present in the following sections is used, then the complexity
of deciding what the next expansion step should be is in the worst case quadratic in the
size of the tableau to be expanded (resp. the size of its possible successor tableaux). In
the average case the complexity is much lower as only those parts of a tableau have to
be considered that are affected by one of the possible expansion rule applications.

The size of the tableau proofs that are found (and thus the number of expansion steps)1 Baumgartner (1998) suggests a regularity condition that is(just slightly) too strong, such that cycles
in the proof search are avoided but depth first search withiterative deepeninghas to be used to ensure
completeness.

138 Chapter 5: Constructing an Efficient Proof Procedure

is at most that of the tableau proof constructed using DFID inthe worst case (i.e., if
coincidently all paths in the search tree not containing a proof are considered first).5.2 Regularity
The notion ofregularityis well known from tableau calculi for classical logic in clausal
normal form (?) and negation normal form (Hähnle & Klingenbeck, 1996; Hähnle
et al., 1997); it is extended to the non-clausal case in (Beckert & Hähnle, 1998).

In the following, we define a concept of regularity for arbitrary ideal rigid variable
calculi. Our concept differs from the classical notion in that it takes the whole tableau
into concern and not only a single branch; it turns out to be appropriate for constructing
a deterministic proof procedure for rigid variable calculi.2

Assume that a sequenceT1; : : : ; Tn of tableaux has already been constructed. We
define an expansion rule application toTn to be irregular if the successor tableauTn+1
is containedin one of the predecessor tableauxTj—in particular, ifTn+1 is contained
in Tn. In that case, the sequenceTj; : : : ; Tn+1 constitutes a cycle in the proof search
becauseTn+1 does not contain any information that is not already inTj. A tableauTj
containsTn+1 if each branch ofTj contains (up to renaming of free variables) all
formulae from one of the branches ofTn+1. Intuitively, the tableauTn+1 is redundant
if it is contained inTj because, if closed sub-tableaux can be constructed below all
branches ofTn+1, it is possible to construct the same closed sub-tableaux below all
branches ofTj.
Note that checking whether an expansion rule application isregular or not does not
involve unifiability tests because rigid variables may onlybe renamed but not instanti-
ated with terms, i.e., checking regularity is not as complexas the problem of checking
whether a tableauTj subsumesTn+1 (which is NP-complete).

An important class of irregular expansion steps is the following: Assume a branchB1
of a tableauT is extended using a rigid variable conclusionhC; �i, and a branchB02�
in the resulting tableauT 0 is contained in all branchesB of T that are affected by
the expansion step, i.e., the branchB1 (which is extended) and all other branches
containing rigid variables that are instantiation by applying �. This is in particular
the case ifB02� is contained in an initial sub-branchS0 of T that ends above the first
occurrence of any rigid variable in the domain of�. The branchB02� of T 0 may be one
of the branches that result from adding one of the extensionsin C to B1 or it may be
any other branch that is affected by applying the substitution�.

Example 5.2.1 Assume that the expansion rule of the rigid variable calculus for PL1
from Section 4.2.10 is used to close the branchB1 of the tableauT shown in Fig-2 We do not consider universal variable calculi as they behavelike ground calculi w.r.t. regularity.

5.2 Regularity 139F:p(a)T:p(a)? T:q(a)T:p(X)B1 T:q(X)B2
S0

(a)

F:p(a)T:p(a)? T:q(a)T:p(a)? T:q(a)B02�
S0

(b)

Figure 5.1: An irregular expansion rule application (Example 5.2.1).

ure 5.1 (a). This is done by deriving the conclusionhff?gg; fX 7! agi from the
premissfF:p(a); T:p(X)g; the tableauT 0 shown in Figure 5.1 (b) is constructed.

This expansion rule application belongs to the class of easyto detect irregular applica-
tions described above. The right branchB02� of T 0 whose nodes are labelled with the
formulaeF:p(a) and twiceT:q(a) is contained in the initial sub-branchS0 of T whose
nodes are labelled withF:p(a) andT:q(a); andS0 ends above the first occurrence ofX
in T which is the only variable instantiated by�.

Intuitively, this expansion rule application is useless because any closed sub-tableau
that can be constructed belowB02� can be constructed as well below bothB1 andB2.2
An expansion rule application as described above is irregular according to the defini-
tion of regularity that is usually given in the literature (e.g. (Beckert & Hähnle, 1998)),
if the branchB02� contains the same branch extension multiply; its relation to other
branches is irrelevant.

Example 5.2.2 Figure 5.2 illustrates the difference between our and the classical no-
tion of regularity. The situation is very similar to that shown in Figure 5.1 and ex-
plained in Example 5.2.1. But now, the initial sub-branchS0 of T that contains the
branchB02� of the tableauT 0 does not end above the first occurrence of the variableX,
which is instantiated by�. Thus, this expansion rule application does not belong to the
class of easy to detect irregular applications; moreover, it is indeedregular according
to our definition of regularity, because the branchB1 of T doesnot contain any of the
branches ofT 0.
According to the classical definition of regularity, however, this expansion rule ap-
plication is irregular because the branchB02� of T 0 contains the extensionfT:q(a)g
twice. 2
As Example 5.2.2 demonstrates, the classical notion of regularity is more restrictive

140 Chapter 5: Constructing an Efficient Proof ProcedureF:p(a)T:p(X)B1 T:q(X)T:p(a)? T:q(a)B2
S0

(a)

F:p(a)T:p(a)? T:q(a)T:p(a)? T:q(a)B02�
S0

(b)

Figure 5.2: Example for the difference between the new and the classicalnotion
of regularity.

than our notion in certain cases, which may destroy proof confluence.3 In the ground,
case where no variables are instantiated, there is no difference between the two notions
of regularity.

According to the regularity condition described above, it is not irregular to add an ar-
bitrary number of differentvariantsof a formula to a tableau branch, which of course
is useless and must be considered a violation of regularity.Thus, we enhance our def-
inition such that expansion steps are irregular that add redundant variants of formulae
already occurring on a tableau branch. We have to be careful,however, because it is
not sufficient to allow only one variant of each formula to occur on a branch. The so-
lution is to define the maximal number of variants of a formulathat are not considered
to be redundant to be the maximal sizek 2 N of minimal premisses in the calculus
(how to handle a calculus with an expansion rule where minimal premisses can be of
any size is discussed at the end of Section 5.4).

Example 5.2.3 Minimal premisses in the calculus from Section 3.6 for PL1 consist of
at mostk = 2 formulae. Thus, the number of different variants of a tableau formula
that a branch contains at any given time can be restricted to two.

It may indeed be necessary to add two variants of a formula; for example, a branch
containing only one variant of� = T::p(X) ^ p(f(X)) cannot be closed; a second
variant�0 is needed. 2
Definition 5.2.4 Let C be a rigid variable calculus; let�fv be a signature; and letk 2 N be a natural number. Further letT andT 0 be tableaux; letB01; : : : ; B0m be the
branches ofT 0; and let	1; : : : ;	m be the sets of tableau formulae on these branches,
i.e.,	i = Form(B0i) (1 � i � m).

The tableauT k-contains the tableauT 0, denoted byT �k T 0, if3 Whether using the classical, more restrictive notion of regularity does indeed destroy proof conflu-
ence, depends on which other restrictions are imposed; however, nobody has been able to define a
deterministic proof procedure for rigid variable calculi using the classical notion. And the reason
may very well be that it is too restrictive to preserve proof confluence when it is combined with other
restrictions for ensuring fairness of the strategy (such asweight orderings).

5.2 Regularity 141T:�(X1)T:�(X2) T:�(X1) T:�(Y1) T:�(Y1)T:�(Y2) T:�(Y1)T:�(Y2)T:�(Y3)T1 T2 T 01 T 02 T 03
Figure 5.3: The tableaux from Example 5.2.6.

1. there is a variable renaming� 2 Subst(��fv), and

2. there are subsets	ki � 	i (1 � i � m) that contain of each formula 2 	i
– k variants or

– as many variants as there are in	i,
whatever is less; i.e., the number of variants of each in 	ki is the minimum
of k and the number of variants of in 	i,

such that for each branchB of T there is a branchB0i of T 0 (1 � i � m) with	ki � Form(B�) : 2
Intuitively, a tableauT k-contains a tableauT 0 if each branchB of T containsup to
renaming of rigid variablesthe formulae in some branchB0 of T 0 where, however, it is
sufficient ifB only containsk different variants of each formula inB0. If two branchesB1 andB2 “contain” the same branchB0 of T 0, then they have to contain thesamek variants of each formula inB0.
The following lemma follows immediately from the definitionof �k.
Lemma 5.2.5 The relation�k on tableaux (Def. 5.2.4) is transitive and reflexive.

Example 5.2.6 Consider the tableaux shown in Figure 5.3. Ifk = 2, then the ta-
bleauT1 contains all the tableauxT 01, T 02,T 03. The tableauT2, however, only containsT 01.2
Example 5.2.7 The tableauxT1 andT2 shown in Figure 5.4 (a) and (b), respectively,
do not 1-contain each other.

If T1 was considered to containT2 and, thus, the construction ofT2 from T1 was con-
sidered to be irregular, then completeness would be impaired because the tableauT2
can be closed butT1 cannot be closed.

142 Chapter 5: Constructing an Efficient Proof ProcedureF:p(a)F:p(b)T:p(X) T:p(X)
(a)

F:p(a)F:p(b)T:p(X) T:p(Y)
(b)

Figure 5.4: Nearly identical tableauxnot containing each other (Example 5.2.7).T:p(X)T:p(Y)T:q(X)T:q(Y)
(a)

T:p(X)T:q(Y) T:p(Y)T:q(X)
(b)

Figure 5.5: Two tableaux one of which 1-contains the other (Example 5.2.8).

If T2 was considered to containT1, then neither soundness nor completeness would
be affected. However, if the definition was changed such thata tableauT contains
a tableauT 0 if an instanceof T containsT 0 (according to the current definition)—in
which caseT2 would 1-containT1—, then the computational complexity of checking
regularity would be too high. 2
Example 5.2.8 The tableauxT1 shown in Figure 5.5 (a) 1-contains the tableauT2
shown in Figure 5.5 (b). However,T2 doesnot 1-containT1 although both branches
of T2 contain one variant of each of the formulae in the single branch ofT1; the reason
why T1 6�k T2 is that the branches ofT2 containdifferentvariants and would have to
containthe samevariants. For example, the left branch containsT:p(X) whereas the
right branch containsT:p(Y) but they would have to contain either bothT:p(X) or
bothT:p(Y). 2
Based on the concept of a tableauk-containing another tableau, we can now formally
define our notion of regularity.

Definition 5.2.9 Let C be an ideal rigid variable calculus; let� be a signature; and letk 2 N be a natural number.

A (finite or infinite) sequence(Ti)i�0 of tableaux (and in particular a tableau proofT1; : : : ; Tn) for a setF � Form(�) of formulae isk-regular if it does not contain
tableauxTj andTi wherej < i such thatTj k-containsTi (Def. 5.2.4).

A sequence of tableaux that is notk-regular isk-irregular. 2

5.2 Regularity 143

If a sequenceT1; : : : ; Tn of tableaux isk-regular,Tn+1 is a successor tableau ofTn,
and the sequenceT1; : : : ; Tn; Tn+1 is k-irregular, then the expansion rule application
that is used to constructTn+1 from Tn is said to bek-irregular (because it causes the
irregularity). Whether an expansion rule application is regular or not depends on the
context in which it is used.

To check whether an expansion rule application is regular, it is sufficient to only con-
sider those parts of the expanded tableau that are affected,i.e., the branch that is ex-
tended and the branches containing rigid variables that areinstantiated.

If the notion of regularity as defined above is used to restrict proof search by only
allowing regular sequences of tableaux, then completenessis preserved; i.e., our notion
of regularity is not too restrictive.

Theorem 5.2.10LetC be an ideal rigid variable calculus that has a ground instance;
let� be a signature; and letk 2 N be the maximal size of the minimal premisses of all
possible conclusions inC.
If there is a tableau proof for a setF � Form(��) of formulae, then there is a regular
tableau proof forF.

Proof: This theorem follows immediately from Theorem 5.4.4, whichstates the ex-
istence of complete deterministic proof procedures that only construct regular tableau
proofs for all ideal rigid variable calculi that have a ground instance. 2
The existence of a complete deterministic proof proceduresthat construct regular
proofs (Theorem 5.4.4) not only implies Theorem 5.2.10 above, it also indicates that
our notion of regularity is restrictive enough to serve its purpose. The proof of Theo-
rem 5.4.4 makes use of the following lemma in which the restrictiveness of regularity
is formalised. An infinite regular sequence of tableaux contains infinitely many dif-
ferent formulae or, equivalently, if a regular sequence of tableaux only contains (up to
renaming of rigid variables) finitely many different tableau formulae, then it is finite.

Lemma 5.2.11 LetC be an ideal rigid variable calculus; let� be a signature; and letk 2 N be a natural number. Further let� � TabForm(��) be a finite set of tableau
formulae.

Then, there is no infinite regular sequence(Ti)i�0 of tableaux such that, for alli � 0,
the tableau formulae inTi are variants of tableau formulae in�.

Proof: Let the equivalence relation�k on tableaux be defined byT �k T 0 iff T �k T 0 and T 0 �k T :
We proceed to prove that there are only finitely many equivalence classes w.r.t.�k of
tableaux that consist of variants of formulae in�. Let�k be a set containingk different

144 Chapter 5: Constructing an Efficient Proof Procedure

variants of each formula in� such that no two formulae in�k have a rigid variable in
common. Since� is finite,�k is finite as well.

Let T�k be the set of all tableaux consisting of formulae from�k where no branch
contains the same formula more than once. The length of branches in these tableaux is
at mostj�kj, which implies that there are only finitely many of them; thus, T�k is finite.
It is easy to see that every tableau consisting of variants offormulae in� is equivalent
w.r.t.�k to a tableau inT�k . Therefore,T�k contains representatives of all equivalence
classes of tableaux w.r.t.�k, and there can be only finitely many such classes.

To complete the proof of the lemma, assume that the number of equivalence classes of
tableaux (as defined above) isn 2 N . There cannot be an infinite regular sequence of
tableaux consisting of variants of formulae in�, because in a sequenceT1; : : : ; Tn+1
of lengthn+ 1, there have to be at least two different tableauxTj andTi belonging to
the same equivalence class, i.e., we have bothTj �k Ti andTi �k Tj. As eitherj < i
or i < j, that renders the sequence irregular. 25.3 Weight Orderings
Weight orderings are the second important concept (besidesregularity) on which our
fairness strategy is based, that allows to construct deterministic proof procedures for
arbitrary ideal rigid variable tableau calculi.

The important properties an ordering on tableau formulae that is used to ensure fairness
has to have are the following:

1. It is a well-ordering on the set of tableau formulae (up to renaming of rigid vari-
ables), i.e., it is well founded and there are only finitely many tableau formulae
that are incomparable to a given tableau formula.

2. Proper instances of a tableau formula� have a higher weight than�.

Intuitively, these are typical properties of orderings on tableau formulae that are de-
fined by assigning a “weight” to the symbols of a signature (which is why we call them
weightorderings).

Definition 5.3.1 Let C be a rigid variable calculus; and let� be a signature ofC.
A weight functionw assignes to each tableau formulae inTabForm(��) a natural
number (itsweight) such that the the following conditions are satisfied:

1. Given any tableau formula�, there isno infiniteset	 of tableau formulae such
that

(a) 	 does not contain any ; 0 that are identical up to renaming of rigid
variables (i.e., all formulae in	 are really different),

5.4 Deterministic Proof Procedures for Rigid Variable Calculi 145

(b) w() � w(�) for all 2 	.

2. If X 2 Var occurs in� 2 TabForm(��) andt 2 Termfv(��), t =2 Var , thenw(�) < w(�fX 7! tg) :
Given a weight functionw, theweight ordering�w on tableau formulae (that is in-
duced byw) is, for all�; 2 TabForm(��), defined by� �w iff w(�) � w() : 2
A weight ordering is extended tosetsof tableau formulae by comparing themaxi-
mal weight of the formulae they contain. This extension is a well-ordering as well,
provided the sets that are compared are only allowed to contain a certain number of
variants of each tableau formula.

Example 5.3.2 Let� be a signature of PL1. Assume that a positive weight is assigned
to each function and each predicate symbol in�� in such a way that only a finite
number of function and/or predicate symbols have the same weight (rigid variables are
implicitly assigned the weight 0); and letw(�) be the sum of the weights of all function
and predicate symbols occurring� 2 TabForm(��) (multiple occurrences of the same
symbol count multiply). Then,w is a weight function according to Definition 5.3.1.

The condition that only a finite number of symbols must be assigned the same weight
is not important in practice, as only a finite number of different function and predicate
symbols can occur in the tableaux for a given set of PL1-formulae if the improved
skolemisation as described in Section 4.4 is used; thus, allactually occurring symbols
can be assigned the same weight. 2
The purpose of Condition 1 in the definition of weight functions is obvious; it en-
sure that if infinitely many different formulae are added to atableau branch, then the
maximal weight of formulae on the branch will sooner or laterreach each value. Con-
dition 2 might need some more explanation. It makes sure thatthe weight increases in
case no new formulae are appended to a branch but it is changedagain and again by
instantiating rigid variables; note that such a sequence ofapplications does not violate
regularity because a new formula is created by each instantiation.

Example 5.3.3 Assume that an expansion rule allows to derive from each premiss of
the formfp(f(� � � (X) � � �))g the rigid variable conclusionhffqg; frgg; fX 7! f(X 0)g
whereX 0 is any rigid variable different fromX. Then, the (sub-)tableau shown in
Figure 5.6 can be constructed for alln from the (sub-)tableau consisting of a single
node marked withT:p(X1).
Condition 2 in the definition of weight functions makes sure that the maximal weight
of the formulae in the tableauxTn increases. 2

146 Chapter 5: Constructing an Efficient Proof Procedurep(f(� � � (f(Xn)) � � �))q rq r
...rq r n times

n times

Figure 5.6: A tableau illustrating the necessity of Condition 2 in the definition of
weight functions (see Example 5.3.3).5.4 Deterministi Proof Proedures for Rigid Variable Caluli

In this section, we show that complete deterministic proof procedures can be defined
for arbitrary ideal rigid variable calculi that have a ground instance; such proof proce-
dures can be used to perform depth first search for tableau proofs (see the discussion
in Section 5.1). They are constructed using the notions of regularity and weight order-
ings as described in Sections 5.2 and 5.3. For example, a deterministic proof procedure
can be defined in this way for the rigid and the mixed variable calculi for PL1 from
Sections 4.2.10 and 4.3.6.

Idealness of the calculus is indispensable. It has to be non-structural because otherwise
the order in which formulae are added to the tableau is not irrelevant, and complete-
ness may be lost when they are added in the order of their weight. The calculus has to
be monotonic since a deterministic procedure may execute redundant proof steps be-
tween useful ones, and the redundant formulae that are addedmust not prevent useful
expansion rule applications later on. We demand in additionthat the calculus has a
ground version because then it has the following property: if hC; �i is a conclusion of
some premiss�, thenhC��; idi is a conclusion of�� for all substitutions� .

We only consider calculi in which minimal premisses are not of arbitrary size, i.e., do
not contain more thank formulae for some fixedk 2 N . How to handle calculi that do
not have this property is discussed at the end of this section.

To ensure that a proof procedure constructs a tableau proof (provided a proof exists),
the sequences of tableaux that are constructed must satisfythe following two condi-
tions:

1. The sequence of tableaux that is constructed must bek-regular, i.e., expansion
rule applications creating a tableau that isk-contained in one of its predecessors
are forbidden.

2. At each step, from all the possible expansion rule applications not violating the

5.4 Deterministic Proof Procedures for Rigid Variable Calculi 147

regularity condition, one is chosen that creates a successor tableau in which the
maximal weight of formulae is as small as possible (i.e., successor tableaux are
compared according to the maximal weight of the formulae they contain).

If several possible expansion rule applications satisfy the above conditions, a proof
procedure may employ arbitrary heuristics to choose one of them. A typical heuristic
is, for example, to prefer conclusions that contain few extensions such that less new
sub-branches are created.

Note that formulae are not necessarily added to a tableau branch in the order defined
by their weight, because a formula� can only be added when its premiss� is present
on the branch and weight of the formulae in� may be higher than that of�.

To comply with the condition thatall expansion rule applications adding formulae
of less weight have to be executed before formulae of higher weight are added to a
tableau, it may be necessary to expand branches that are already closed. That is not
always redundant, because closed branches still contain useful information and can
influence other branches by the substitutions that are applied when they are expanded
(the first substitution that is applied to close a branch is not necessarily the “right one”
that allows to complete the proof). If a closed branch has no rigid variables in common
with other branches, it needs not be further expanded.

Unfortunately, the regularity condition as defined above isstill very difficult to imple-
ment; it requires to compare a tableauTn+1 with all its predecessorsT1; : : : ; Tn and
not only with the tableauTn from which it is constructed. Such a regularity check
is prohibitively expensive w.r.t. both space and time. Moreover, if an irregularity is
encountered, i.e., ifTn+1 is contained in one of the predecessor tableauxTj, then other
successor tableaux ofTj (besidesTj+1) have to be considered, which in a certain sense
amounts to backtracking. The reason for this is the following: A tableauTn+1 that is
contained in a tableauTj does not have to be considered for proof search because all
the proofs that may be constructed fromTn+1 can be constructed fromTj. Now, ifj = n, then we can just exclude the successor tableauTn+1 and be sure that if there
is a proof derivable fromTn+1 is is derivable fromTn without consideringTn+1. If,
however,j 6= n, then the tableau proof that is known to be derivable fromTn+1 and
thus fromTj may not involveTn but require to procceed with an alternative successor
tableauT 0j+1 different fromTj+1.
All these problems stem from the fact that a tableauTj is not necessarily contained in
its successor tableauTj+1 because rigid variable calculi are destructive and formulae
occurring inTj may not occur inTj+1 any more. Indeed, an irregular infinite sequence
of tableaux can contain a cycle consisting of infinitely manytableauxTni that all con-
tain each other, where none of the irregular expansion stepsis easy to detect, i.e., there
is no tableau in the sequence that is contained in its immediate predecessor.

Example 5.4.1 Assume that the following symmetric rule schemata characterise the
expansion rule of a rigid variable calculus:

148 Chapter 5: Constructing an Efficient Proof ProcedureT:p(a)T:q(b)T:p(X1) T:p(a)T:q(b)T:p(a)T:q(Y1)
T:p(a)T:q(b)T:p(a)T:q(b)T:p(X2)

T:p(a)T:q(b)T:p(a)T:q(b)T:p(a)T:q(Y2)T1 T2 T3 T4
Figure 5.7:An irregular sequence of tableaux containing a cycle (Example 5.4.1).T:p(t)T:q(Y)

if t is unifiable with the constanta;Y is an arbitrary rigid variable;
a unifier oft anda hat to be applied

T:q(t)T:p(X)
if t is unifiable with the constantb;X is an arbitrary rigid variable;
a unifier oft andb hat to be applied

Then, starting from an initial tableauT1 consisting of the tableau formulaeT:p(a),T:q(b), andT:p(X1), a sequenceT1; T2; : : : of tableaux can be derived such that each
tableauTi in the sequence 1-contains the tableauTi+2 but no tableauTi contains the
tableauTi+1 (i � 0). The first four tableaux in the sequence are shown in Figure 5.7.2
The above example illustrates the reason why cycles may occur that are difficult to
detect, but it is rather artificial and the cycle could be avoided by always using the most
specific premiss that allows to derive a certain conclusion (which is a good heuristic
anyway). That is, instead of deriving the conclusionhffT:p(Y)gg; fX 7! agi from
the premissfT:p(X)g, the conclusionhffT:p(Y)gg; idi is derived from the premissfT:p(a)g. There are, however, more complicated situations where using most specific
premisses does not help, as the following example demonstrates.

Example 5.4.2 Figures 5.8 and 5.9 show one cycle in an infinite irregular sequence
of tableaux that is constructed using the mixed variable calculus for PL1 from Sec-
tion 4.3.6.

To construct this sequence, the following expansion rule applications are repeated
again and again:

– A conclusion of the formffT:r(Y)g; fT:s(Y)gg is derived fromfT:(r(y) _ s(y))g
and is used to expand the rightmost branch of the tableau (forexample, to derive
tableauT6 from tableauT5).

5.4 Deterministic Proof Procedures for Rigid Variable Calculi 149

– The third branch from the right is closed and a variableX is instantiated witha (for
example, to deriveT7 from T6).

– A conclusion of the formffT:p(X)g; fT:q(X)gg is derived fromfT:(p(x) _ q(x))g
and is used to expand the rightmost branch of the tableau (forexample, to deriveT8
from T7).

– The third branch from the right is closed and a variableY is instantiated withb (for
example, to deriveT9 from T8).

When these four steps have been executed, the cycle is complete, i.e., each tableauTi in
the sequence contains the tableauTi+4 for i � 5. No tableau in the sequence contains
its immediate successor tableau, such that the cycle is difficult to detect. Note that for
each expansion rule application, the most specific premiss is used. 2
The problems discussed above that all result from the fact that a tableauTi+1 may not
contain its predecessor tableauTi, can be solved by making the proof procedure less
destructive in the following sense: We demand that immediately after an expansion
step that destroys formulae, the expansion steps that are needed to recreate the de-
stroyed formulae are executed. In the worst case, a new copy of the sub-tableau that
was affected by the instantiation is created and appended toall sub-branches that have
been affected. To execute such a reconstruction step is always possible if the calculus
has a ground version. The result is a tableauT+i+1 that contains bothTi andTi+1 and
all the tableaux that occur as intermediate results during the reconstruction.

Example 5.4.3 The left branch of the tableauTi in Figure 5.10 (a) is closed using
the conclusionff?gg; fX 7! ag. The result is the tableauTi+1 in Figure 5.10 (b), in
which all formulae containing the rigid variableX have been destroyed. They are re-
constructed by appending a copy of the sub-tableauS(X) that consists of all formulae
in Ti in whichX occurs to all the branches inTi+1 from which formulae are missing;
the resulting tableauT+i+1 (Figure 5.10 (c)) contains bothTi andTi+1. 2
If a deterministic proof procedure executes a reconstruction step after each expansion
rule application, then a sequenceT+1 ; T+2 ; : : : of tableaux is constructed whereT+i+1 is
constructed fromT+i by applying a regular expansion step and then reconstruct the
destroyed formulae. To check whether such a sequence is regular, it is sufficient to test
whether the immediate successor tableauTi+1 of T+i is contained inT+i . The earlier
predecessors do not have to be considered as they are all contained inT+i .

Theorem 5.4.4 Let C be an ideal rigid variable calculus that has a ground instance;
let � be a signature; letk 2 N be the maximal size of the minimal premisses of all
possible conclusions inC; and letw be a weight function.

If there is a tableau proof for a setF � Form(��) of formulae, then every sequence(T+i)i�1 of tableaux forF that is constructed as described below contains a closed
tableauT+n (n 2 N):

150 Chapter 5: Constructing an Efficient Proof Procedure

F:p(a)F:r(b)T:(p(x) _ q(x))T:(r(y) _ s(y))T0
F:p(a)F:r(b)T:(p(x) _ q(x))T:(r(y) _ s(y))T:p(a)? T:q(a)T:r(b)? T:s(b)T:p(X1) T:q(X1)T5F:p(a)F:r(b)T:(p(x) _ q(x))T:(r(y) _ s(y))T:p(a)? T:q(a)T:r(b)? T:s(b)T:p(X1) T:q(X1)T:r(Y1) T:s(Y1)T6F:p(a)F:r(b)T:(p(x) _ q(x))T:(r(y) _ s(y))T:p(a)? T:q(a)T:r(b)? T:s(b)T:p(a)? T:q(a)T:r(Y1) T:s(Y1)T7

Figure 5.8: A more complex irregular sequence of tableaux containing a cycle
(part 1); see Example 5.4.2.

5.4 Deterministic Proof Procedures for Rigid Variable Calculi 151

F:p(a)F:r(b)T:(p(x) _ q(x))T:(r(y) _ s(y))T:p(a)? T:q(a)T:r(b)? T:s(b)T:p(a)? T:q(a)T:r(Y1) T:s(Y1)T:p(X2) T:q(X2)T8F:p(a)F:r(b)T:(p(x) _ q(x))T:(r(y) _ s(y))T:p(a)? T:q(a)T:r(b)? T:s(b)T:p(a)? T:q(a)T:r(b)? T:s(b)T:p(X2) T:q(X2)T9
Figure 5.9: A more complex irregular sequence of tableaux containing a cycle
(part 2); see Example 5.4.2.

152 Chapter 5: Constructing an Efficient Proof Procedure

T:(p(x) _ (q(x) ^ r(x)))T:(s1 _ s2)F:p(a)T:p(X) T:(q(X) ^ r(X))T:q(X)T:r(X)T:s1 T:s2
(a)

T:(p(x) _ (q(x) ^ r(x)))T:(s1 _ s2)F:p(a)T:p(a)? T:(q(a) ^ r(a))T:q(a)T:r(a)T:s1 T:s2
(b)T:(p(x) _ (q(x) ^ r(x)))T:(s1 _ s2)F:p(a)T:p(a)?S(X) T:(q(a) ^ r(a))T:q(a)T:r(a)T:s1S(X) T:s2S(X)

whereS(X) =T:p(X) T:(q(X) ^ r(X))T:q(X)T:r(X)
(c)

Figure 5.10:A tableau reconstruction step (Example 5.4.3).

5.4 Deterministic Proof Procedures for Rigid Variable Calculi 153� T+1 is an initial tableau forF.� For all i > 1,

1. Ti+1 is a successor tableau ofT+i such that (a)Ti+1 is not k-contained
in T+i , and (b) there is no successor tableauT 0i+1 of T+i that satisfies con-
dition (a) and has a smaller maximal formula weight thanTi+1 (w.r.t. the
weight functionw).

2. Let hCi; �ii be the conclusion derivable from some premiss onT+i that
is used to constructTi+1, and letSi be the minimal sub-tableau ofTi+1
that contains all occurrences of free variables instantiated by�i. The ta-
bleauT+i+1 is constructed fromTi+1 by repeatedly executing all expansion
rule applications needed to construct the sub-tableauSi and thus append-
ingSi at the end of each branch going through the sub-tableau inTi+1 that
results from applying�i to Si.

Proof: Part 1: SinceC is ideal, if hC; �i is a conclusion of some premiss�, thenhC; idi is a conclusion of��. Therefore, the expansion rule applications needed to
constructT+i from Ti do not require any instantiations of rigid variables, i.e.,they are
non-destructive, which implies that, for alli � 1,Ti �k T+i :
By construction ofT+i+1, all formulae that are destroyed by applying the substitution�i
to T+i are reintroduced to all branches from which they are missingin Ti+1. Thus, we
have T+i �k T+i+1 :
Part 2: We show that the sequence(T+i)i�1 is regular (Def. 5.2.9). Assume the con-
trary; then the sequence contains tableauxT+i ; T+j , i > j, such thatT+i �k T+j . Using
the results of Part 1, that impliesTi �k T+i �k T+j �k T+i�1 ;
which contradicts the fact that (by definition) the tableauTi is notk-contained inT+i�1.
Part 3: Let wmax 2 N be an arbitrary weight. We prove that the initial sub-sequence
of (T+i)i�1 that only contains formulae� of weightw(�) � wmax is finite.

Let � be a set of representatives of each class of tableau formulaein (T+i)i�1 that are
identical up to variable renaming and whose weight is not bigger thanwmax; thus, if� is a tableau formula withw(�) � wmax in (T+i)i�1, then there is a variant of� in �;
we assume that the representatives in� are chosen in such a way that no two formulae
in � have a rigid variable in common.

154 Chapter 5: Constructing an Efficient Proof Procedure

The definition of weight orderings implies immediately thatthe set� must be finite.
Thus, Lemma 5.2.11 applies and the initial sub-sequence of(T+i)i�1 in which no for-
mula of weight bigger thanwmax occurs is finite.

Part 4: By assumption there is a (possibly irregular) tableau proofT 01; : : : ; T 0m for F.
We prove by induction onj that there are substitutions�1; : : : ; �m 2 Subst(��) and
weightsw1; : : : ; wm 2 N such that T 0j �k T+nj�j
whereTnj is the last tableau in the initial sub-sequence of(T+i)i�1 that contains no
formula with a weight bigger thanwj (which exists according to Part 3).j = 1: Let �1 = id andw1 = 0 such thatn1 = 1. The tableauxT 01 and T+1 are
both initial tableaux forF and do not contain rigid variables; thus, we have triviallyT 01 �k T+n1�1.j ! j + 1: Let�0 be the premiss andhC 0; �i the conclusion used in the construction ofT 0j+1 from T 0j; letB0j be the branch inT 0j that has been expanded; and let� be the vari-
able renaming that exists becauseT 0j �k T+nj�j according the the definition of�k. Now,

let the tableaûT be constructed by expandingall branches ofT+n �j� thatk-contain
the branchB0 (they contain a variant of the premiss�) using the conclusionhC 0; �i.
Obviously, the tableaûT k-contains the tableauT 0j+1.
Let wj+1 be the maximal weight of the formulae in̂T . The tableauT+nj+1�j� k-

containsT̂ . Otherwise, the expansion ofT+nj+1 using the conclusionhC 0; � Æ � Æ �ji is
regular. That leads to a contradiction, because all formulae that are added by such an
expansion rule application are variants of formulae inT̂ ; they thus all have a weight
that is less than or equal towj+1; but since the tableauT+nj+1 is by definition the last
tableau in the sequence(Ti)i�1 not containing a formula of weight bigger thanwj+1,
all expansion rule applications toT+nj+1 that do not add a formula of weight bigger
thanwj+1 must be forbidden by the regularity condition.

Therefore, we have T 0j+1 �k T̂ �k T+nj+1�j�
and thus T 0j+1 �k T+nj+1�j+1
where�j+1 = �j�.

Part 5: Now we can conclude the proof of the theorem as, in particular, the ta-
bleauT+nm�m k-contains the tableauT 0m. SinceT 0m is closed, every branch ofT 0m
contains?. Therefore, every branch ofT+nm�m and, thus, every branch ofT+nm con-
tains?, i.e.,T+nm is closed. 2
A proof procedure satisfying the conditions of Theorem 5.4.4, which constructs a reg-
ular sequenceT+1 ; T+2 ; : : : of tableaux such thatT+i �k T+i+1 for all i � 1, simulates—
in a certain sense—a depth first iterative deepening search (see Section 5.1.2). The

5.5 Search Space Restrictions that Preserve Idealness 155

weight of the formulae that can occur in the tableaux increases stepwise. If some (pos-
sibly irregular) tableau proof exists that does not containformulae of weight bigger
thanwmax, then there is a closed tableauT+n that is the last in the constructed sequence
not containing formulae of weight bigger than somew+max 2 N . It contains all tableaux
that can be constructed from formulae� of weightw(�) � wmax. The big advantage
of this simulated DFID over classical DFID search based on backtracking is that the
tableauT+n is a very compact representation of the search space. All theinformation
that is contained in tableaux whose formulae are of weight less thanwmax is present
in the single structureT+n ; and all the tableaux in the search space that are identical
or in some way symmetrical to each other are represented by only one sub-tableau
of T+n . Since no backtracking occurs, no information that has beenderived is ever lost.
There may be parts of the tableauT+n that represent redundant information and are
therefore useless (i.e., non-closed subtableaux that should not have been created); but
these are not harmful as they can be removed using thepruningtechnique described in
Section 4.6.

The method for designing a deterministic proof procedure described in this section can
only be applied if the number of formulae in minimal premisses is limited by somek 2 N . It can, however, easily be extended to arbitrary ideal calculi with a ground in-
stance (such as, for example, the calculus for modal logics described in Section 3.7.4)
by iteratively increasing the limitk during the construction of the regular sequence(T+i)i�1 of tableaux—such that, for all pairshk; wmaxi, at leastk variants of all for-
mulae of weight less thanwmax are sooner or later added to each tableau branch. One
could, for example, define thatk = kw(wmax) wherekw is a monotonically increasing
function andwmax is the maximal weight of the formulae in the current tableau.5.5 Searh Spae Restritions that Preserve Idealness
The method of constructing deterministic proof proceduresfor rigid variable calculi
described in the previous section is compatible with all search space restrictions that
preserve idealness of the calculus. These restrictions areusually based on semantical
properties of the particular logic, such that they are difficult to formulate in a uniform
way. Important examples for such restrictions are the following.Connetedness For many calculi (and logics), it is possible to define aconnect-
ednessrelation between tableau formulae (or between tableau formulae and sets of
tableau formulae) such that, if a tableau formula� is not connected to any other for-
mula (or set of formulae) on the tableau branch on which it occurs, then it is known
to be redundant, i.e., neither� nor any formula derivable from� can ever be used in a
branch closure. That is, (1) no minimal premiss that contains� allows the deduction
of ? and, iteratively, (2) no conclusion that can be derived froma minimal premiss

156 Chapter 5: Constructing an Efficient Proof Procedure

containing� contains a formula that is connected to another formula (or sets of formu-
lae). Of course, to be useful for restricting the search space, the connectedness relation
must be easy to check.

For example, if the calculus for PL1 from Section 3.6 is used to construct tableaux,
then a connectedness relation can be used where two formulaeare considered to be
connected if and only if they contain occurrences of the sameatom with different
polarity (see, for example, (Beckert & Hähnle, 1998)).

A notion of connectedness based on checking the occurrence of the same atom with
different polarity can be used for most logics in the sense that the occurrence of such
atoms issufficientfor connectedness. Often, however, formulae are connectedin other
ways as well (for example if they contain equalities that maybe “applied” to other
formulae).

If an ideal calculus is restricted in such a way that a minimalpremiss containing a
formula must never be used for expansion, then idealness of the calculus is preserved.
However, idealness and proof confluence are lost if astrongconnectedness condition
is used, where a minimal premiss may only be used for expansion if one of its formulae
is connected to the leave of the branch that is expanded.Seletion Funtions Another important method for restricting the search space
that preserves idealness of a calculus are selection functions based in literal orderings,
which are well-known from calculi for clausal predicate logic (Hähnle & Klingenbeck,
1996; Hähnle & Pape, 1997).

Note that literal orderings are a completely different concept than the weight orderings
defined in Section 5.3; literal orderings are (in general) nowell-orderings as there may
be infinitely many formulae that are incomparable.

6 Fibring
6.1 Overview
The methodology offibring is a successful framework for combining logical systems
based on combining their semantics (Gabbay, 1996c; Gabbay,1996a; Gabbay, 1998),
see Section 6.2. The basic idea is to combine the models defining the semantics of two
logicsL1e andL2 such that the result can be used to define semantics for expressions
(formulae) from the combined languages ofL1 andL2. The general pre-condition for
fibring is that these models have components like, for example, the worlds in Kripke
structures, which is in full accordance with the assumptions we have made regarding
the form of models.

To build fibred models,fibring functionsF(1;2) are defined that assign to each worldw
of anL1-modelm1 anL2-modelm2. When anL2-formula is to be evaluated inw,
where its value is undefined at first, it is evaluated inm2 = F(1;2)(w) instead. The
full power of the fibring method is revealed when this processit iterated to define a
semantics for the logicL[1;2℄, where the operators of the component logics can occur
arbitrarily nested in formulae. Fibring has been successfully used in many areas of
logic to combine systems and define their semantics; for an overview see (Gabbay,
1996c; Gabbay, 1998).

In this chapter, we extend the fibring approach totableau calculi. We describe how
to uniformly construct a sound and complete tableau calculus for the combined logic
from tableau calculi for the component logics. Since tableau calculi are readily avail-
able for most “basic” logics (including classical logics, modal logics, intuitionistic
logics, temporal logics, and many more), calculi can be obtained for all “complex”
logics that can be constructed by fibring basic logics, such as modal predicate logic,
intuitionistic temporal logic, etc.

The main advantage of a uniform framework for fibring tableaucalculi is that to con-
struct a calculus for the combinationL[1;2℄ of two particular logics, no knowledge is
needed about their interaction. Thus, a calculus for the combinationL[1;2℄ can be ob-
tained quickly and easily. Soundness and completeness of the fibred calculus do not
have to be proven but follow from soundness and completenessproperties of the com-
ponent calculi (Theorem 6.4.3).

It is also possible to fibre a calculusC1 for a logicL1 with a calculusC2 for a “sub-
logic” L2 of L1 (for example, propositional logic is a sub-logic of predicate logic);

157

158 Chapter 6: Fibring

althoughC1 can handle the whole logicL1, the calculusC2 may be more efficient for
formulae fromL2 such that the fibred calculusC(1;2) is more efficient thanC1.
One cannot fibre just any tableau calculi in a uniform way. If nothing is known about
the calculi, then it is not clear where to “plug in” the calculus forL2 into that forL1.
Therefore, in this chapter, we only consider tableau calculi that are (syntactically)

– ideal,

and (semantically)

– have the strong soundness properties from Definition 3.5.8(appropriateness of the
set of tableau interpretations and soundness of expansion),

– have Strong Completeness Property 1 from Definition 3.5.10(appropriateness of the
set of tableau interpretations), and

– are strongly semantically analytic (Def. 3.5.16).

Calculi with these properties can be shown to be sufficiently“well-behaved”, such
that fibring is possible. Idealness of the component calculiis sufficient to define the
fibred calculus (i.e., its syntax and semantics) in a uniformway. If, moreover, the
component calculi have the semantical properties listed above, then the resulting fibred
calculus is automatically sound and complete for the logic resulting from fibring the
component logics. Moreover, it can be shown to have itself these semantical properties,
which makes it possible to iterate the fibring of tableau calculi and, thus, to construct
a calculus for the fully fibred logicL[1;2℄.
As an example, in Section 6.5, a calculus for PL1 and a calculus for the modal logicbK
are fibred resulting in a calculus for modal predicate logic.

It may be only possible to use a fibred calculus for semi-deciding satisfiability of for-
mulae in the fibred logik, i.e., a proof procedure based on thefibred calculus may
only terminate for unsatisfiable input formulae—even if thecomponent calculi can be
used to decide satisfiability in the component logics. That,however, is not surprising
because a fibred logic may be undecidable even if its components are decidable.

Related work includes (D’Agostino & Gabbay, 1996), where a method for fibring
tableau calculi for substructural implication logics has been presented. In (?), a method
is described for fibring tableau calculi for modal logics to construct calculi for multi-
modal logics; it can be seen as an instance of the general framework presented in the
following. In (Giunchiglia & Sebastiani, 1996), a deduction system for a modal logic
is described that uses separate procedures for handling theclassical propositional part
and the modal part of formulae, respectively.

In (Pfalzgraf, 1991; Pfalzgraf & Stokkermans, 1994) the introduction oflogical fib-
ringshas been strongly motivated by the classical notion of fibre bundles and sheaves.

6.2 Fibring Logical Systems 159

Concrete applications aim at modelling logical control of cooperating agents. Baader
and Schulz (1995a; 1995b) use another variant of fibring for combining solution do-
mains and constraint solvers for symbolic constraints.

The advantages of combining different logics are discussedin (de Rijke, 1997).6.2 Fibring Logial Systems
In this section, the method of fibring logical systems is described in general and syn-
tax and semantics of fibred logics are defined, based on syntaxand semantics of its
component logics.

Intuitively, to fibre two logicsL1 andL2 means to consider a logic whose formulae are
constructed from symbols and operators from both logics (Gabbay, 1996c; Gabbay,
1998). In a first step we consider a logicL(1;2) whereL2-formulae can occur insideL1-formulae but not vice versa.

The logicL[1;2℄ � L[2;1℄ that is the full combination ofL1 andL2, where expressions
from the two logics can be nested arbitrarily, can be handledby inductively repeating
the construction described in the following. Similarly, itis possible to combine three
or more logics.

As we have defined logical systems in a very general way, thereis no information
on how formulae are constructed from signatures. We model the assumption thatL(1;2)-formulae are (somehow) constructed usingL2-formulae as subformulae ofL1-
formulae by considering the logicL(1;2) to be a special version ofL1 that contains
the formulae ofL2 as (additional) atoms. And, in each worldw of theL(1;2)-models
(which are enrichedL1-models), the truth value of the additional atoms (which areL2-
formulae) is the same as that in the initial world of anL2-model assigned tow. Thus,
anL(1;2)-model consists of anL1-modelm1 and afibring functionF that assigns to
each worldw in m1 anL2-model (as illustrated in Figure 6.1). Intuitively, when anL2-formula is to be evaluated inw, where its value is undefined, it is evaluated inm2 = F(w) instead.

Definition 6.2.1 Let L1 andL2 be logics; let a signature�(1;2) 2 Sig1 be assigned to
each pairh�1;�2i 2 Sig1 � Sig2 of signatures such thatForm2(�2) � Atom1(�(1;2)) :
The fibred logical systemL(1;2) that is the result of fibring the logicsL1 andL2 is
defined by:� The setSig (1;2) of signatures ofL(1;2) consists of all the signatures�(1;2) 2 Sig1

assigned to a pairh�1;�2i 2 Sig1 � Sig2.

160 Chapter 6: Fibring

w11 � w21 �w31 �m1
� �� m12 = F(1;2)(w11)� �� m22 = F(1;2)(w21)� �� m32 = F(1;2)(w31)

F(1;2)F(1;2)F(1;2)
Figure 6.1: A fibred model.� For all�(1;2) 2 Sig(1;2), the setForm(1;2)(�(1;2)) of L(1;2)-formulae over�(1;2)

is identical to the setForm1(�(1;2)) of L1-formulae over�(1;2), and the setAtom(1;2)(�(1;2)) of L(1;2)-atoms over�(1;2) is identical to the setAtom1(�(1;2))
of L1-atoms over�(1;2).� For all �(1;2) 2 Sig (1;2), the setM(1;2)(�(1;2)) of L(1;2)-models consists of all
pairshm1;Fi wherem1 2 M1 is anL1-model andF is a fibring function that
assigns to each worldw ofm1 anL2-modelm2 2 M2(�2) such that a formulaG 2 Form2(�2) is true inw iff it is true in F(w), i.e.,w j=1 G iff F(w) j=2 G ;
wherej=1 andj=2 denote the truth relations between worlds and formulae inL1
andL2, respectively.

The setW(1;2) of worlds ofhm1;Fi consists of all worlds inm1 and all worlds
in theL2-models assigned to worlds inm1 by F . The initial world ofhm1;Fi
is the initial world ofm1.
The truth relationj=(1;2) of L(1;2) is defined byw j=(1;2) G iff w j=1 G for all
worldsw in W(1;2) = W1 and formulaeG in Form(1;2)(�(1;2)) = Form1(�(1;2)).2

Example 6.2.2 To be able to fibre first-order predicate logic PL1 and a modal logic,
we assume that for every PL1-signature�PL1 there is a signature�mod 2 Sigmod such
that the atoms over�PL1 are the primitive propositions in�mod. Then,�(PL1;mod) is a
PL1-signature in which the predicate symbols are of the formÆ1 � � �Ænp (n � 0) whereÆi 2 f2;3;�g andp is a predicate symbol in�PL1.
If p andq are predicate symbols in�PL1 anda is a constant, thenp(a) is a primitive
proposition in�mod, 2p is a predicate symbol in�(PL1;mod), and2p(a) is an element
of bothAtomPL1(�(PL1;mod)) andFormmod(�mod).

6.3 Fibring Tableau Calculi 161

Examples for formulae inFormPL1(�(PL1;mod)) are2p(a);(8x)(p(x));(8x)(2p(x));(8x)(2p(x))! (9x)(3q(x));
but2(8x)(p(x)) is not a formula inFormPL1(�(PL1;mod)) as modalities are only al-
lowed to occur on the atomic level; and2p(x) is neither a formula ofLmod nor an
atom of PL1 because free object variables are, by definition,not allowed to occur in
formulae of PL1.

The fibred logicL(PL1;mod) is a modal predicate logic, where the modal operators can
only occur on the atomic level. If, however, the fibring process is iterated, then the
result is a full modal predicate logic, because then the logical connectives_ and^ of
PL1 can be used inside modal formulae. 26.3 Fibring Tableau Caluli
In this section, we describe how to construct in a uniform waya tableau calculus for a
fibred logicL(1;2) from two tableau calculiC1 andC2 for L1 resp.L2.1
If we take the view point that the search for a tableau proof isan attempt to construct a
model for the formulae on the initial tableau, then the search for a tableau proof in the
fibred calculus corresponds to a construction of a fibred model. It has therefore to be
possible to represent knowledge about fibred models by tableau formulae of the fibred
calculus. For that purpose, we use labels that are either of the form�1 2 Lab1 denoting
a world in theL1-model or of the form(�1; �2) (where�1 2 Lab1 and�2 2 Lab2)
denoting a world in theL2-model that is assigned by the fibring function to the world
in theL1-model represented by�1. A tableau formulaT:�1:G expresses thatG is
true in I1(�1); the meaning of a tableau formulaT:(�1; �2):G is thatG is true in the
world I2(�2) of the model assigned toI1(�1) by the fibring function.

The combined calculus does not construct separate tableauxfor L1 andL2 formulae,
but there is only one unified structure with one unified tableau expansion rule.

The tableau expansion rule of the fibred calculusC(1;2) constructed fromC1 andC2 has
three components:

1. the expansion rule ofC1; it can be applied toL1-tableau formulae on a branch;1 Only ground calculi are considered in this chapter. To construct a rigid or universal variables calculus
for a fibred logicL(1;2), a ground calculusCgd(1;2) has to be constructed first (using fibring), which
then allows to construct a free variable calculus forL(1;2) using the lifting techniques described in
Chapter 4.

162 Chapter 6: Fibring

2. the expansion rule ofC2; it can be applied toL2-tableau formulae with a label of
the form(�1; �2);

3. A fibring rule schema that allows to deriveS:(�1; �02):G2 from S:�1:G2 if G2 is
anL2-formula and, thus, has to be handled by theC2-rule. This schema expresses
the fact that, if anL2-formulaG2 is true in anL1-world w = I1(�1), then it is
true in the initial world of theL2-model assigned tow.

The only additional assumption we have to make to be able to define syntax and se-
mantics of the fibred calculusC(1;2)—besides idealness of the calculiC1 andC2 for the
component logics—is that the extensions of signatures thatare used inC1 andC2 are
compatible.

Definition 6.3.1 Let the logicL(1;2) be the result of fibring logicsL1 andL2; and letC1
andC2 be calculi forL1 resp.L2 such that, for all signatures�1 2 Sig1 and�2 2 Sig2,
there is an extension�(�)2 of �2 with

– Form2(�(�)2) � Atom(��(1;2)), and

– ��2 = (�(�)2)�.
Then, the fibred calculusC(1;2) for L(1;2) is, for all�1 2 Sig1;�2 2 Sig2, defined by:

Labels: The set of labels ofC(1;2) isLab(1;2) = Lab1 [f(�1; �2) j �1 2 Lab1; �2 2 Lab2g ;
the initial label�0(1;2) of C(1;2) is identical to the initial label�01 of C1.

Expansion rule:The expansion ruleE(1;2) of C(1;2) assigns the following possible con-
clusions to premisses� � TabForm(1;2)(��(1;2)) (whereE1 andE2 are the expan-
sion rules ofC1 andC2, respectively):

1. the conclusions inE1(�1) where�1 consists of all tableau formulae� in �
of the form� = S:�1:G (expansion rule ofC1),

2. for all�1 2 Lab1, the conclusions that can be constructed from the conclu-
sions inE2(�2;�1) replacing�2 by (�1; �2) where�2;�1 = fS:�2:G j S:(�1; �2):G 2 �g
(expansion rule ofC2),

3. the conclusionffS:(�1; �02):Ggg for all tableau formulae� in� of the form� = S:�1:G whithG 2 Form2(��2) (fibring rule schema).

6.4 Semantical Properties of Fibred Calculi 163

Tableau interpretations:The setTabInterp(1;2) of tableau interpretations ofC(1;2) con-
sists of all pairshm(1;2); I(1;2)i, wherem(1;2) = hm1;Fi is anL(1;2)-model, such
that

1. there is a tableau interpretationhm1; I1i in TabInterp1(�(1;2)),
2. for allL2-modelsm2;w = F(w) that are assigned to worldsw ofm1, there

is a tableau interpretationhm2;w; I2;wi in TabInterp2(�2),
3. I(1;2)(�1) = I1(�1) andI(1;2)((�1; �2)) = I2;I1(�1)(�2) for all �1 2 Lab1 and�2 2 Lab2. 26.4 Semantial Properties of Fibred Caluli

As already mentioned in Section 6.1, we demand that a calculus that is to be used for
fibring—besides being ideal—has the soundness and completeness properties from
Definitions 3.5.8 and 3.5.10, and is strongly semantically analytic.

Definition 6.4.1 A calculusC is suitable for fibringif

– it is ideal,

– it has the strong soundness properties from Definition 3.5.8 (appropriateness of the
set of tableau interpretations and soundness of expansion),

– it has Strong Completeness Property 1 from Definition 3.5.10 (appropriateness of
the set of tableau interpretations), and

– it is strongly semantically analytic (Def. 3.5.16). 2
Idealness of the component calculiC1 andC2 is sufficient for syntactically defining the
fibred calculusC(1;2). But C(1;2) is only thenby constructionsound and complete (and
suitable for fibring) ifC1 andC2 have the semantical properties making them suitable
for fibring (as defined above).

It is not sufficient for fibring if the component calculi only have the weak soundness
and completeness properties (Def. 3.5.3 and 3.5.6). For example, if only satisfiability
by sometableau interpretation is preserved when the expansion rule of a component
calculus is applied, then the fibred calculus is not necessarily sound. Intuitively, the
reason for this is the following: SupposeT(1;2) is a tableau for formulae of the fibred
logic L(1;2), theL1-tableau interpretationhm1; I1i satisfies theL1-part ofT(1;2), and
a world w in m1 is assigned anL2-modelm2. Now, if the expansion rule of the
component calculus forL1 only preserved satisfiability bysometableau interpretation,
i.e., theL1-part of a successor tableauT 0(1;2) of T(1;2) was only satisfied by some tableau
interpretationhm01; I 01i different fromhm1; I1i, then a problem would arise in casem2

164 Chapter 6: Fibring

and the worldw0 in hm01; I 01i corresponding tow are not compatible, i.e., in case someL2-formula that is true in the initial world ofm2 (and inw) is not true inw0.
The following example shows that a calculus has to be semantically analytic to be
indeed suitable for fibring, as otherwise the fibred calculusmay not be complete.

Example 6.4.2 Completeness of a calculusC1 for PL1 is preserved if a formula of
the formT:(p _ q) is not used for expansion of a branchB in case the atomq does
not occur anywhere else onB (i.e., in case the atomq is pure). A calculus using this
search space restriction is, however,not semantically analytic.

WhenC1 is fibred with a calculusC2 for a modal logic, then an PL1-atom may be an
unsatisfiable modal formula. Thus, the expansion of formulae containing pure atoms
may not be redundant; and a calculus for PL1 that is to be suitable for fibring must al-
low to expand a branch containing, for example,T:�:[3(r ^ :r) _ q℄ by sub-branches
containingT:�:3(r ^ :r) andT:�:q, respectively, such thatT:�:3(r ^ :r) can be
passed on to the modal component of the fibred calculus, and its unsatisfiability can be
detected. 2
The following is the main theorem of this chapter.

Theorem 6.4.3 Let the logicL(1;2) be the result of fibring logicsL1 andL2; let C1
andC2 be calculi forL1 resp.L2 that are suitable for fibring (Def. 6.4.1), and let the
calculusC(1;2) for L(1;2) be the result of fibringC1 andC2 according to Definition 6.3.1.

Then, the calculusC(1;2) is suitable for fibring.

Proof: Idealness: By construction,C(1;2) is a calculus with expansion rule, and it
is easy to check that its expansion rule is monotonic and non-structural. Therefore,C(1;2) is ideal.

Strong Soundness Property 1:Let a setF � Form(1;2)(�(1;2)) of formulae be satisfied
by a modelhm;Fi 2 M(1;2)(�(1;2)).
Since the calculusC1 has Strong Soundness Property 1, there is a tableau interpre-
tation hm�1; I1i 2 TabForm1(��(1;2)) that satisfies the initial tableau forF such thatm�1 is an extension ofm1. Now, for all worldsw of m�1, let Fw be the set of all for-
mulae inForm2(��2) that are true inw; Fw is satisfied by the modelm2;w = F(w).
Because the calculusC2 has Strong Soundness Property 1, there is a tableau interpreta-
tion hm�2;w; I2;wi 2 TabForm2(��(1;2)) that satisfies the initial tableau forFw such thatm�2;w is an extension ofm2;w.

The tableau interpretationhhm�1;F�i; I(1;2)i 2 TabInterp(1;2)(��(1;2)) where

– F�(w) =m�2;w,

6.4 Semantical Properties of Fibred Calculi 165

– I(1;2)(�1) = I1(�1) and I(1;2)((�1; �2)) = I2;I1(�1)(�2) for all labels�1 2 Lab1 and�2 2 Lab2,
satisfies the initial tableau forF, and it is an extension ofhm;Fi.
Strong Soundness Property 2:As the calculusC(1;2) is ideal, we can use Lemma 3.5.9.
Let � � TabForm(1;2)(��(1;2)) be a minimal premiss of a conclusionC; and assume
that� is satisfied by a tableau interpretationhhm1;Fi; I(1;2)i 2 TabInterp(1;2)(��(1;2)).
We show thathhm1;Fi; I(1;2)i satisfies one of the extensions inC by cases according
to the form of�.

If � only contains formulae of the formS:�1:G, i.e.,C has been derived from� using
the expansion rule ofC1, then one of the extensions inC is satisfied byhhm1;Fi; I(1;2)i
becauseC1 has Strong Soundness Property 2.

If � only contains formulae of the formS:(�1; �2):G, i.e.,C has been derived from�
using the expansion rule ofC2, then one of the extensions inC is satisfied by the
tableau interpretationhhm1;Fi; I(1;2)i becauseC2 has Strong Soundness Property 2.

If � = fS:�1:Gg whereG 2 Form2(��2) andC = ffS:(�1; �02):Ggg, then the truth
value ofG is the same in the worldw1 = I(1;2)(�1) and the worldI(1;2)(�1; �02), which
is the initial world ofF(w1), and thereforehhm1;Fi; I(1;2)i satisfiesS:(�1; �02):G.

Strong Completeness Property 1:Let hhm�1;F�i; I(1;2)i be a tableau interpretation sat-
isfying an initial tableauT1 for a setF � Form(1;2)(�(1;2)) of formulae.

TheC1-tableau interpretationhm�1; I1i satisfiesT1 as well, whereI1 is the restriction
of I(1;2) to labels inLab1. Since the calculusC1 has Strong Completeness Property 1,
there is a modelm1 2 M1(�(1;2)) that is a restriction ofm�1 and satisfiesF.

Now, for all worldsw ofm�1, letFw be the set of all tableau formulae�02 :T:G such thatG 2 Form2(��(1;2)) is true inw; and let�1 be a label inLab1 such thatI1(�1) = w.
TheC2-tableau interpretationhF�(w); I2i whereI2(�2) = I(1;2)((�1; �2)) satisfiesFw.
Since the calculusC2 has Strong Completeness Property 1, there is a modelm2;w
inM2(�2) that is a restriction ofF�(w) and satisfiesFw. By construction, the modelm2;w satisfies all formulaeG that are true inw.

Therefore, the modelhm1;Fi of L(1;2) satisfiesF and is a restriction ofhhm�1;F�i,
whereF(w) = m2;f(w) for all worldsw in m1 (heref(w) is the world inm�1 corre-
sponding tow).

The calculus is strongly semantically analytic:LetB be a fully expanded branch that
is not closed; and let�(1;2) � TabForm(1;2)(��) be a set of atomic tableau formulae
such that, forno� in �(1;2), both� and� are inForm(B) [�(1;2). We show that there
is a tableau interpretation inTabInterp(1;2)(�(1;2)) satisfyingB and�(1;2).
For all �1 2 Lab1, let B2;�1 be the sub-branch ofB that consists of formulae of the
form S:(�1; �2):G. SinceB2;�1 is a fully expanded non-closedC2-branch and the cal-
culusC2 is strongly semantically analytic, there is a tableau interpretationhm2;�1 ; I2;�1i

166 Chapter 6: Fibring

in TabInterp(1;2)(�(1;2)) satisfying bothB2;�1 and the setfS:�2:G j S:(�1; �2):G 2 �(1;2)g
of atomic tableau formulae.

Let B1 be the sub-branch ofB that consists of formulae of the formS:�1:G where�1 2 Lab1. SinceB1 is a fully expanded non-closedC1-branch andC1 is strongly
semantically analytic, there is a tableau interpretationhm1; I1i 2 TabInterp1(�(1;2))
satisfying bothB1 and the set of atomic tableau formulae of the formS:�1:G in �(1;2).
Let the set�1 � TabForm1(�(1;2)) of atomic tableau formulae be defined by:�1 = fS:�1:G j G 2 Form2(��2), andS:�2:G is satisfied byhm2;�1; I2;�1ig :
By construction, the set�1 cannot contain an atom� and its complement�; and the
complement of� = S:�1:G 2 � cannot occur inForm(B1) because otherwiseB2;�1
would contain the complement ofS:�2:G (sinceB is fully expanded), which however
is not possible ashm2;�1; I2;�1i satisfies bothS:�2:G andB2;�1 .
Therefore, since the calculusC1 is strongly semantically analytic, there is a tableau
interpretationhm01; I 01i 2 TabInterp1(��(1;2)) that satisfies bothB1 and�1.
Now, we have that the tableau interpretationhhm01;Fi; I(1;2)i 2 TabInterp(1;2)(��(1;2))
with

– for all worldsw0 ofm01, theL2-model assigned tow0 isF(w0) = m2;�1 where�1 is
an arbitrary label inLab1 such thatI 01(�1) = w0,

– I(1;2)(�1) = I 01(�1) andI(1;2)((�1; �2)) = I2;�1(�2) for all �1 2 Lab1 and�2 2 Lab2,
satisfiesB. 2
A calculus that is suitable for fibring has by definition properties that ensure its sound-
ness and completeness (Theorems 3.5.4 and 3.5.7). Therefore, Theorem 6.4.3 implies
the following corollary.

Corollary 6.4.4 The calculusC(1;2) is sound and complete.6.5 Example: Fibring Caluli for PL1 and a Modal Logi
As an example, we fibre the calculusCPL1 for first-order predicate logic PL1 intro-
duced in Section 3.6 and a calculusCbK for the logic bK of modalities (without binary
connectives) defined in Section 2.5.2 The result is a calculusC(1;2) for first-order modal
logic where the modal operators can only occur on the atomic level (Example 6.2.2).2 To distinguish negations in PL1 and inbK, the symbol� is used in modal formulae instead of:.

6.5 Example: Fibring Calculi for PL1 and a Modal Logic 167

The tableau expansion rule of the fibred calculus can easily be constructed by instan-
tiating the calculiC1 andC2 in Definition 6.3.1 withCPL1 andCbK, respectively. As an
example we use a tableau proof for the validity of the formulaG = (8x)(2p(x))! [:(9y)(3�p(y)) ^ :(9z)(3�p(z))℄
in the logicL(1;2) = L(PL1;bK), using the calculusC(1;2) = C(PL1;bK) to construct a closed
tableau for:G. The tableau is shown in Figure 6.2; it is constructed as follows: The
tableau formula 1 is put on the tableau initially; then formulae 2–7 are added using the
rule schemata ofCPL1 for �- and�-formulae. The schema ofCPL1 for Æ-formulae is
applied to derive 8 from 7, introducing the Skolem constant1 = sko((9y)(3�p(y))).
Now, since 8 contains anbK-formula, the fibring rule schema is applied to add 9 to
the branch, which then allows to apply theCbK-expansion rule to derive 10 from 9 (we
assume thatd3�p(1)e = 1) and to derive 11 from 10. At this point, the rule schema
of CPL1 for -formulae is applied to 3 to derive 12, replacing the universally quantified
object variablex with the ground term1 (which shows thatC1- andC2-rule schemata
can be applied in an arbitrary order). Finally, the fibring rule schema is applied to 12
to derive 13, and the rule schema ofCbK for �-formulae is applied to derive 14. At this
point, the left branch of the tableau is closed by the expansion rule schema for closing
branches ofCbK, because it contains the complementary atoms 11 and 14. The right
branch is expanded and closed in the same way.

The full power of the fibring method is revealed when the fibring process is iterated
to construct fromCPL1 andCbK a calculusC[PL1;bK℄ for the full modal predicate logicL[PL1;bK℄; this is possible because the calculiC(1;2); C(1;(2;1)); : : : are all suitable for fib-
ring. As an example, we useC[PL1;bK℄ to prove the validity of the formulaG0 =(8x)(2(r(x) ^ s(x)))! [:(9y)(3(�r(y) _ �s(y))) ^ :(9z)(3(�r(z) _ �s(z)))℄
in L[PL1;bK℄; it is constructed fromG replacing the atomp(x) by r(x)^s(x) and replac-
ing�p(y) and�p(z) by�r(y) _ �s(y) resp.�r(z) _ �s(z). The construction of the
tableau starts as above forG (Figure 6.2). We only consider the left branch (the right
branch can be closed in the same way). Instead of the atoms 10 and 14, the branch now
contains100 = T:(�; 1:1):(�r(1) _ �s(1)) and140 = T:(�; 1:1):(r(1) ^ s(1)). The
expansion of the branch continues as shown in Figure 6.3 (to simplify notation, we
write (�; 1; �) instead of(�; (1; �)), etc.). The tableau formula140 contains an PL1-
formula. Therefore, the fibring rule schema is applied, and 23 is derived from140;
this is the fibring rule schema of the calculusC(bK;PL1) that, during the iteration pro-
cess, has been fibred withCPL1 to constructC(PL1;(bK;PL1)). The rule schema ofCPL1
for �-formulae is used to derive 24 and 25 from 23; then, 26 is derived from100 by
again applying the fibring rule schema, and the rule schema for �-formulae is applied
to derive 27 and 31 from 26. The atom�p(1) in 27 contains the modal and not the
first-oder negation sign. Thus, the fibring rule schema has tobe applied again to de-
rive 28, which then allows to derive 29 by applying the schemafor modal negation.

168 Chapter 6: Fibring

1 T:�::((8x)(2p(x))! [:(9y)(3�p(y)) ^ :(9z)(3�p(z))℄)
2 F:�:(8x)(2p(x))! [:(9y)(3�p(y)) ^ :(9z)(3�p(z))℄

3 T:�:(8x)(2p(x))
4 F:�::(9y)(3�p(y)) ^ :(9z)(3�p(z))

5 F:�::(9y)(3�p(y))
7 T:�:(9y)(3�p(y))

8 T:�:3�p(1)
9 T:(�; 1):3�p(1)

10 T:(�; 1:1):�p(1)
11 F:(�; 1:1):p(1)

12 T:�:2p(1)
13 T:(�; 1):2p(1)
14 T:(�; 1:1):p(1)?

6 F:�::(9y)(3�p(y))
15 T:�:(9y)(3�p(y))

16 T:�:3�p(1)
17 T:(�; 1):3�p(1)
18 T:(�; 1:1):�p(1)
19 F:(�; 1:1):p(1)

20 T:�:2p(1)
21 T:(�; 1):2p(1)
22 T:(�; 1:1):p(1)?

Figure 6.2: A tableau proof for the validity of the formulaG.

6.5 Example: Fibring Calculi for PL1 and a Modal Logic 169

100 T:(�; 1:1):�r(1) _ �s(1)
140 T:(�; 1:1):r(1) ^ s(1)
23 T:(�; 1:1; �):r(1) ^ s(1)

24 T:(�; 1:1; �):r(1)
25 T:(�; 1:1; �):s(1)

26 T:(�; 1:1; �):�r(1) _ �s(1)
27 T:(�; 1:1; �):�r(1)

28 T:(�; 1:1; �; 1):�r(1)
29 F:(�; 1:1; �; 1):r(1)
30 T:(�; 1:1; �; 1):r(1)?

31 T:(�; 1:1; �):�s(1)
32 T:(�; 1:1; �; 1):�s(1)
33 F:(�; 1:1; �; 1):s(1)
34 T:(�; 1:1; �; 1):s(1)?

Figure 6.3: The continuation of the tableau forG0.
The atomic tableau formulae 24 and 29 cannot be used to close the branch, because
their labels are different. Thus, the fibring rule schema is applied a last time to derive
30 from 24. Then, the branch is closed applying the schema forclosing branches to 29
and 30.

170 Chapter 6: Fibring

7 Theory Reasoning
7.1 Overview
Theory reasoning is an important technique for increasing the efficiency of automated
deduction systems, that is well-known from theorem provingin first-order predicate
logic. The specific knowledge from a given domain (or theory)is made use of by
applying efficient methods for reasoning in that domain.

Theory reasoning is very important for automated deductionin real world domains.
Equality theory, for example, is frequently used, but most specifications of real world
problems use other theories as well: algebraic theories in mathematical problems and
specifications of abstract data types in software verification to name a few.

Following the pioneering work of Stickel (1985), theory reasoning methods have been
described for various types of calculi for first-order predicate logic; e.g. resolution
(Stickel, 1985; Policriti & Schwartz, 1995), path resolution (Murray & Rosenthal,
1987b), the connection method (Petermann, 1992; Petermann, 1993), model elimina-
tion (Baumgartner, 1992), connection tableaux (Baumgartner et al., 1992; Furbach,
1994), the matrix method (Murray & Rosenthal, 1987a).

The abstract model usually used to characterise an automated deduction system that
employs theory reasoning techniques is that the general purposeforeground reasoner
calls a special purposebackground reasonerto handle problems from a certain the-
ory. In the case of tableau-based theorem proving, the foreground reasoner is (an
implementation of) a tableau calculus, whereas the background reasoner is an arbi-
trary algorithm that, when provided with a premiss�, computes a conclusion or a set
of conclusions of�.

This model fits perfectly within our framework. There is no need to introduce new
notions for theory reasoning or to define conditions that theconclusions computed by
a background reasoner must satisfy to establish soundness and completeness of the
resulting calculus for a theoryT and a logicL (as is usually done in the literature
on tableau-based theory reasoning, see (Beckert, 1998a)).Instead, we take the view-
point that a theoryT defines a new logical systemLT . This logicLT has the same
syntax as the original logicL; but the models ofLT are only those models ofL that
satisfyT . Then, all the notions and methods from the previous chapters can be applied
without the need to define special theory reasoning versions. A background reasoner
is assumed to be a procedure or algorithm for computing conclusions such that the

171

172 Chapter 7: Theory Reasoning

resulting calculus is sound and complete for the logicLT . No special soundness and
completeness criteria have to be defined for theory reasoning, but the techniques for
proving soundness and completeness described in Chapter 3 can be used. In addi-
tion, all methods for improving the efficiency of a tableau-based proof procedure from
Chapters 4 and 5 can be applied, including the rigid and universal variable techniques.

Background reasoners have been designed for various theories, in particular for equal-
ity reasoning; an overview can be found in (Baumgartneret al., 1992; Furbach, 1994);
for set theory in (Cantoneet al., 1989). Reasoning in single models, e.g. natural num-
bers, is discussed in (Bürckert, 1990).7.2 Theories
We define any satisfiable set of formulae to be a theory.

Definition 7.2.1 Let L be a logic; and let� 2 Sig be a signature. Then, a satisfiable
setT (�) � Form(�) of formulae is atheory.

The logical systemLT is identical toL except that, for all signatures� 2 Sig, its
setMT (�) of models only contains those models ofL(�) that satisfyT (�). 2
In the literature, often the additional condition (besidessatisfiability) is imposed on
theories that they are closed under the logical consequencerelation. Without that re-
striction we do not have to distinguish between a theory and its defining set of axioms.

Definition 7.2.2 A theoryT (�) is (finitely) axiomatisableif there is a (finite) decid-
able set	 � Form(�) of formulae (the axioms) such that:� 2 Form(�) is satisfied
by all models ofLT (�) if and only if� is satisfied by all models ofL(�) that satisfy	.2
Most theories that are of practical interest are axiomatisable. An example for a theory
that is not axiomatisable is the setT of all satisfiable formulae in PL1. If a theoryT
is axiomatisable, then the set of unsatisfiable formulae ofLT can be enumerated using
a tableau calculus forL.

Example 7.2.3 The most important PL1-theory in practice is the equality theoryT�.
It consists of the following axioms:

(1) (8x)(x � x) (reflexivity),

(2) for all function symbolsf 2 F (�):(8x1) � � � (8xn)(8y1) � � � (8yn)((x1 � y1 ^ : : : ^ xn � yn)!f(x1; : : : ; xn) � f(y1; : : : ; yn))
wheren = ��(f) (monotonicity for function symbols),

7.3 Examples for Background Reasoners 173

Premiss ConclusionsfF:(a � a)g hff?gg , idifF:(X � a)g hff?gg , fX 7! agifF:(x � a)g hff?gg , idifT:p(a); F:p(b)g hffF:(a � b)gg , idifT:p(f(a); f(b));T:(f(X) � X)g hffT:p(a; f(b))gg, fX 7! agihffT:p(f(a); b)gg, fX 7! bgifp(f(a); f(b)); f(x) � xg hffT:p(a; b)gg , idi
Table 7.1:Examples for premisses and their conclusions using equality theory.

(3) for all predicate symbolsp 2 P (�):(8x1) � � � (8xn)(8y1) � � � (8yn)((x1 � y1 ^ : : : ^ xn � yn)!(p(x1; : : : ; xn)! p(y1; : : : ; yn)))
wheren = ��(p) (monotonicity for predicate symbols),

Symmetry and transitivity of� are implied by reflexivity (1) and monotonicity for
predicate symbols (3) (observe that� 2 P (�)). 2
Example 7.2.4 The PL1-theoryT< of partial orderings consists of the axioms

(1) (8x):(x < x) (anti-reflexivity),

(2) (8x)(8y)(8z)((x < y) ^ (y < z)! (x < z)) (transitivity).

The theoryT< is finite; contrary to the equality theory, it does not contain monotonicity
axioms. 27.3 Examples for Bakground Reasoners
Table 7.1 shows some examples for conclusions a sound and complete background rea-
soner for the equality theoryT� may compute; the premisses and conclusions contain
both rigid and universal variables.

Using the universal variable technique is of great importance for theory reasoning as
the following example illustrates:

Example 7.3.1 Suppose a tableau branch contains the equalityT:(f(x) � x) and the
atomsT:p(f(a); f(b)) andF:p(a; b). In that case, the conclusionhff?gg; idi can be
derived, and the branch can be closed immediately.

174 Chapter 7: Theory Reasoningt < t0t0 < t00t < t00
for all t; t0; t00 2 Term0PL1(��) t < t?

for all t 2 Term0PL1(��)
Table 7.2:Additional expansion rule schemata for the theory of partial orderings
(Example 7.3.2).

In a rigid variable tableau where a similar branch contains the equalityT:(f(X) � X)
instead ofT:(f(x) � x), which allows only to derive the possible conclusionshffT:(f(b) � b)gg; fX 7! agi and hffT:(f(a) � a)gg; fX 7! bgi ;
the branch cannot be closed (immediately). 2
Example 7.3.2 A sound and complete (ground) calculus for the logicPL1T> , i.e.,
for the logical system that results from adding the theory ofpartial orderings (Exam-
ple 7.2.4) to first-order predicate logic, can be constructed by extending the expansion
rule of the ground calculusCPL1 from Section 3.6 by the two expansion rule sche-
mata shown in Table 7.2. That is, for all premisses� 2 TabFormPL1(��), the setET>(�)(�) of possible conclusions is the smallest set containing

– all conclusions inEPL1(�)(�),
– the conclusionffT:(t < t00)gg for all termst; t00 2 Term0PL1(��) such that there are

formulaeT:(t < t0) andT:(t0 < t00) in � for somet0 2 Term0PL1(��),
– the conclusionff?gg if T:(t < t) 2 � for some termt 2 Term0PL1(��). 2

Bibliography
AHRENDT, WOLFGANG, BECKERT, BERNHARD, & STENZ, GERNOT. 1997.

Search-oriented vs. Representation-oriented Calculi.In: Proceedings, Interna-
tional Workshop on Proof Transformation and Presentation.

ANDREWS, PETER B. 1981. Theorem Proving through General Matings.Journal of
the ACM, 28, 193–214.

BAADER, F., & SCHULZ, K. 1995a. Combination of Constraints Solving Techniques,
and Algebraic Point of View.In: Proceedings, RTA-95. LNCS 914. Springer.

BAADER, F., & SCHULZ, K. 1995b. On the Combination of Symbolic Constraints,
Solution Domains and Constraint Solvers.In: Proceedings, CP-95. LNCS 976.

BAUMGARTNER, PETER. 1992. A Model Elimination Calculus with Built-in Theo-
ries. Pages 30–42 of:OHLBACH , H.-J. (ed),Proceedings, German Workshop on
Artificial Intelligence (GWAI). LNCS 671. Springer.

BAUMGARTNER, PETER. 1998. Fairness Strategies in Hyper Tableaux. Talk given
as part of the Tele SeminarAutomated Theorem Proving and Applicationsjointly
held at the University of Karlsruhe and the University of Koblenz.

BAUMGARTNER, PETER, FURBACH, ULRICH, & PETERMANN, UWE. 1992. A
Unified Approach to Theory Reasoning. Forschungsbericht 15/92. University of
Koblenz.

BECKERT, BERNHARD. 1998a. Equality and Other Theories.In: D’A GOSTINO,
M., GABBAY, D., HÄHNLE , R., & POSEGGA, J. (eds),Handbook of Tableau
Methods. Kluwer. To appear.

BECKERT, BERNHARD. 1998b. RigidE-Unification. In: BIBEL , WOLFGANG, &
SCHMITT, PETER H. (eds),Automated Deduction – A Basis for Applications,
vol. I. Kluwer, Dordrecht. To appear.

BECKERT, BERNHARD, & GABBAY, DOV. 1998. Fibring Semantic Tableaux.Pages
77–92 of: Proceedings, International Conference on Theorem Proving with Ana-
lytic Tableaux and Related Methods, Oisterwijk, The Netherlands. LNCS 1397.
Springer.

175

176 Bibliography

BECKERT, BERNHARD, & GORÉ, RAJEEV. 1997. Free Variable Tableaux for Propo-
sitional Modal Logics. Pages 91–106 of: Proceedings, International Confer-
ence on Theorem Proving with Analytic Tableaux and Related Methods, Pont-a-
Mousson, France. LNCS 1227. Springer.

BECKERT, BERNHARD, & H ÄHNLE , REINER. 1992. An Improved Method for
Adding Equality to Free Variable Semantic Tableaux.Pages 507–521 of:KAPUR,
DEPAK (ed),Proceedings, 11th International Conference on Automated Deduc-
tion (CADE), Saratoga Springs, NY, USA. LNCS 607. Springer.

BECKERT, BERNHARD, & H ÄHNLE , REINER. 1998. Analytic Tableaux.In: BIBEL ,
WOLFGANG, & SCHMITT, PETER H. (eds),Automated Deduction — A Basis for
Applications, vol. I: Foundations. Kluwer, Dordrecht. To appear.

BECKERT, BERNHARD, & HARTMER, ULRIKE. 1998. A Tableau Calculus for
Quantifier-free Set Theoretic Formulae.Pages 93–107 of: Proceedings, Inter-
national Conference on Theorem Proving with Analytic Tableaux and Related
Methods, Oisterwijk, The Netherlands. LNCS 1397. Springer.

BECKERT, BERNHARD, & POSEGGA, JOACHIM. 1995. leanTAP : Lean Tableau-
based Deduction.Journal of Automated Reasoning, 15(3), 339–358.

BECKERT, BERNHARD, HÄHNLE , REINER, & SCHMITT, PETER H. 1993. The Even
More LiberalizedÆ-Rule in Free Variable Semantic Tableaux.Pages 108–119
of: GOTTLOB, G., LEITSCH, A., & M UNDICI , D. (eds),Proceedings, 3rd Kurt
Gödel Colloquium (KGC), Brno, Czech Republic. LNCS 713. Springer.

BETH, EVERT W. 1955. Semantic entailment and formal derivability.Mededelin-
gen van de Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Let-
terkunde, N.R., 18(13), 309–342. Reprinted as pages 262–266 of: Karel Berka
and Lothar Kreiser, editors.Logik-Texte. Kommentierte Auswahl zur Geschichte
der modernen Logik. Akademie-Verlag, Berlin, 1986.

BETH, EVERT W. 1959. The Foundations of Mathematics. Amsterdam: North-
Holland.

BIBEL , WOLFGANG. 1982.Automated Theorem Proving. Vieweg, Braunschweig.

BOWEN, K. A. 1982. programming with Full First-order Logic.Machine Intelligence,
10, 421–440. First published as:Technical Report 6-80, Syracuse University,
Syracuse, NY, USA, 1980.

BRODA, KRYSIA. 1980. The Relationship between Semantic Tableaux and Resolution
Theorem Proving. In: Proceedings, Workshop on Logic, Debrecen, Hungary.
Also as technical report, Imperial College, Department of Computing, London,
UK.

Bibliography 177

BROWN, FRANK MALLOY . 1978. Towards the Automation of Set Theory and its
Logic. Artificial Intelligence, 10, 281–316.

BÜRCKERT, H. 1990. A Resolution Principle for Clauses with Constraints. Pages
178–192 of: Proceedings, 10th International Conference onAutomated Deduc-
tion (CADE). LNCS 449. Springer.

CANTONE, DOMENICO. 1991. Decision Procedures for Elementary Sublanguages of
Set Theory. X.Journal of Automated Reasoning, 7, 193–230.

CANTONE, DOMENICO. 1997. A Fast Saturation Strategy for Set-theoretic Tableaux.
Pages 122–137 of: Proceedings, TABLEAUX, Pont-a-Mousson,France. LNCS
1227. Springer.

CANTONE, DOMENICO, & FERRO, ALFREDO. 1995. Techniques of Computable
Set Theory with Applications to Proof Verification.Comm. on Pure and Applied
Mathematics, 48, 901–946.

CANTONE, DOMENICO, & SCHWARTZ, T. J. 1991. Decision Procedures for Ele-
mentary Sublanguages of Set Theory. XI.Journal of Automated Reasoning, 7,
231–256.

CANTONE, DOMENICO, FERRO, ALFREDO, & SCHWARTZ, T. J. 1985. Decision
Procedures for Elementary sublanguages of Set Theory. VI.Comm. on Pure and
Applied Mathematics, 38, 549–571.

CANTONE, DOMENICO, FERRO, ALFREDO, & SCHWARTZ, T. J. 1987. Decision
Procedures for Elementary Sublanguages of Set Theory. V.J. of Computer and
Syst. Sciences, 34, 1–18.

CANTONE, DOMENICO, FERRO, ALFREDO, & OMODEO, EUGENIO. 1989. Com-
putable Set Theory. International Series of Monographs on Computer Science,
vol. 6. Oxford University Press.

CARNIELLI , WALTER. 1987. Systematization of Finite Many-valued Logics through
the Method of Tableaux.Journal of Symbolic Logic, 52(2), 473–493.

COHEN, J., TRILLING , L., & WEGNER, P. 1974. A Nucleus of a Theorem Prover
Described in ALGOL-68. International Journal of Computer and Information
Sciences, 3(1), 1–31.

D’A GOSTINO, MARCELLO, & GABBAY, DOV. 1996. Fibred Tableaux for Multi-
implication Logics.Pages 16–35 of:M IGLIOLI , P., MOSCATO, U., MUNDICI ,
D., & ORNAGHI, M. (eds),Proceedings, 5th International Workshop on Theorem
Proving with Analytic Tableaux and Related Methods (TABLEAUX), Terrasini,
Palermo, Italy. LNCS 1071. Springer.

178 Bibliography

D’A GOSTINO, MARCELLO, GABBAY, DOV, HÄHNLE , REINER, & POSEGGA,
JOACHIM (eds). 1998.Handbook of Tableau Methods. Kluwer, Dordrecht. To
appear.

DE NIVELLE , HANS. 1997 (Feb.).Implementation of Sequent Calculus and Set The-
ory. Draft.

DE RIJKE, MAARTEN. 1997. Why Combine Logics?Studia Logica, 59(1), 5–27.

DROSDOWSKI, GÜNTHER, MÜLLER, WOLFGANG, SCHOLZE-STUBENRECHT,
WERNER, & WERMKE, MATTHIAS (eds). 1991.Duden. Rechtschreibung der
Deutschen Sprache. 20th edn. Mannheim: Dudenverlag.

EGLY, UWE. 1998. Cuts in Tableaux.In: BIBEL , WOLFGANG, & SCHMITT, PE-
TER H. (eds),Automated Deduction – A Basis for Applications, vol. I. Kluwer,
Dordrecht. To appear.

FERRO, ALFREDO, & OMODEO, EUGENIO. 1987. Decision procedures for Elemen-
tary Sublanguages of Set Theory. VII.Communications on Pure and Applied
Mathematics, 40, 265–280.

FITTING , MELVIN . 1998. Introduction.Chap. 1 of:M., GABBAY, D., HÄHNLE , R.,
& POSEGGA, J. (eds),Handbook of Tableau Methods. Kluwer, Dordrecht. To
appear.

FITTING , MELVIN C. 1969.Intuitionistic Logic Model Theory and Forcing. Amster-
dam: North-Holland.

FITTING , MELVIN C. 1983.Proof Methods for Modal and Intuitionistic Logics. Syn-
these Library, vol. 169. Dordrecht: Reidel.

FITTING , MELVIN C. 1990.First-Order Logic and Automated Theorem Proving. New
York: Springer. Second edition published in 1996.

FURBACH, ULRICH. 1994. Theory Reasoning in First Order Calculi.Pages 139–156
of: V. LUCK, K., & M ARBURGER, H. (eds),Proceedings, Third Workshop on
Information Systems and Artificial Intelligence, Hamburg,Germany. LNCS 777.
Springer.

GABBAY, DOV. 1996a. Fibred Semantics and the Weaving of Logics. Part 1: Modal
and Intuitionistic Logics.Journal of Symbolic Logic, 61, 1057–1120.

GABBAY, DOV. 1996b. Labelled Deductive Systems. Oxford Logic Guides, no. 33.
Oxford University Press.

GABBAY, DOV. 1996c. An Overview of Fibred Semantics and the Combinationof
Logics. Pages 1–55 of:BAADER, F., & SCHULZ, K. (eds),Proceedings, Fron-
tiers of Combining Systems. Kluwer, Dordrecht.

Bibliography 179

GABBAY, DOV. 1998.Fibring Logic. Oxford University Press. Forthcoming.

GABBAY, DOV, & GOVERNATORI, GUIDO. 1997.Fibred Modal Tableaux. Submitted
to TABLEAUX’98.

GENTZEN, GERHARD. 1935. Untersuchungen über das logische Schließen.Mathe-
matische Zeitschrift, 39, 176–210, 405–431. English translation in: Szabo, M.,
(ed.),The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland,
Amsterdam, 1969.

GIUNCHIGLIA , FAUSTO, & SEBASTIANI , ROBERTO. 1996. A SAT-based Decision
Procedure forALC. Pages 304–314 of:A IELLO , L., DOYLE, J., & SHAPIRO, S.
(eds),Proceedings, International Conference on Principals of Knowledge Repre-
sentation and Reasoning (KR), Boston, USA. Morgan Kaufmann.

GORÉ, RAJEEV. 1998. Tableau Methods for Modal and Temporal Logics.Chap. 7 of:
M., GABBAY, D., HÄHNLE , R., & POSEGGA, J. (eds),Handbook of Tableau
Methods. Kluwer, Dordrecht. To appear.

HÄHNLE , REINER. 1993. Automated Deduction in Multiple-Valued Logics. Interna-
tional Series of Monographs on Computer Science, vol. 10. Oxford University
Press.

HÄHNLE , REINER, & K LINGENBECK, STEFAN. 1996. A-Ordered Tableaux.Journal
of Logic and Computation, 6(6), 819–834.

HÄHNLE , REINER, & PAPE, CHRISTIAN. 1997. Ordered Tableaux: Extensions and
Applications.Pages 173–187 of: Proceedings, International Conference on The-
orem Proving with Analytic Tableaux and Related Methods, Pont-a-Mousson,
France. LNCS 1227. Springer.

HÄHNLE , REINER, & SCHMITT, PETER H. 1994. The LiberalizedÆ-rule in Free
Variable Semantic Tableaux.Journal of Automated Reasoning, 13(2), 211–222.

HÄHNLE , REINER, MURRAY, NEIL , & ROSENTHAL, ERIK. 1997. Completeness
for Linear Regular Negation Normal Form Inference Systems.In: RAS, Z. (ed),
Proceedings, International Symposium on Methodologies for Intelligent Systems
(ISMIS), Charlotte, NC, USA. LNCS. Springer.

HARTMER, ULRIKE. 1997.Erweiterung des Tableaukalküls mit freien Variablen um
die Behandlung von Mengentheorie. Diplomarbeit, Universität Karlsruhe.

HAYWARD , ARTHUR L., & SPARKES, JOHN J. 1968. The Concise English Dictio-
nary. Fourth edn. Munich: Orbis Verlag.

180 Bibliography

HILBERT, DAVID , & BERNAYS, PAUL . 1939. Grundlagen der Mathematik II.
Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit
besonderer Berücksichtigung der Anwendungsgebiete, vol. 50. Springer.

HINTIKKA , JAAKKO . 1955. Form and Content in Quantification Theory.Acta Philoso-
hica Fennica, 8, 7–55.

JECH, THOMAS. 1978.Set Theory. New York: Academic Press.

KANGER, STIG. 1957.Provability in Logic. Acta Universitatis Stockholmiensis, vol.
1. Almqvist & Wiksell, Stockholm.

KANGER, STIG. 1963. A Simplified Proof Method for Elementary Logic.Pages 87–
94 of: BRAFFORT, P., & HIRSCHBERG, D. (eds),Computer Programming and
Formal Systems. North Holland. Reprinted in (Siekmann & Wrightson, 1983,
vol. 1, pages 364–371).

KORF, RICHARD E. 1985. Depth-First Iterative Deepening: An Optimal Admissible
Tree Search.Artificial Intelligence, 27, 97–109.

KRIPKE, SAUL . 1959. A Completeness Theorem in Modal Logic.Journal of Symbolic
Logic, 24(1), 1–14.

L IS, Z. 1960. Wynikanie semantyczne a wynikanie formalne (logical consequence,
semantic and formal).Studia Logica, 10, 39–60. Polish, with Russian and English
abstracts.

MATSUMOTO, K., & OHNISHI, M. 1957. Gentzen Method in Modal Calculi I.Osaka
Mathematical Journal, 9, 113–130.

MATSUMOTO, K., & OHNISHI, M. 1959. Gentzen Method in Modal Calculi II.Osaka
Mathematical Journal, 11, 115–120.

MEYER V IOL , WILFRIED. 1995.Instantiational Logic: An Investigation into Reason-
ing with Instances. ILLC Dissertation Series 1995-11. Ph.D. thesis, University of
Utrecht.

MURRAY, NEIL V., & ROSENTHAL, ERIC. 1987a. Inference with path resolution and
semantic graphs.Journal of the ACM, 34(2), 225–254.

MURRAY, NEIL V., & ROSENTHAL, ERIC. 1987b. Theory Links: Applications to
Automated Theorem Proving.Journal of Symbolic Computation, 4, 173–190.

OPPACHER, F., & SUEN, E. 1988. HARP: A Tableau-Based Theorem Prover.Journal
of Automated Reasoning, 4, 69–100.

PASTRE, D. 1978. Automatic Theorem Proving in set theory.J. of AI, 10, 1–27.

Bibliography 181

PETERMANN, UWE. 1992. How to Build-in an Open Theory into Connection Calculi.
Journal on Computer and Artificial Intelligence, 11(2), 105–142.

PETERMANN, UWE. 1993.Building-in a Theory into a Connection Calculus with Pos-
itive Refinement. Preprint Nr. 25. Naturwissenschaftlich-Theoretisches Zentrum,
Universität Leipzig.

PFALZGRAF, J. 1991. Logical Fiberings and Polycontextural Systems.In: JOR-
RAND, PH., & K ELEMEN, J. (eds),Fundamentals of Artificial Intelligence Re-
sarch. LNCS 535. Springer.

PFALZGRAF, J., & STOKKERMANS, K. 1994. On Robotics Scenarios and Modeling
with Fibered Structures.In: PFALZGRAF, J., & WANG, D. (eds),Automated
Practical Reasoning: Algebraic Approaches. Texts and Monographs in Symbolic
Computation. Springer.

POLICRITI , ALBERTO, & SCHWARTZ, JACOB T. 1995.T -Theorem Proving I.Jour-
nal of Symbolic Computation, 20, 315–342.

POPPLESTONE, R. J. 1967. Beth-Tree Methods in Automatic Theorem Proving. Pages
31–46 of: COLLINS, N., & M ICHIE, D. (eds),Machine Intelligence, vol. 1.
Oliver and Boyd.

PRAWITZ , DAG. 1960. An Improved Proof Procedure.Theoria, 26, 102–139.
Reprinted in (Siekmann & Wrightson, 1983, vol. 1, pages 162–199).

PRAWITZ , DAG, PRAWITZ , HÅKAN , & V OGHERA, NERI. 1960. A Mechanical Proof
Procedure and Its Realization in an Electronic Computer.Journal of the ACM,
7(1–2), 102–128.

REEVES, STEVE V. 1987. Semantic Tableaux as a Framework for Automated
Theorem-Proving.Pages 125–139 of:MELLISH, C., & HALLAM , J. (eds),Ad-
vances in Artificial Intelligence (Proceedings of AISB-87). Wiley.

RESCHER, N., & URQUHART, A. 1971.Temporal Logic. Heidelberg: Springer.

ROUSSEAU, G. 1967. Sequents in Many-valued Logic I.Fundamenta Methematica,
60, 23–33.

SCHMITT, PETER H. 1987. The THOT Theorem Prover. Tech. rept. 87.9.7. IBM
Germany, Scientific Center, Heidelberg, Germany.

SCHÜTTE, KURT. 1956. Ein System des verknüpfenden Schließens.Archiv für math-
ematische Logik und Grundlagenforschung, 2(2–4), 55–67.

SHULTS, BENJAMIN. 1997 (May). Comprehension and Description in Tableaux.
Draft.

182 Bibliography

SIEKMANN , JÖRG, & WRIGHTSON, GRAHAM (eds). 1983.Automation of Reason-
ing: Classical Papers in Computational Logic. Springer.

SMULLYAN , RAYMOND M. 1968. First-Order Logic. Springer, Heidelberg. Second
corrected edition published in 1995 by Dover Publications,New York.

STENZ, GERNOT. 1997. Beweistransformation in Gentzenkalkülen. Diplomarbeit,
Universität Karlsruhe.

STICKEL , MARK E. 1985. Automated Deduction by Theory Resolution.Journal of
Automated Reasoning, 1, 333–355.

SUCHON, W. 1974. La méthode de Smullyan de construire le calculn-valent des
propositions de Łukasiewicz avec implication et négation. Reports on Mathemat-
ical Logic, 2, 37–42.

SURMA , S. J. 1984. An Algortihm for Axiomatizing Every Finite Logic. Pages 143–
149 of: RINE, D. C. (ed),Computer Science and Multiple-valued Logic, revised
edn. Amsterdam: North Holland.

WANG, HAO. 1960. Toward Mechanical Mathematics.IBM Journal of Research and
Development, 4(1). Reprinted in (Siekmann & Wrightson, 1983, vol. 1, pages
244–264).

WEIDENBACH, CHRISTOPH. 1995. First-Order Tableaux with Sorts.Journal of the
IGPL, 3(6), 887–906.

WRIGHTSON, GRAHAM . 1984.Semantic Tableaux, Unification and Links. Technical
Report CSD-ANZARP-84-001. Victoria University, Wellington, New Zealand.

List of Symbols
. . . but we need notions,

not notation.

— A. TARSKI, 1943

d�e Bijection from the set of modal formulae toN, S. 51� set of labels, S. 49� premiss (finite set of tableau formulae), S. 30��fv extension of a signature� that introduces free variables, Def. 4.2.3, S. 84��gd extension of a signature� that is ground, i.e., does not introduce free
variables, Def. 4.2.3, S. 84�� extension of a signature�, S. 25� signature, S. 9� �-formula, S. 42� �-formula, S. 42Æ Æ-formula, S. 42 -formula, S. 42� �-formula, S. 51� complement of the tableau formula�, Def. 3.2.1, S. 25�; tableau formula, S. 25� �-formula, S. 51�jV restriction of a substitution� to a setV of variables, Def. 2.2.4, S. 12� Æ � composition of substitutions� and� , Def. 2.2.4, S. 12[�℄ equivalence class of labels identical to� up to parentheses, Def. 3.7.1, S. 48�; � substitution, S. 122 box operator in modal logics, S. 173 diamond operator in modal logics, S. 17^ conjunction, S. 15! implication, S. 15: negation, S. 15_ disjunction, S. 159 existential quantification, S. 15

183

184 List of Symbols8 universal quantification, S. 15j�j length of a label�, Def. 3.7.1, S. 48�w weight ordering, Def. 5.3.1, S. 142� accessibility relation on the set of labels, Def. 3.7.3, S. 49�W subsumption relation on rigid variable conclusions, Def. 4.2.11, S. 87�W subsumption relation on substitutions, Def. 2.2.6, S. 14j= relation between worlds and formulae, Def. 2.1.1, S. 9�k k-contains relation, Def. 5.2.4, S. 138\ meta level set intersection, S. 21u object level set intersection, S. 21[meta level set union, S. 21t object level set union, S. 21n set difference, S. 21= meta level equality, S. 21� object level equality, S. 212 meta level membership, S. 21� object level membership, S. 21f�gn object level set constructor, S. 21v object level set inclusion, S. 21� meta level set inclusion, S. 21; meta level empty set, S. 21; object level empty set, S. 21Atom set of all atomic formulae (atoms) of a logic, Def. 2.1.1, S. 9B tableau branch, S. 25CondLab(N) the set of conditional labels consisting of natural numbers, Def. 3.7.1, S. 48C conclusion, S. 28C tableau calculus, S. 25dom(�) the domain of the substitution�, Def. 2.2.4, S. 12E extension (finite set of tableau formulae), S. 28E expansion rule, S. 28F;G formula, S. 9F;G set of formulae, S. 9Form(B) formulae on a tableau branchB, Def. 3.2.1, S. 25Form set of all formulae of a logic, Def. 2.1.1, S. 9Form0PL1 set of all (ground) closed PL1-formulae (sentences), Def. 2.3.1, S. 15Formn set of all (ground) PL1-formulae possibly containing object variables not
bound by a quantifier, Def. 2.3.1, S. 15F sign (falsehood), Def. 3.2.1, S. 25

List of Symbols 185F fibring function, Def. 6.2.1, S. 157G the set of all set terms over� in a set� of MLSS-tableau formulae over��,
Def. 3.8.8, S. 68Lab(N) the set of labels consisting of natural numbers, Def. 3.7.1,S. 48L formal language, S. 11L logical system (logic), S. 9bL modal logicL without binary connectives, S. 19MLSSF the logical system MLSSF, S. 21MLSS the logical system MLSS, S. 21M set of all models of a logic, Def. 2.1.1, S. 9N the set of natural numbers, S. 48Ord the class of all ordinals, Def. 2.6.4, S. 22PL1 first-order predicate logic, S. 15ran(�) the range of the substitution�, Def. 2.2.4, S. 12R reachability relation in Kripke frames, Def. 2.4.1, S. 17R realisation of a set of MLSS tableau formulae, S. 69R tableau rule, S. 25Sig set of all signatures of a logic, Def. 2.1.1, S. 9Subst set of all idempotent substitutions of a logic, Def. 2.2.4, S. 12S set of sorts, S. 11TabInterp set of tableau interpretations of a logic, Def. 3.4.2, S. 33TabTerm set of terms in a tableau formula, Def. 4.2.3, S. 84TabForm set of tableau formulae of a logic, Def. 3.2.1, S. 25Term fv set of all (non-ground) terms of a language, Def. 2.2.2, S. 11Term0PL1 set of all (ground) PL1-terms not containing object variables, Def. 2.3.1, S. 15TermnPL1 set of all (ground) PL1-terms possibly containing object variables, Def. 2.3.1,
S. 15Term set of all (ground) terms of a language, Def. 2.2.1, S. 11Term set of all (ground) terms of a logic, Def. 2.2.3, S. 12T sign (truth), Def. 3.2.1, S. 25T certain set of constants, Def. 3.8.8, S. 68T tableau, S. 25T theory, S. 168T< theory of partial orderings, S. 169T� equality theory, S. 168V;W set of free variables, S. 12Var set of all free variables, Def. 2.2.2, S. 11V certain set of set terms, Def. 3.8.8, S. 68

186 List of SymbolsV von Neumann hierarchy of sets, Def. 2.6.4, S. 22W set of all worlds in a model, Def. 2.1.1, S. 9X;Y;Z free (rigid) variable, S. 12fv indicates the free variable version of a calculus, a free variable signature, etc.,
S. 84id the empty substitution, Def. 2.2.4, S. 12ipr set of initial prefixes of a label, Def. 3.7.1, S. 48mv indicates the mixed variable version of a calculus, an expansion rule, etc.,
S. 84m model, S. 9n;m natural number, S. 48[n℄ conditional or unconditional position in label, S. 49(n) conditional position in a label, S. 48rv indicates the rigid variable version of a calculus, an expansion rule, etc., S. 84skofv function assigning Skolem terms to free variable formulae,Def. 4.2.28, S. 96sko function assigning Skolem terms to formulae, Def. 3.6.2, S.42sort function assigning sorts to terms, Def. 2.2.1, S. 11uv indicates the universal variable version of a calculus, an expansion rule, etc.,
S. 84val valuation function of first-order predicate logic, Def. 2.3.2, S. 17w0 initial world, Def. 2.1.1, S. 9w weight function, S. 142x;y;z free (universal) variable, S. 12x; y; z object variable, S. 12

Index
Numbers of pages on which notions are defined are typeset in bold face; if a whole
section is dedicated to discussing a notion or concept, the page numbers of that section
are typeset in italics.

A
analytic,29

semantically,40, 40–41
answer, the, 184
atomic formula (atom),9

non-ground,11

B
branch,25

closed,26
extension,28
satisfied,33

breadth first search, 133

C
calculus,25

for K, 56–61
mixed variable,118–121
rigid variable,97–99

for modal logics, 48–61
for modal predicate logic,164–166
for PL1,41–47

mixed variable,116–118
rigid variable,95–97

ground,84
property

completeness ensuring,36, 36–
37

semantical,34–41
soundness ensuring,35, 35–36
strong completeness,39
strong soundness,37, 37–39
strong soundness ensuring,94

syntactical,27–32
property of being

analytic,29, 29
complete,34, 34
continuous,32, 32
ideal,30, 30–32, 86, 86–87
monotonic,29, 29
non-destructive,27, 27
non-structural,30, 30
proof confluent,27, 27
semantically analytic,40, 40–41
sound,34, 34

rigid variable, 86
suitable for fibring, 161
syntax,24–27
universal variable,100
with expansion rule,28, 85–86
with free variables,84–85
with mixed variables,112–116
with rigid variables,83–99

closed
branch,26
tableau,26

closure rule, 28
completeness,34, 34

ensuring properties,36, 36–37
completion mode, 133
conclusion, 28

rigid variable, 86
connectedness, 154
constraint, 93
continuity,32

187

188 Index

D
depth first search, 133
DFID, 134,seedepth first search
domain

of a PL1 structure,17
of a substitution, 12

EE-unification, rigid,74
expansion rule,28, 28

invertible,39, 39
rigid variable,86, 85–86
schemata, 31, 87

F
fibring, 155–166
first-order predicate logic,seePL1
formula,9�-, 42, 51�-, 42, 51-, 42Æ-, 42�-, 51�-, 51

modal, 17
PL1,15

forty-two, seeanswer, the
free

function symbol, 21
variable,84–85

fully expanded,36

G
ground version,88, 103

H
Herbrand structure, 45
Hintikka set

modal,54
with conditional labels,59

PL1,45

I
ideal,30–32, 86–87

invertible,39, 39
iterative deepening, 134

K
Kripke frame,17, 50

LL-interpretation,53
label

accessible,49
conditional,48
consisting of natural numbers,48
dead-end,49
for modal logics,48–50
justified,58
position in,48
strongly generated, 49

language with terms,11
lemma, local,124–129
lifting, 91–93
logical system (logic),9, 9–22

MLSS,20–22
MLSSF,20–22
modal,17–20
semantics,9
syntax,9
with terms,12
with terms and free variables,10–

12

M
MGU, seeunifier, most general
MLS (multi-level syllogistic), 20
MLSS (MLS with singletons), 20

formula,21
MLSSF (MLSS with free functions), 20

formula, 21
modal

axioms, 18
formula, 17
Hintikka set,54

with conditional labels,59
logic, 17–20

model,9

Index 189

monotonic,29
multi-level syllogistic,seeMLS

N
non-destructive,27
non-structural,30

O
object variable, 12, 15

P
permutability, 29
PL1,15–17

formula,15
Hintikka set,45
sentence,15
structure,17
term,15

premiss, 30
minimal,31

proof confluence,27, 27
property,seecalculus, property
pruning,129–131

R
range of a substitution, 12
reachability relation,17
realisation,69
regular,140
regularity,136–142E-unification,74
rigid variable,83–99

version,88

S
satisfiability, 10
schemata, 31, 87
selection function, 154
semantical intersection, 124
semantically analytic,40, 40–41
set

structure,22
term,21

signature,9

Skolem
constant,64
symbol, 10
term,42, 96

sort, 11
soundness,34, 34

ensuring properties,35, 35–36
strong, of expansion,37–39

substitution,12, 12–14
compositition of, 12
empty, 12
ground,12
idempotent,12
restriction of a,12

subsumption, 87
of rigid variable conclusions, 87
of substitutions, 14

subterm,11, 12

T
tableau,25

branch,25
calculus,seecalculus
closed,26
for a formula set, 26
formula,25
initial, 26
interpretation,33
proof, 26
satisfiable

mixed variable,116
rigid variable,94
universal variable,111

satisfied,33
semantics,33

tableau formula
used, 130

term,10–12
non-ground,11
PL1,15

theory,168
equality, 168
of partial orderings, 169

190 Index

reasoning,167–170

U
unifiable,14
unification,14–15
unifier,14

complete set of,15
most general (MGU), 14
uv-, 115

universal variable,100–121
unifier (uv-unifier),115
version,103

uv-unifier, 115

V
valuation function,17
variable

assignment,17
free,11
object, 12, 15
renaming, 12
universal,100–121

variant,12
von Neumann hierarchy,22

W
weight

function,142
ordering,142, 142–144

world, 9
idealisable,17
initial, 9

