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Introduction

Logicians have but ill defined
As rational the human kind.

Logic, they say, belongs to man,
But let them prove it if they can.

— OLIVER GOLDSMITH

1.1 Motivation

Automated Deduction—and in particular tableau-basedére@roving—has reached
a state where it is on the verge of being successfully useealworld applications.
Up to now, however, the transition from a technique mainkydum research towards
a tool that is routinely used in practice has not been acashmgad.

One obstacle is that much work is put into developing venhssijcated and powerful
theorem proving systems for certain logics (in particulestforder predicate logic),
which are not tailor-made for certain applications. To Usesé systems, problems
from the particular area of application have to be transéatimto the logic supported
by the prover.

A different and possibly more successful approach is totrtoaisa specialised, dedi-
cated proof system for a certain application supportinggéclthat is particularly well
suited for the application and that makes use of the spesglifes of both the logic
and the application to increase efficiency.

This requires the availability of uniform methods for thenstruction of efficient dedi-
cated proof procedures for different logics, such that theyot have to be developed
from scratch. There is, however, a gap between the two masmsanto which most
knowledge in the field of Automated Deduction can be sepdrate the one hand,
many different calculi for many different logics have beeagented; these, however,
are typically only of theoretical interest and not suitaflean implementation. On
the other hand, proof procedures for a few important logipsedominantly classical
propositional and first-order predicate logic—have beescdeed including a huge
number of special techniques and refinements to make them effarient.

1



2 Chapter 1: Introduction

The objective of this thesis is to close that gap: To reach gloial and to facilitate
the uniform construction of efficient, dedicated tableasddl theorem provers, three
approaches are pursued, which complement each other:

1. the generalisation and uniform description of tabledoutia of their refine-
ments, and of methods for their improvement;

2. the development of uniform methods for constructing igffit deterministic
proof procedures from (non-deterministic) tableau c&lcul

3. the (uniform) integration of different tableau calcutidaof tableau calculi and
special methods for solving problems from certain domaimsdry reasoning).

The first two approaches apply to all kinds of logics, wherte@sthird one applies
mainly to logics that are extensions of classical logic.(emany-valued, modal and
temporal logics) but only in part to logics that can be seereasictions of classical
logics, such as linear and relevance logic.

The uniform methods presented in the following simplify thesign of efficient ta-
bleau-based proof procedures. Since many of the pre-conslitor the applicability
of these methods are purely syntactical and easy to cheelcam—as a future goal—
imagine an (at least partially) automategtadeduction system that, when presented
with the definition of a tableau calculus, applies uniforrohtgiques to improve the
calculus and construct an efficient proof procedure, or ¢liah constructs a tableau
calculus for a given logic from scratch.

1.2 Main Results and Structure of this Thesis

Chapter 1 In this introductory chapter, the importance of methodsieruniform
design of efficient tableau calculi is discussed and matathe main results and
the structure of the thesis are described; the notion okgabtalculi is introduced;
the main properties of tableau calculi and the differenoestiier types of calculi are
explained; and, finally, a short overview of the history dfléau calculi is given.

Chapter 2 Logical systems (or logics for short) are defined in a veryegalhway (as
few restrictions as possible are made regarding syntaxemadrstics). The notions of
terms and, based on that, substitutions and unificatiorreidare introduced. As ex-
amples for the description of logics within the general fesvork, first-order predicate
logic, modal logics, and two fragments of quantifier-freeteeory are presented.
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Chapter 3 A uniform description of tableau calculi and their synteatiand se-
mantical properties is given—as, for example, being amalytonotonic, saturating,
respectively being sound, complete, proof confluent—witlamy restriction to certain
logics or normal forms. General criteria are presentedtiecking whether a calculus
has these properties (including criteria for checking sim@ss and completeness). An
important class of “well-behaved” tableau calculi is idéet, which are calleddeal
calculi. This class turns out to be of great importance aglégliness is a pre-condition
for the applicability of many of the uniform methods for ingping the efficiency of
tableau calculi described in the following, and (b) idedtuh exist for most logics.
As examples, ideal calculi for first-order predicate logid &or modal logics are pre-
sented. In addition, ideal tableau calculi are defined ferftagments of set theory
introduced in Chapter 2; these calculi are shown to be mdigezft than the calculi
that were previously described in the literature.

Chapter 4 Techniques are presented for improving a tableau calcaheitomated
deduction in such a way that proof procedures based on it are eifficient. In
particular, methods that have turned out to be useful fdetabbased deduction in
first-order predicate logic are generalised, such that tdasybe used in the design
of tableau-based proof procedures for arbitrary logicsshiiding (a) the concept of
rigid variables that represent terms and can be instadtfate demand” during proof
search, (b) the universal variable technique, where Viesaiepreserdll terms simul-
taneously, and (c) a combination of both. The relation afirand universal variable
calculi to ground (i.e., variable-free) calculi is expladh including uniformlifting
methods for constructing rigid and mixed variable calawdifi ground calculi. Anim-
proved version oskolemisations described where instead of introducing new Skolem
symbols, each premiss from which the existence of objedts eeirtain properties can
be deduced is assigned its own unique symbol. As examplesafouli making use
of these techniques, mixed rigid and universal variablewsalor first-order predicate
and modal logics are presented. Other methods for unifonmbyoving tableau cal-
culi that are described in this chapter include kbeal lemmatechnique pruning of
redundant tableau branches, and the introduction of adaitiableau rule schemata.

Chapter 5 This chapter complements Chapter 4 where methods for inmyov
tableau calculus are discussed such that shorter proofsecaanstructed. Here, the
subject is how to efficiently search for proofs in the remagnsmaller search space.
Techniques for turning a (non-deterministic) tableauwalsinto a deterministic proof
procedure are discussed and analysed. A general concegjwérity for arbitrary
tableau calculi and the notion wfeight orderingsare introduced, which are proven to
be appropriate for constructing a deterministic depth-fireof search procedure for
arbitrary ideal rigid variable calculi (although it was kmothat such procedures exist,
it was up to now an unsolved problem to actually describe etioad procedure).
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Chapter 6 Thefibring technique, which allows to combine logical systems based
on combining their semantics, is extended to tableau dalduinethod is introduced
for uniformly constructing a sound and complete tableaawtak for a combined logic
from tableau calculi for the component logics. Since tableglculi are readily avail-
able for most “basic” logics, calculi can be obtained for méromplex” logics that
can be constructed by fibring basic logics, such as modalqatedogic, intuitionistic
temporal logic, etc. As an example, a calculus for modal ipegd logic is presented
that is the combination of a calculus for first-order pretidagic and a calculus for a
modal logic.

Chapter 7 The concept otheory reasoningwhich allows to integrate tableau cal-
culi with dedicated procedures for solving problems fronegan domain, is gener-
alised and formulated using the notions introduced in v chapters

1.3 Tableaux and Why We Use Them

Atableau, as defined in dictionaries, is a “striking or vikegresentation” (Hayward &
Sparkes, 1968) or a “well-arranged picturgéifi wohlgeordnetes Bild“ (Drosdowski
et al, 1991)). In automated deduction, a tableau is a specia¢septation of (partial)
proofs. Whether this representation is indeed “strikingtl dwell-arranged” is of
course a matter of debate; but from all the proof represensthat are well-suited
for computers and are thus used in automated deductioraltheau representation is
arguably the one that is easiest to understand and use farsum

While tableau calculi have always been popular for pedagbg@urposes in introduc-
tory logic texts, the deduction community became inteestéhem only in the 1980s.
One reason was the increased demand for deduction in nsesigdhlogics in various
Al applications. For many non-classical logics tablede-kcalculi are the only ones
available. In addition, the proximity of tableau inferermraées to semantics makes it
easy to construct tableau calculi for new logics. Moreotles, introduction of uni-
fication and other refinements lead to an increase in theaesifigi of tableau calculi
for classical logic; today some of the most powerful aut@daheorem provers for
first-order predicate logic are based on tableau-calculi.

There are many different definitions of the notion of tableauthe literature; and
there seem to be as many characterisations of tableau icahcltriteria that distin-
guish them from other types of calculi as there are expettsarield of tableau-based
deduction; the most common and important of these criteea a

1. A tableau is a tree structure whose nodes are labelledfarithulae; and any
calculus operating on such structures is a tableau calculus
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2. Acalculus is a tableau calculus if it has all (or most) @& tbllowing properties:
It proves by analysing the theorem to be proven (top-dowp)paf is based on
a complete case distinction; it proves by contradiction.

In this thesis, a tableau calculus is assumed to satisfydfdtie above criteria. In par-

ticular the tree structure of tableaux is part of their défni (whereas some authors,
e.g. (Fitting, 1998), view trees as only being one of manysjibs data structures for
implementing tableaux). Therefore, calculi such as theneotion method, which is

based on a matrix representation, and sequent calculi &knsidered to be tableau
calculi—though they certainly are closely related to tablealculi

To avoid confusion, the following notions have to be distiistped:

e tableaux, which are trees whose nodes are annotated withufae;

¢ (partial) tableau proofs, which consist of a tableau andrif@mation of how
to construct this tableau using the rules of the calculus;itifiormation can, for
example, be given in form of a sequence of tableaux where @ébbau in the
sequence is constructed from the previous one by a singleapglication;

¢ the state that the computation of a tableau proof procedasadnched, which
in addition to a partial tableau proof may contain inforraatabout futile proof
attempts;

e tableau calculi, which are characterised by their expanaia closure rules;

¢ the tableau method in general.

In the literature, “tableau” is often used inconsistentlghvany of the above meanings.
In this thesis, however, “tableau” always refers to a treecstire, the only (rare) ex-

ception being expressions like “semantic tableaux” oréfvariable tableaux”, which

refer to certain tableau calculi or classes of calculi.

1.4 Historical Overview

Historically, tableaux derive from Gentzen'’s proof theéarevork done in the 1930s,
namely hissequent calculusitroduced in (Gentzen, 1935). The tetableauis due
to Beth (1955) who was looking for a “systematic method fanstoucting a counter-
example.” Roughly at the same time (and, like Beth, motiv&ie semantic concerns)
Hintikka (1955) and Schitte (1956) independently came ith & similar system.
These calculi still had drawbacks with respect to notatishich was tedious; but

L Every sequent calculus can be turned into a tableau calemdvice versa, where the branches of
tableaux in a tableau calculus correspond to the sequeatsdquent calculus.
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Hintikka gave an argument in his completeness proof thatith few modifications)
still in use today (see Section 3.5.4).

The modern form (in particular the tree representation)abfdaux was conceived,
again independently, by Lis (1960) and Smullyan; the latited the device afni-
fying notationand summarised his results in (Smullyan, 1968), which becanvell-
known textbook.

The development of tableau-like calculi for non-classiogics began in parallel to
that of calculi for classical logic—the first being a sequealttulus for intuitionistic
logic described in (Gentzen, 1935). Beth presented a asdol intuitionistic logic,
that is similar to his calculus for classical logic, in (Bel959). Roughly at the same
time Kanger (1957) and Matsumoto and Ohnishi (1957; 195@ldeed tableau-like
calculi for modal logics. In Kanger’s calculus for the motadic S5, formulae were
indexed with integers; this can be seen as the first tabikawdlculus using the mech-
anism of labelled formulae. Kripke describes in his celedtgaper (Kripke, 1959) (in
which he proposes the possible world semantics for modaiddg tableau-like calcu-
lus for modal logics in the style of Beth (1955). Kripke usagihary tableaux, where
a different tableau is used for each possible world, ancetheseaux are interrelated
by a reachability relation.

The first real tableau calculi (using tree representation)dén-classical logics, namely
the modal logic S4 and intuitionistic logic, were presentefFitting, 1969) (later Fit-
ting defined tableau calculi for many other modal logics iittifkg, 1983)). A first
tableau calculus for temporal logics was described in (Res& Urquhart, 1971);
and the first tableau-like calculus for many-valued logi@sWRousseau’s (1967) se-
guent calculus (which was based on using sequents comsadtimore than two se-
guences). Later, Suchon (1974) defined a tableau calculisikasiewicz logics; and
Surma (1984), Carnielli (1987) and Hahn® presented tableau calculi for arbitrary
finitely-valued logics.

In the late 1950s, the design of tableau-like calculi andpprocedures began that
were tailor-made for automated proof search and thus fotementing automated
theorem provers; and that area of research started to seff@ma the development of
tableau calculi for purely theoretical or pedagogical jpses.

The possibility to automate proof search was first consdibyeKanger (1957; 1963).
In 1957 and '58, D. Prawitz, H. Prawitz, and Voghera impletadra sequent calculus
for first-order predicate logic without function symbolsdRitz, 1960; Prawitet al.,,
1960). At the same time, in 1958, Wang implemented a seqaéculas for thev3-
fragment of first-order predicate logic on an IBM 704 (Wang6Q); this remarkable
program was able to prove all 220 propositional and 139 o1 8&first-order theorems
in Russell and WhiteheadRrincipia Mathematica

In the 1960s and '70s resolution-based calculi dominatedigid of automated de-
duction; during that time nearly all implementations wers@me way based on reso-
lution, a notable exception being Popplestone’s (1967)empntation of a Beth-style
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tableau calculus for first-order predicate logic. The maiveatage of resolution was
(at that time) that it employed unification for finding useiiistantiations for univer-

sally quantified variables; whereas tableau calculi ladkesl powerful method and
were based on enumerating all possible instantiationshdnl®80s, tableau calculi
overcame that disadvantage. The introduction of free (omrdy) variables whose in-
stantiations are computed using unification lead to a drastrease in the efficiency
of tableau-based theorem provers.

The idea of using unification in tableau calculi was first ¢desed in (Coheret al.,
1974); the first calculi using unification were formulatedd@pendently) in (Broda,
1980) and (Bowen, 1982). However, in these papers the probigreserving sound-
ness when dummy variables are instantiated with (Skolem$teats had not been
solved (see Section 4.4). imodel eliminatior{Andrews, 1981) and th@atrix method
(Bibel, 1982), which are calculi closely related to tabbedliat use unification, the
problem was avoided by assuming the input formula to be iteskised normal form
such that no Skolem constants are introduced in a proof.

First tableau calculi for first-order predicate logic thaeuun-time skolemisation and
unification were presented by Wrightson (1984) and ReeV@87(1 these solved the
the soundness problem by imposing certain constraintseoaritiiability of free vari-
ables and Skolem constants. Finally, the technique forepvesy soundness that is
mainly used today, namely the use of complex Skotermsinstead of Skolenton-
stants was introduced in (Schmitt, 1987) and (Fitting, 1990).

A further important improvement of tableau calculi for fisder predicate logic was
the introduction otonnectednessonditions (see Section 5.5); the notion of connect-
edness had been used beforarindel elimination(Andrews, 1981) and theatrix
method(Bibel, 1982).

Today, the most comprehensive available source of infoomain tableau calculi is

the Handbook of Tableau MethodB’Agostino et al, 1998). Its chapters cover the
main variants of clausal and non-clausal tableau calcuklessical propositional and
first-order predicate logic, as well as tableau systemshi®miost important families

of non-classical logics.
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2 Logical Systems

2.1 Syntax and Semantics of Logical Systems

We define the notion of bbgical systemn a very general way; only very basic prop-
erties of its syntax and semantics are part of the definition.

The logic has to have a model semantics that uses Kripke-stgldels, i.e., models
consisting of (possibleyvorlds in which formulae are true or false. That includes
models consisting of just one world (for example, modelslagsical propositional
and first-order logic}; and there is no restriction on what the relationship between
these worlds is.

Definition 2.1.1 Associated with dogical systemL (a logic for short) is a setSig
of (L-)signature$ of L. For each signatur® € Sig, syntax and semantics of the
instancelL(X) of L are given by:

Syntax: A setForm(X) of (L-)formulaeand a setdtom(X) C Form(X) of atomic
(L-)formulae ([L-]Jatoms)where the setdtom(X) and Form(X) are decidable
formal languages (not containing the empty word), i.e.nst@nd formulae are
words in these languages, respectively.

Semantics: A seM (X) of (L-)modelswhere each modeh € M(X) (at least) con-
tains (a) a setl” of worlds, (b) aninitial world w° € W, and (c) a binary relation
= betweeni¥” and Form(X).

If w = F for some worldw € W and some formuld&” € Form(X), thenF' is said to
betruein w, else it isfalsein w.

AformulaF € Form(Y) is satisfiedby a modelm € M(X) if (and only if) it is true
in the initial worldw® of m. A setG C Form(X) of formulae is satisfied byn iff all
its elements are satisfied Iny.

! In fact, any kind of model can be considered to be a Kripkéestyodel with a single world (namely
the model itself). However, since the labels of tableau fdem are interpreted as worlds, if there
is only one world in the models of a logic, then the interpietaof all labels is the same and they
become useless for the calculus.

2 We do not further specify what a signature 8y can be seen as a set of indices for distinguishing
different instances of the logi (which usuallydiffer in the symbols they use).

9
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Aformula F € Form(X) (a set§ C Form(X) of formulae) issatisfiableif there is a
modelm € M satisfyingF' (resp.g§). O

Although usually non-atomic formulae are constructed fratomic formulae, and
their truth value is determined by the truth value of the adhey consist of, this
is not part of the above definition. However, the existence of allvehaved” tableau
calculus for a logid. implies that the truth value of a formuRa is strongly related to
the truth value of certain atoms (that may or may not be sufniitae ofF').

Example 2.1.2 The truth value of the formul@dz)(p(z)) in a model of first-order
predicate logic is not determined by the truth value of thrdy(patomp(x) it contains,
neither can it be computed from the truth values of all atdimimulaep(t) unless all
elements of the model’s domain are represented by a#téamis the case in Herbrand
models). O

Tableau calculi allow to check thsatisfiabilityof a formula; we only consider this
property. It may or may not be possible in a certain logic teakhwhether a formula
is valid in some model (true in all worlds) or is a tautologgl{@ in all models) by

reducing this problem to a satisfiability problem; in mangits—though not in all—a
formula is a tautology if its negation is not satisfiable.

Often, formulae are used in tableau calculi that are not froiin the original but from
an extended signature (e.g., formulae containing Skolanbsys):

Definition 2.1.3 Given a logicL, a signature* € Sig is anextensiorof a signa-
tureY € Sig (andX is arestrictionof ¥*) if

Form(X) C Form(X*) and Atom(X) C Atom(X*) .

In that case, a modeh € M(X) is arestriction of a modelm* € M(X*) (to the
signatureY), if there is a functionf that assigns to each world af a world of m'
such that: (a) the initial world afn* is assigned to the initial world ah; and (b) for
all formulaeF € Form(X) and worldsw of m: w = F'iff f(w) = F. O

2.2 Terms and Substitutions

2.2.1 Logical Systems with Terms and Free Variables

There is an important class of logical systems, includingeddicate logics, where
formulae contairterms Again we make as few restrictions as possible on what a term
is. In particular we do not assume that terms are of the fptty, ..., t,); instead, a
set of terms may be any decidable set of words occurring ifahmeulae. The only
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condition, that in fact is used to define the notion of terraghat the set of formulae
is closed under the replacement of terms occurring in a faroy other terms.

To be more flexible, we allow the terms to be separated interéifit classes, i.e.,
we attachsortsto terms. We do not use a sub-sort hierarchy; however, mdiimso
and methods introduced in the following can easily be adhbjat@ more complex sort
concept (see (Weidenbach, 1995) for an overview of tablabulk for first-order logic
with sorted terms).

Definition 2.2.1 A formal languagé. is alanguage with term# there is

1. a non-empty seferm of (ground) termsthat is a decidable formal language
over the same alphabet Agnot containing the empty word);

2. anon-empty sef of sorts

3. afunctionsort assigning a sort € S to each termt € Term such that there is
at least one term of each sort;

4. the set of terms of some sortis closed under replacing subterms of some
sorts’ by subterms of the same saft i.e., if vrw € Term, r,r" € Term, and
sort(r) = sort(r'), thenvr'w € Term andsort(vrw) = sort(vr'w);

5. the languagéd. is closed under the replacement of terms by other terms of the
same sort, i.e., i, t € Term, sort(s) = sort(t), and the wordvsw’ is an ele-
ment of L, thenwtw' is an element of..

If t andr are terms and is of the formvrw (v, w may be empty), thenis asubterm
of £. O

The closure property allows the replacement of terms bygghatders or dummies that
stand for arbitrary terms of a certain sort. We call theseglelderdree variables A
word containing a free variabl¥* of sorts stands for a single (but unknown) element
of the set of all words that are the result of replaciigby some term of son.

A non-ground term is constructed by replacing an arbitramnber of subterms of a
ground term by free variables; and a non-ground word is coastd by replacing a
ground term occurring in a ground word by a non-ground term.

Definition 2.2.2 Let L be a language with terms; and &t be an infinite set ofree
variablesthat do not occur in.. The functionsort is (arbitrarily) extended td/ar
such that there is an infinite number of free variables of sacts € S.
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Then, the sefferm™ of (non-ground) termss defined by:

TermY = Term
Term! = {vXw |vtw € Term!¥ |, t € Term, X € Var, sort(t) = sort(X)}
Term"™ = U Term!" .
i>0
The functionsort is extended to (non-ground) termsTharm™ by defining

sort(vXw) = sort(vtw)

for all variablesX and termg with sort(X) = sort(t).
The languagd.”™ of (non-ground) wordss defined by

LY = {vtw | vsw € L, s € Term, t € Term"™, sort(s) = sort(t)} .

O

Definition 2.2.3 A logical system is dogic with termgf, for each signatur& € Sig,
the setsForm(X) of formulae and4dtom (3) atoms are languages with terms with the
same seflerm(X) of terms. O

In the following we use the sefgar = {X; | i > 1} andUVar = {x; | i > 1} of free
variables; we assume these variables to be different frbotlar occurring symbols
(without mentioning that explicitly in definitions).

Free variables, which are either denoted by upper-casedd¥, Y, 7, X;, X' etc.) or

by boldface lettersa, y, z, x;, ' etc.), should not be confused with object variables
occurring in Term(X), which are denoted by, y, z, z;, 2’ etc. A term that does not
contain free variables is always callgsbund—even if it contains object variables that
are not bound by a quantifier.

2.2.2 Substitutions

An important notion is that a$ubstitutingvariables by terms. This concept, which is
well-known from classical predicate logic, can easily beeaged to our more general
notion of terms.

Definition 2.2.4 Let L be a language with terms. gubstitutionis a mapping
o : Var — Term™

of free variables into (non-ground) terms such tkaitt(X) = sort(o(X)) for all
X € Var.
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The setdom(o) = {X € Var | o(X) # X} of variables is called thdomainof o;
and the setan (o) = {o(X) | X € dom(o)} of termsis called theangeof o.

If dom(o) ={Xy,...,X,} is finite, then{ X, — ¢,,..., X,, — t,} may be used to
represent wheret; = o(X;) (1 < i < n).

A substitution{ X; — Y7,..., X,, — Y}, } that maps the variable¥; in different, pair-
wise distinct variable¥’; is called avariable renaming

Awordw’ € L is avariantof a wordw € L if there is a variable renamingsuch that
wr = w'.

The applicationto of a substitutions to a termt¢ is the result of (simultaneously)
replacing all occurrences of free variabl€sin ¢ by o(X). The termto is called an
instanceof t. The application of a substitution to a formula and instarafdormulae
are defined analogously.

Therestrictionoy of a substitutionr to a setl” C Var of variables is the substitution
that is defined for allX € Var by:

C[o(X) fXeV
o (X) = { X  otherwise

The compositions o 7 of two substitutionsr and is the substitution that is for all
X € Var defined by:

(coT)(X)=0(1(X)) .
The empty substitution, which has an empty domain, is dehoyed.

A substitutiono is idempotentf ¢ = o o 0. The set of all idempotent substitutions is
denoted bySubst.

A substitutionr is groundingfor a formulaF' (a setg of formulae) if dom(7) is the
set of free variables occurring iR (resp.§) and F'r (resp.§7) does not contain any
free variables. O

The result of applying a compositiano 7 to a termt can be computed by first apply-
ing 7 and ther, i.e.,t(o o T) = (t7)0.

If an idempotensubstitutions = {X; — ¢,..., X,, — ¢,} is applied to a term, the
variables do not have to be replaced simultaneously, i.e.,

U:{XlHtl}O"'O{an—)tn}

Example 2.2.5The substitution§ X — Y, 7 — Y} and{X —a, Y — f(b)} are
idempotent.

The substitutiong X — Y, Y — a} and{X — f(X)} arenotidempotent. O
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Definition 2.2.6 Given a finite setV’ of free variables, a substitutionc Subst(X) is
more generathan a substitution € Subst(X) (on W) andr is a specialisation of,
denoted by <" 7, iff there is a substitutiop € Subst(X) such that (X) = (o(X))p
forall X ¢ W. O

The setlV contains the “relevant” free variables, i.e., those odngrin the context

in which the substitutions andr are used (usually those occurring in a certain ta-
bleau). It is of advantage to keep the 88tas small as possible because, for exam-
ple,oc = {X — f(Y)} subsumes = {X — f(c)} if Y ¢ W, otherwise, ifY € W,

o subsumes the substitutieh= {Y — f(c),Y — ¢} but notr.

The empty substitutiond is the most general of all substitutions, i.&l,<" ¢ for all
substitutionsr and all set$V of free variables.

2.2.3 Unification

Although terms have been defined in a more general way thaal, utsis still possible
to define the notion ofinifiers And the problem of testing whether two terms are
unifiable is always decidable.

Definition 2.2.7 Let L be a language with terms. Termg € Term™ areunifiableif
ru = tp for some substitutiop € Subst. In that casey is called aunifier of » andt.
0

In many logics with terms (e.qg., first-order predicate I@gicis possible to represent
the set of all solutions to a unification problem (all unif)éby a single most general
unifier (MGU), that is more general than all other unifierstwthe subsumption rela-
tion <" (Def. 2.2.6). In general however, a single MGU is not suffiti represent
all solutions. Instead, setl/ of (most general) unifiers has to be us&ds complete
if every solution to the given problem is subsumed by one efuthifiers ini/.

Example 2.2.8 Let s = abc andt = XY be terms. The two substitutions
o ={X —abY — ¢} and o0y ={Xr—aY — bc}

form a complete set of unifiers efandt; but since they are incomparable w.kt?,
there is no single substitution that represents all unib&rsandt. O

In free variable tableau calculi, the cardinality of a coatplset of unifiers is closely
related to the number of choice points when tableau ruleslvmg unification are
applied. Therefore, it is desirable to comput@i@imalcomplete set of unifiers. Nev-
ertheless, itis not always useful to enforce minimalitesithere is a trade-off between
the gain of computing a minimal set and the extra cost for kingcminimality and
removing subsumed substitutions.
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Definition 2.2.9 Let L be a language with terms; |8t be a set of free variables; and
let r,t € Term!™ be terms. A seld C Subst is acomplete set of unifiersf » and ¢
w.r.t. W if

1. eachs € U is a unifier ofr andt (soundness)

2. for each unifier of r andt there is a unifiet € U such thar <" 7 (complete-
ness)

The set/ is called aminimalcomplete set of unifiers if, in addition,

3. there ar@oo,, 05, € U, 01 # 09, Such thatr; <™ o, (Minimality). O

If two terms are unifiable, then there idiaite complete set of unifiers.

The computation of (most general) unifiers is closely relatethe computation of
(most general) common specialisations of (idempotent¥t#uitions, becausg is a
common specialisation eof and iff it is a unifier of the termss(X') andr(X) for all
X € dom(o) N dom(T).

2.3 First-order Predicate Logic

As a first example for a logical system, we use first-orderipegd logic PL1, which is
a logic systenwith terms According to Definition 2.1.1, the sétg,,;, of signatures
and the syntax and semantics of PL1 have to be defined.

Signatures: A signatureX = (P(X), F(X), ax) in Sigp;, consists of a seP () of
predicate symbols, a non-empty $&t) of function symbols, and a functians, that
assigns an arity > 0 to each predicate and each function symbol. A function symbo
of arity 0 is called aconstant

Syntax: In addition to the predicate and function symbols in sigreguhere is an
infinite setV of object variablegwhich is disjoint from the set¥ar and U Var of free
variables). Thdogical operatorsareV (disjunction),A (conjunction),— (implica-
tion), and- (negation), and the quantifier symbwgland3. We considep « ¢ (equivl
alence) to be an abbreviation fat A ¢) V (m¢ A —1)).

Definition 2.3.1 Let ¥ € Sigp;, be a signature. The s&erm™(X) of termsovery
is defined by:

1. Allvariables: € V and all constants € F'(X) are terms oveE.
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2. If f € F(X)andty,. .., t.y ) are terms ovek, thenf(t,,. .., tay(p) is aterm
over..

By Term$,,(X) we denote the set of all terms Ferm™*(2) that do not contain object
variables.

The setdtompt, (X) of atomsovery is defined by: Ifjp € P(X) andt,, ..., 1.,y are
terms over, thenp(ty, . .., tay(p) iS an atom ovek.

The setForm3;, (X) of formulae overX is defined by:

1. Atoms overr are formulae ovekE.
2. If Fis aformula ovel, then—F'is a formula oveLl..

3. If F and@G are formulae oveE, thenF A G, 'V G, andF — G are formulae
overy..

4. If Flisaformulaovel andx € V, then(Vx)F and(3z) F are formulae over.
O

We define the seformp;,; (X) of formulae of the logical system PL1 to consist of all
sentences Formp (X)), i.e., all elements oformf ,(X) in which object variables
occur only bound by a quantifier; and the ggbmpr,; () of atoms of PL1 is the set
of all atomic sentences ifiormp; ,(3).

Note that this is a slight abuse of terminology. Usuallyeabyariables can occur free
in formulae of first-order logic. Free object variables afiem used as dummy vari-
ables in free variable tableau calculi. Here, however, we lsgparated free (dummy)
variables and object variables. One could still allow frégeot variables to occur in
formulae; but that does not increase expressivity and ceatpk the design of a ta-
bleau calculus unnecessarily. Free variables in a formulase unsatisfiability is to
be proven would have to be treated as if they were existgngiaiantified. In addi-
tion, one would have to be careful not to introduce free \des into the scope of a
guantification when free variables are instantiated witim#e To avoid these compli-
cations, we formally define the set of formulae of the logggdtem PL1 to consist
of sentences only; formulae with free object variables ang oonsidered as auxil-
iaries used in the construction of sentences. AccordirtigéyJogical system PL1 is a
logic with termsw.r.t. to the setTermy,; ,(X) of terms not containing object variables,
since the seformpy,;(X) is closed under replacement of variable-free terms by other
variable-free terms.

Semantics: According to Definition 2.1.1, all models must contain a deworlds.
Thus, we defineMpr,; (X) to consist of models where the initial world’ is a first-
order structure (Def. 2.3.2), add,°} is the set of worlds.
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Definition 2.3.2 A first-orderstructure(D, T) for a signature € Sigp;, consists of
a domainD and an interpretatioh, which gives meaning to the function and predicate
symbols of¥.

A variable assignmens a mapping: : V — D from the set of object variables to the
domainD.

The evaluation functiorval is defined as usual; that is, given a structufe Z) and
a variable assignment, it assigns to each formul&l € Formp;,(X) a truth value
valz,,(F) € {true, false}. 0

The relationj=py,; is defined by:w° |=pr; F if and only if, for all variable assign-
mentsy, valz ,(F) = true.

2.4 Modal Logics

As a second example for logical systems, we use the (basidaitagics K, KT, KB,
K4, K5, K45, KD, KDB, KD4, KD5, KD45, KB4, B, S4, and S5 (see (29 1998) for
an overview).

Signature: The setSig;, is the same for all modal logids; a signature: is a denu-
merable non-empty set of primitive propositions.

Syntax: Formulae are built using the classical connectixggonjunction),v (dis-
junction),— (negation), and the non-classical unary modal connectiv€box”) and
<& (“diamond”).

Given a signaturé&:, the setFormg (%) = Formmeq(X) of formulae is the same for
all modal logicsL; formulae are constructed in the usual way from the projoosit
variables and the logical connectives. The 4&tmy,(X) = Atomn.q(X) of atoms is
identical toX. The modal logics are logical systems without terms.

Semantics: We use a Kripke-style possible world semantics for modatkgrhus,
the models of modal logics consist of Kripke frames:

Definition 2.4.1 A Kripke frameis a pair(W, R), whereWW is a non-empty set (of
possible worlds) and is a binary relation om.

A Kripke models a triple (W, R, V'), where the valuatiof” is a mapping from propo-
sitional variables to sets of worlds. Thus(p) is the set of worlds at which is true
under the valuatiofiy’.



18 Chapter 2: Logical Systems

| Name| Axiom | Property |
(K) |O0(A—B)— (0A—0OB) | —
(T |0A— A reflexive
(D) |0A —CA serial
(4) | 0A - OOA transitive
B) | CA—-DO0A euclidean
(B) | A—-DOCA symmetric

Table 2.1: Basic modal axioms and their corresponding restrictionthemreach-
ability relation.

If wRw' (i.e., (w,w') € R) then the worldw’ is reachablefrom world w, andw’ is a
successoof w.

The notion of propositions being true in a world is extended¢omplex formulae
F € Formy,(Y) as follows: F' is truein a worldw iff:

e (G is nottrue inw, in casel’ = -G,

e (7; andGs are true inw, in caseF = G A Go,

e (G, orGyistrue inw, in casel’ = G V Go,

G is true in all worlds reachable from, in caseF' = OG,

G is true in some world reachable from in casel’ = OG.

O

The first two columns of Table 2.2 show the axiomatisationthef15 basic modal
logics that can be formed from the axioms shown in Table 2.1.

Definition 2.4.2 Given one of the logick listed in Table 2.2, a Kripke fram@V, R) is
anL-frameif every formula instance of each axiombfs true in all worlds of W, R).

A Kripke model(V, R, V') is anL-modelif (W, R) is anL-frame. O

It is well-known that the axioms listed in Table 2.1 are clotgdsed by the properties
of R listed next to them. Thus, all KT-frames have a reflexive ssit#lity relationRz,
and if a frame has a reflexive accessibility relation theralidates axiom (T). There-
fore, we associate these properties with logics as well,sayd for example, that a
logic L is serial if allL-frames have a serial accessibility relation. Some careesed
here: for example the axiom (D) is not an axiom of KT, but itadid in all KT-frames
since itis implied by (T). Consequently the reachabilitiatien R of all KT-modelsis
serial.
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Logic Axioms Logic Axioms
K (K) KT | (K), (T)

KB | (K), (B) K4 | (K), (4)

K5 (K), (5) K45 | (K), (4), (5)
KD | (K), (D) KDB | (K), (D), (B)
KD4 | (K), (D), (4) KD5 | (K), (D), (5)
KD45 | (K), (D), (4), (5) | KB4 | (K), (B), (4)
B (K), (T), (B) S4 | (K), (T), (4)
S5 (K), (T), (5)

Table 2.2: Axiomatic characterisations of the basic modal logics.

We can now proceed to formally define the semantics of the lnasdal logics. LeL
be one of the basic modal logics listed in Table 2.2, and’lee a signature iigy,.
A modelm in My (X) consists of a Kripkd.-model (W, R, V). One of the worlds
in W is chosen to be the initial world°. The relation=y, is, for all worldsw € W
and formulagl” € Formy,(3) defined by:w =y, F' if and only if F'is true inw.

2.5 Modal Logics Without Binary Connectives

As a further example for logical systems, we use modal lofiedthout binary logical
connectives. Thatis, all formulae are modal literals, tteey are of the form, - - - o, p

(n > 0), wherep is a propositional variable angl is one of the modalities!, < or the
negation symbots; the semantics oL is the same as that of the corresponding full
modal logicL.. More formally:

Signatures: The setSig; of signatures oL is the same as that of the modal lodic
i.e., a signature is a denumerable non-empty set of propoaitvariables.

Syntax: LetX be a signature irfig;. Then Formg(X) is the set of formulae in
Formy, that consist of a single element &f prefixed by a sequence of the logical
operatorgd, &, and—. The setdtom; (X) is identical toX.

Semantics: The setM; (X) of models ofL is identical to the sety, of models
of L; and the relatiori=; is the restriction of=y, to the formulae fromFormy, (%)
occurring inForms (X).

Every formula inFormz (X) is satisfiable. Nevertheless, the logic is not trivial, be-
cause we are interested in the satisfiabilitysefsof formulae, which are implicitly
conjunctively connected and can be unsatisfiable.
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The Iogicsﬁ are used in Chapter 6 to demonstrate the benefits of fibrsngcombin-
ing logics and their calculi. The missing connectives camad@ed by fibringlL. with
first-order predicate logic PL1; and a calculus for the résgimodal predicate logic
can be constructed by fibring calculi firand PL1.

2.6 The Fragments MLSS and MLSSF of Set Theory

As further examples for logical systems present two fragmehquantifier-free set
theory; a new and improved tableau calculus for these lagidsfined in Section 3.8.

Set theory is the common language of mathematics. Thereferéheory plays an im-
portant role in many applications of automated deductiéor. example, some of the
most widely used specification languages, namely the Z anqekBification languages,
are completely based on set theory. For other languagesasett least a very im-
portant construct, frequently used in specifications eibimehe meta-level or as a data
structure of the specified programs. Set theoretic proagatibns occur both as part
of proving an implementation to be sound w.r.t. a specificaéind as part ofimmanent
reasoning (such as consistency checks, proving invaripresand post-conditions).

Set theoretic reasoning, i.e., employing special purpeskniques instead of using
the axioms of set theory, is indispensable for automatedateh in many real world

domains. Automated deduction tools can, for example, legmated into interactive
software verification systems and relieve the user from #weelrio interactively handle
simple set theoretic problems that do not require his or heition but merely a

combinatorial search.

Multi-level syllogistic (MLS) consists of quantifier-freermulae built using the set
theoretic predicatesiembershipequality, set inclusion the binary functionsinion,
intersectionset differenceand a constant representing the empty set. In the extension
MLSS of MLS, n-ary functions{-},, can be used to construct singletons, pairs, etc.
The fragment MLSSF consists of MLSS enriched with free (terppreted) function
symbols.

The expressiveness of MLSS and MLSSF is sufficient for mapjieations. MLSS
formulae can contain variables that are implicitly uniedigs quantified. The main
restriction is that there is no existential quantificatibnys, sentences such as “there is
an infinite set” cannot be formalised within MLSS.

Decision and semi-decision procedures for various exbasnf MLS have been de-
scribed in the literature; these, however, are not basedldadux but are highly non-
deterministic search procedures and are not suitable folemmentation; an overview
can be found in (Cantone & Ferro, 1995; Cantebel, 1989). Extensions of MLS
that are known to be decidable include: MLS with powersetsingleton (Cantone,
1991; Cantoneet al., 1985), with relational constructs (Cantone & Schwart1)9
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with unary union (Cantonet al,, 1987), and with a choice operator (Ferro & Omodeo,
1987).

Signatures An MLSSF signature is a signature of PL1 such that

1. its setP(X) of predicate symbols consists of the binary symbmelgnember-
ship),~ (equality), and= (set inclusion),

2. its setF'(X) of function symbols consists of

(a) the binary function symboI3 (intersection)|J (union),\ (set difference),
the set constructors },, with arity n > 1 (singleton, pair, etc.), and the set
theoretic constarit (the empty set),

(b) function symbols that have no special set theoretiapnéation; they are
calledfreefunction symbols.

An MLLSF signature is an MLSS signature if all free functigmbols are constants,
i.e., are of arity0.

Syntax The formulae of MLSS and MLSSF are built according to theswgfirst-
order predicate logic using the logical connectivegdisjunction), A (conjunction),
- (negation), and- (implication) butno quantifiers.

Definition 2.6.1 Let > be an MLSS (resp. MLSSF) signature; then the sedtoms
of MLSS (MLSSF), which is denoted byltomyss(X) (resp. Atomarsse(X)) is
the setAtompr,(X) of all PL1-atoms over:; and the set oformulae of MLSS
(MLSSF), which is denoted b¥ormyss(X) (resp.Formyrssr (X)) is the set of all
PL1-formulae ovel: that do not contain any quantifievsor 3 (and, thus, no object
variables). O

Notation 2.6.2 To avoid confusion we use the non-standard symbols, C, 1, LI,
on the object level and the standard symhals-, c, N, U, # on the meta level.

As usual, the binary set theoretic function and predicatebs}s are written in infix
notation, and-},, is written in circumfix notation. 0

Definition 2.6.3 Atermt € Termpr,;(X) over an MLSSF signature is aset term It
is apureset terms if it does not contain free function symbplisith arity o (f) > 0.
A settermis callefunctionalifitis of the form f (¢4, . . . , t,) wheref is a free function
symbol. O

Note that functional set terms can contain non-functioealterms (which are not
necessarily pure) and vice versa.
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Semantics We use the semantics of set theory (and thus its fragmentsSvirfsi
MLSSF) as it is defined by the ZF axiom system or, equivalebththe von Neumann
hierarchy (cumulative hierarchy) of sets (see, for exam@kech, 1978) for a detailed
discussion of the semantics of set theory).

Definition 2.6.4 Let Ord denote the class of all ordinals. Tken Neumann hierar-
chyQ is defined by
=) v

acOrd
where

1. By =0,
2. B, = g, Vs for each limit ordinaky, and

3. V.. is the powerset o3, for each ordinak. O

Definition 2.6.5 Let > be an MLSS or MLSSF signature. A first-order structure
m = (D,T) € Mpr1(X) is aset structurdf it has the following properties:

1. The elements ab are sets in the von Neumann hieraréiy

2. D is closed under the set operationsu, \, and{-},, (n > 1), and it contains
the empty set;

3. Z interprets

(a) the constarit by the empty set,

(b) the predicate symbols by their canonical interpretetjd.e.,= by €, ~ by
the identity relation, and: by C,

(c) the set theoretic function symbols by their canonictgrpretations, i.e.,
U byu, by n, \ by \, and{-}, by {-}, (n > 1). O

As models of logical systems must contain a set of worlds, &fmd models of MLSS
and MLSSF to consist of a single (initial) world’ that is a set structure.

The relations=yss and =yrssr are defined in the same way as the relatiop
of PL1: an MLSS-formula or MLSSF-formul&’ is true in the worldw?, which is a
set structure, if and only if, for all variable assignmemntsal;(F) = true.

One could allow free object variables to occur in MLSS and ESormulae; but that
would not enhance expressivity. Since free object varginlguantifier-free formulae
are implicitly universally quantified, a formuld(x) is valid in MLSS or MLSSF if
and only if a skolemisatiorG/(c) of its negation is unsatisfiable. Thus, free object
variables can be eliminated, and a tableau calculus fordt@enwithout free object
variables is sufficient.



3 Tableau Calculi

3.1 A Uniform View

It is important to distinguish the two phases into which teeelopment of an efficient
tableau-based proof procedure can be separated: the aésigableau calculus and
the construction of a proof procedure based on that calcudutableau calculus is
mainly characterised by a collection of deduction rule$ thay be employed to non-
deterministically construct a tableau proof; a proof prhge is a description of how
to search for a proof using a certain calculus.

In the literature on tableau calculi, these two phases @enoftermingled; refine-
ments that are neither needed for soundness nor for compstef a calculus but
are intended to improve efficiency are made part of the cascsildefinition. That is
harmful because whatever properties the calculus is thewrsto have are actually
only properties of the refined calculus. In addition, refioattuli are often less “well-
behaved” than their pure versions, which makes it more diffio apply the uniform
methods for constructing an efficient proof procedure or lwoing different calculi
that are described in the following chapters.

A typical refinement that should not be made part of the dedimiof a calculus is

the often useful heuristic that applications of non-bramghrules are preferable to
applications of rules introducing several new tableau-{guwbnches. If this heuristic is
part of the definition of a calculus, then it is, for examphepossible to employ a more
sophisticated technique for chosing the next of severaiplesrule applications that
is based on measuring the complexity of the formulae thaadded by an application.

Consequently, avoiding redundancy by making a calculusrdeterministic and re-
stricting the search space is not the main issue of this ehapts the topic of Chap-
ter 5, where the design of efficient proof procedures is dised. That notwithstand-
ing, efficiency has to be considered when a calculus is dedigor example, heavily
branching rules, such as the cut rule, should be avoidedoftiytif there are less-
branching rules that are equally “well-behaved”).

As few restrictions as possible are made regarding the tyddam of tableaux and
tableau calculi. But as said in the introduction (Sectid),la tableau is a tree whose
nodes are labelled with formulae. If no further restrici@me made, nothing is known
about the behaviour of tableau calculi, except that tablegpresent states of the proof
search, and a tableau rule application corresponds toeatsaaisition. In particular,

23
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nothing is known about the way in which states are repredearid what the relation
between tableaux is.

To be able to formulate general theorems and apply unifortihods, additional as-
sumptions have to be made regarding the behaviour of caltbk first of these as-
sumptions is that tableau branches represent differeasads proof and that they are
thus implicitly disjunctively connected; closing a brantieans that the correspond-
ing case has been successfully handled. Since brancheseapdistinct cases, that
implies that the effect of tableau rule applications araloc a branch.

The next step is to assume that the formulae on a branch ateithggonjunctively
connected and represent the knowledge that has been dabwatlithe proof case cor-
responding to the branch. That entails the existence ofledalexpansion and closure
rule that is monotonic and operates on the sets of formui@eyider of formulae on a
branch becomes irrelevant.

The final step are semantical assumptions. A branch is cemresldo define a partial
model. The tableau construction then corresponds to thstwaion of a model of
the formulae on the initial tableau. A branch is closed if atcadiction is found in

the partial model defined by that branch. A closed tablean pneves the fact that the
formulae on the initial tableau are unsatisfiable.

To include as many different calculi as possible in our gahaefinition of the notion
of tableau calculi, labels and truth value signs are ath¢bdormulae in tableaux.
Labels have many uses, they allow to make information almuatdlae and about the
relation between formulae explicit; labels are partidylarseful in calculi for non-
classical logics (e.g., many-valued, modal, and intuista logics); many tableau-
like calculi using labelled formulae are described in (Gabli996b). Tableau calculi
with labels attached to formulae are much more powerful tredeuli that encode the
information otherwise contained in labels into the struetof tableaux. If informa-
tion is implicitly represented by the structure of tableatliren any changes affecting
the structure may destroy soundness and completeness cdilthdus; therefore, we
say that such calculi are nateal (the idealness property is formally defined in Sec-
tion 3.3.7).

The fact that only the two truth value siglmsandF are used does not imply a restric-
tion to two-valued logic; these signs represent the fadtdahfarmula is (resp. is not)
satisfied by a model. The truth-values of a many-valued logicbe encoded into the
labels attached to tableau formulae.

3.2 Syntax of Tableau Calculi

As said before, we consider the tree structure of tablealre tan essential property;
trees arenotjust a data structure for implementing tableaux. Calcuhsas, for exam-
ple, sequent calculi and the connection method, which ¢@eraother data structures,



3.2 Syntax of Tableau Calculi 25

are only “tableau-like”.

Definition 3.2.1 Let L be a logic; let® € Sig be a signature; and Iétub be a set of
labels.

A tableau formulaS:o: F' consists of a truth value sighe {T,F}, a labelo € Lab,
and a formulaF" € Form(X); it is calledatomicif F' € Atom(X). In addition, the
symbol L is a tableau formula (which indicates branch closure). Bi®fall tableau
formulae is denoted witlabForm(X).

The complement of a tableau formula is defined by:¢ = F:o:F if ¢ is of the
form T:o:F, and¢ = T:0:F if ¢ is of the formF:o:F (the complement of_ is unde-
fined).

A tableau(over the signatur&) is a finitely branching tree whose nodes are labelled
with tableau formulae fronTabForm(X).

A branchof a tableadl” is a maximal path iff". The set of formulae on a branéhis
denoted withForm(B). O

In the following, we often identify a node in a tableau andftrenula with which it is
labelled.

To keep the notion of tableau calculi as general as posshiefunction that assigns
to a tableau a set of possible successor tableaux is coedittebe aableau rule A
tableau rule can change a tableau to which it is applied inrlitrary way. Tableau
expansiorrules are a special case of tableau rules; they are discusSedtion 3.3.3.

A tableau calculug for a logicL has (different) “instance<C(X) for each signature
Y € Sig. We allow formulae from an extended signatiieto be used in a tableau
proof. Only the tableau formulae that are tested for saligiiahave to be taken from
the language of the non-extended signafurevhich is a restriction ot*; they are
put on the initial tableau. The possibility to use an extehsignature in the proof
or, equivalently, to demand that the formulae that are defstesatisfiability are taken
from the language of a restricted signature is indispersiblmany tableau calculi;
it allows, for example, to introduce Skolem symbols thatkarew not to occur in the
initial tableau.

Definition 3.2.2 A tableau calculug€ for a logicL is, for each signatur® € Sig,
specified by:

e an extensiorL* € Sig of the signature: (Def. 2.1.3);

e a setLab of labels and an initial labet® € Lab;

e atableau ruléR(Y) that assigns to each table@uover the signatur&* a set
of tableaux ovel:*, which are the (possibleuccessor tableauxf 7. The set
R(X)(T) may be infinite but has to be enumerable.
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O

We now have everything at hand to define what the tableaux $&t& of formulae
are and when a tableau is closed. The construction of tabliea s is in general a
non-deterministic process, since a tableau may have angar-av infinite—number
of possible successor tableaux.

Definition 3.2.3 LetC be a tableau calculus for a lodig and letY € Sig be a signa-
ture. The set of all tableaux for a finite dét” TabForm(X*) of tableau formulae is
inductively defined as follows:

1. A linear tableau whose nodes are labelled with the forenidd” is a tableau
for I (aninitial tableau).

2. If T is a tableau fof” and7’ € R(X*)(T), i.e.,T" is a successor tableau Bf
thenT’ is a tableau fof'.

A tableauT is a tableau for a finite s§ C Form(X) of formulae if it is a tableau for
the set{ T:0%:F | F € §} of tableau formulae. 0

Some useful tableau calculi, by definition, start with an gniptial tableau and allow
to (later on) extend branches of a tableau by formulae frars#t§ whose unsatisfi-
ability is to be proven. This can easily be modelled in oumfeavork by introducing a
special initial labeb with the meaning “is not yet on the branch” and extending #he t
bleau rule such th&:¢°: F can be derived frorS:o: F' (whered? is the original initial
label). That derivation then corresponds to adding the fibars:0°: F' to the tableau.
Another possibility, which is also applicable if the sis infinite, is to extend the
tableau rule such th&tc": F can be derived from the empty premiss.

Definition 3.2.4 A tableau branclB is closedif one of its nodes is labelled with.
A tableau isclosedif all its branches are closed. O

Intuitively, a tableau proof for a s€¥ of formulae proves the unsatisfiability gf
(provided that the calculus is sound).

Definition 3.2.5 Let C be a tableau calculus for a loglg and letY € Sig be a sig-
nature. Atableau prooffor a set§ C Form(X) of formulae is a finite sequence
Ty, ..., T, (n > 0) of tableaux forg such that

e T, is an initial tableau fof;

e T;is asuccessor tableautf ; (1 < i < n);
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e T, is closed.

O

Lemma 3.2.6 Given a tableau calculus for a logicL and a signatures € Sig, there
is a tableau proof for a sef C Form(X) of formulae if and only if there is a closed
tableau forg.

Proof: This follows immediately from the definitions of tableaux éoformula set and
of tableau proofs. O

3.3 Syntactical Properties

3.3.1 Non-destructive Tableau Calculi

A tableau calculus is non-destructive if applications eftéableau rule do not alter or
remove formulae already on the tableau but only add new fl@@u

Definition 3.3.1 A tableau calculus is\on-destructivef all possible successor ta-
bleaux of a tablead” containT as an initial subtree; otherwise the calculusiés
structive 0

Example 3.3.2 A typical example for destructive calculi are those that fuse vari-
ables in tableau formulae and allow the instantiation offtee variables by terms
when the tableau rule is applied. O

3.3.2 Proof Confluence

A tableau calculus iproof confluentf there are no “dead ends” in the proof search. A
certain tableau rule application may be useless for cottstigia proof for a formula
setgF, but it cannot prevent the construction of a proof if the ahls is proof confluent.
This property is important for reducing the size of the skeagace. A deterministic
proof procedures for a proof confluent calculus can be coagtd by ensurinairness
(Chapter 5) of tableau rule applications; backtrackingoisrmeeded.

Definition 3.3.3 A tableau calculug for a logicL is proof confluentf each sequence
To, ..., Ty (k > 0) of tableau for a sef C Form(X) of formulae for which a tableau
proof exists can be extended to a tableau pi#of..,T;,..., T, (n > k) forg. O
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3.3.3 Tableau Calculi with Expansion Rule

The most important syntactical property of tableau calfaricing them to be “well-
behaved” is that tableau rule applications have dobal effects. That is, the tableau
rule is non-destructive and it extends onlgiaglebranch of a tableau. In addition,
what the possibilities for extending a branBhare, only depends ofR itself; no ad-
ditional pre-conditions are allowed such as, for examble presence of formulae on
other branches. A calculus has this “local effects” propérits tableau rule can be
described in form of atableau expansion rule

Definition 3.3.4 LetC be a tableau calculus for a lodig and letY € Sig be a signa-
ture.

A branch extensiors a finite subset of tableau formulae ov&r.
A tableau ruleconclusionis a finite set of branch extensions.

A tableauexpansion rule (X) is a function that assigns to each (finite) tableau branch
whose nodes are labelled with formulae frdimb Form(X*) a seté (X)(B) of (possi-
ble) conclusions, which may be infinite but has to be enunierab O

Note that speciatiosurerules are not needed. A branch is closed by extending it with
the special tableau formula. Thus, branch closure can be considered to be a special
case of branch extension.

Definition 3.3.5 Let C be a tableau calculus for a lodig and letY € Sig be a signa-
ture.

An expansion rul€ (X) characteriseshe tableau rul&® (X) of C if, for all tableauxT’
overX*: a tableaul” is a successor tableau of(i.e., 7" € R(X)(T)) if and only if
there is a branclB of 7" and a conclusioft' in £(X)(B) such that the tabledall can be
constructed fronT" by extending the branch by a new sub-branch for each extension
FE in C where the nodes in that sub-branch are labelled with theeziesofE.

If the expansion rul& (X) characterises the tableau ra@¢X) of a calculusC for all
signatures:, then¢ is said to beheexpansion rule of ; and(C is said to be a calculus
with expansion rule. O

Theorem 3.3.6 A tableau calculus with expansion rule is non-destructive.

Proof: The theorem follows immediately from Definitions 3.3.1 an8.3. O
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3.3.4 Analytic Tableau Calculi

Two different notions ofanalytic calculi can be found in the literature. One is that
a calculus is analytic if it “analyses” the formula to be peay i.e., if it is a top-
down procedure—as opposed to saturating calculi (or betiprprocedures) that try
to deduce the formula to be proven from given axioms. In teats, tableau cal-
culi are always analytic; a stronger version of this propestdefined in Section 3.5
(Def. 3.5.13).

Here, however, we use the woashalyticin its traditional, more restricted sense. A
calculus is analytic, if all formulae in a successor tableda tableaul” occur as
subformulae i’

Definition 3.3.7 A tableau calculus isnalytic if the following holds for each ta-
bleauT over a signatur&* and all its successor tableaiik if S':0’:F' is a tableau
formula inT’, then there is a tableau formWas: F' in T' such thatF” is a subformula
of F. O

Analytic calculi have a smaller search space than non-aoaglculi because there
are less different formulae that may be introduced by a gabtale application.

It is possible to define analytic calculi for classical andsineon-classical proposi-
tional logics. Calculi for predicate logics are usually aoilytic in the strict sense,
because they allow, for example, to dedu¢g from (Vx)(p(x)) for all termst. Such
calculi are, however, still analytic in a weaker sense, narfi@ot only subformulae
but as well instances of subformulae occurring in a tablEaway be introduced by a
tableau rule application to.

3.3.5 Monotonic Tableau Calculi

A tableau calculus with expansion rulensonotoniaf the set of possible conclusions
for a branchB’ that is an expansion of a branéhcontains all possible conclusions
for B.

Definition 3.3.8 Let L be a logic, and lef be a tableau calculus fdr with expansion
rule €.

The calculug is monotonidf £(X)(B;) C £(X)(B,) for all branches3, and B, over
a signature_* such thatB, is an initial sub-path of3,. O

If a calculus with expansion rule is monotonic, then rulelegapions are permutable.
Thatis, assumef} is a branch in a some tableau over a signalyjrandC'; andC; are
conclusions ir€ (X)(B), then all tableau branches that can be constructed fsdog
first appending an extensidn from C; and then an extensiai, from C, can as well
be constructed permutating the corresponding tableawapgications and extending
B first by F; and then by, .
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3.3.6 Non-structural Tableau Calculi

A tableau calculus ison-structuralif the order of formulae on a tableau branBhs
irrelevant for the result of applying the expansion ruld3to

Definition 3.3.9 Let L be a logic; and lef be a tableau calculus fdr with expansion
rule €.

The calculug is non-structuralif £(X)(B;) = £(X)(B,) for all branches3; and B,
overX* with Form(B,) = Form(Bs). O

3.3.7 Ideal Tableau Calculi

We call a tableau calculudealif it is a (a) calculus with expansion rule, (b) monotic,
and (c) non-structural. ldeal calculi are—at least syntatly—well behaved. The
idealness property will turn out to be of great importancthamfollowing chapters.

Definition 3.3.10 A tableau calculus with expansion rule that is non-stradtand
monotonic is calleddeal. O

If a tableau calculus is ideal, then its expansion rule carepeesented as a function
on finite sets of tableau formulae (a functiongmemissep

Lemma 3.3.11 LetC be an ideal tableau calculus with expansion réléor a logic L.
Then, for all signature&, there is a (single) functioé(z) that assigns to each finite
setll C TabForm(X*) of tableau formulae (each premiss) a §¢E)(I1) of (possible)
conclusions such that

E(Z)(B) = £()(Form(B))

for all tableau branche® overX*.

The above lemma implies that the functi(X) on sets of tableau formulae (pre-
misses) can be seen as an alternative characterisatioe ekgansion rul&€—pro-
vided that the calculus is ideal. Therefore, in the case edlidalculi, we identify the
two functions, denote them both wigh and call them “expansion rule”.

Another important feature of ideal calculi is that they aregh confluent.

Theorem 3.3.12If a tableau calculus is ideal (Def. 3.3.8), then it is prooinfluent
(Def. 3.3.3).
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Proof: Let C be a ideal calculus for a logi; let § C Form(X) be a set of formulae
for which a tableau prodfy, ..., T/ (m > 0) exists; and lefly, ..., T, (k > 0) be a
sequence of tableaux fg.

A tableau proof that is an extensiond, . . ., T, can be constructed as follows: for
each branctB; (1 < i < r) of T}, the samen tableau rule applications that were used
to constructl;, from 7}, are used to extenB8, such thafl;, is attached as a subtableau
to the end ofB;. That is possible because the initial tabledyxandT{ contain the
same formulae (though they may not be identical) and theukedds non-structural
and monotonic. The resulting tableau proof is of length & + mr. O

In practice, expansion rules of ideal calculi are often dbed by means of rule sche-
mata (see Sections 3.6 and 3.7 for examples). In these stheimaelements of the
minimal premiss, that have to be present to allow the deducti a certain conclusion,
and that conclusion are separated by a horizontal bar, wéitecal bars in the conclu-
sion denote different extensions. The use of schemata foning tableau expansion
rules fits perfectly in our framework, with the exceptionttdéferent rule schemata
are usually considered to define (orlig) different rules whereas we consider rule
schemata to define different sub-cases of one (single) sigrarule.

Definition 3.3.13 Let C be an ideal calculus for a logik; and letX be a signature
in Sig.

A setll C TabForm(X) is aminimal premis®f a conclusiorC if it is a premiss oiC,
i.e.C € £(X)(II), and there is no subsBt C II, IT # IT' such thaC € £(X)(I1'). O

Idealness intuitively prohibits “strange” behaviour ofatdi. As will become obvious

in the following chapters, to be ideal is a very importantgandy of tableau calculi. It
is a pre-condition for the applicability of many of the untiomethods described in the
following. Even “slight” non-idealness should be consateharmful. Unfortunately,
many calculi described in the literature and used in pradie “slightly” non-ideal.
Such calculi can often be repaired with minor changes. Acipxample are calculi
using expansion rules that introdusewsymbols, i.e., symbols that must not occur on
the branch or even the whole tableau. As the following exarspbws, this type of
rules can often be replaced by similar rules not violatingiotonicity.

Example 3.3.141n calculi for first-order predicate logic, often an expamsrule is
used that allows to derivé'(c) from formulae of the form3z)(F(x)), wherec is

a constannewto the tableau (or the branch). A calculus using such a ruleots
monotonic (and thus not ideal) because the rule demandaltbenceof formulae
containinge.

If instead a special constant symlaglis used, which does not have to be new, then the
calculus is monotonic. Soundness is preserved provided tha not introduced into
the tableau in any other way than by skolemisiag)(F'(z)) (in particular, Skolem
constants;» must not occur in the initial tableau); see Section 4.4. O
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Ideal calculi exist for most logics. There are, however, eamon-classical logics
whose inherent properties make it difficult or even impdssib define an ideal ta-
bleau calculus; these include non-monotonic logics (sthee calculi are not mono-
tonic) and logics with resource restrictions such as lirzeat relevance logic (as rule
applications in calculi for these logics have non-locatef$).

The idealness property, in particular monotonicity, iseofdropped and violated to
remove redundancies when a calculus is turned into a prockplure (see Chapter 5).
That is not harmful as long as the additional restrictiorsd Hre imposed are clearly
end explicitly separated from the definition of the calculus

3.3.8 Continuity

An ideal calculus is in particular monotonic. Thereford,cainclusions that can be
derived (separately) from any two premis$gd1’ can as well be derived from their
union, i.e. £(IT) U E(IT") C E(ITUTIT). If, moreoverE(ITUTT) ¢ £(IT) U E(TT') and
thus&(IT) U £(TT") = E(ITUIT'), then a calculus is said to lwentinuougfor I1, IT').

Virtually no calculus is continuous for all premisses. IfanclusionC' has a minimal
premissIl consisting of more than one tableau formula, ilé+~ IT" U T1” wherell’
andTI” are both not empty, then the calculus is not continuous. whet subset$I’
andT1” (because” ¢ £(IT") U £(I1") as the premis$l is minimal). Therefore, the
notion of continuity is defined w.r.t. a certain premiss.

Definition 3.3.15 Let C be a ideal calculus for a logic; let 3 € Sig be a signature;
andIl C TabForm(¥*) be a premiss.

The tableau rule of is continuousw.r.t. IT if, for all premissedl’ C TabForm(X*):
EMUIl) c ENUE) .

O

Example 3.3.16 The tableau rule of the calculus for first-order predicagdae-
scribed in Section 3.6 is continuous w.r.t. all premissesting solely of non-atomic
formulae. The rule is not continuous w.r.t. premisses doimtg atoms because branch
closure involves two complementary atoms; i.e., the mihjpnamiss for the conclu-
sion{{_L}} consists of more than one tableau formula.

A tableau rule that allows to “apply” equalities, i.e., taiéte F'(s) from F(t) and the
equalitys ~ t, is not continuous w.r.t. any (non-empty) premiss. O

Continuity is a very useful property, because a premiss.which the tableau rule is
continuous can be “delete” once all its conclusions have béeed to the branch resp.
the tableau, i.e., it has not to be considered again; catyiis)thus, closely related to
the semantical property of invertibility (Def. 3.5.11).
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3.4 Semantics of Tableaux

The semantics of tableaux of a calculus for a logits based on the semantics Iof
which is given by setaVI(X) of Kriple-style models for each signature The labels
that are part of tableau formulae are assumed to represetisao models, and the
truth value signs encode truth and falsehood of a formula.

Definition 3.4.1 LetC be a tableau calculus for a lodig and letY € Sig be a signa-
ture. Atableau interpretatiorior C(X) is a pair(m, I) where

e m € M(X*) is a model for the extended signatatg and

e [ is a partial function that assigns to labels Lab(Y) worlds of m such that
I(0%) = w° (i.e., I assigns to the initial label® the initial worldw® of m).

A tableau formulé:o: F' € TabForm(X*) is satisfiedby (m, I iff
1. I(o) is defined, and

2. (@ S=TandFistrueini(o), or
(b) S=F andF is false inl(o).

The tableau formuld. is not satisfied by any tableau interpretation.

A tableau branclB is satisfiedby (m, I) iff all tableau formulae o3 are satisfied
by (m, I).

A tableau issatisfiedby (m, I) iff at least oneof its branches is satisfied fyn, 7). O

Note, that a tableau formula is satisfied by default if theriptetation functior is not
defined for its label.

Often, it does not make sense to use all possible tableagistations to define the
semantics of tableaux. An appropriate subset of the tabigarpretations has to be
chosen; that choice depends on the particular calculusrendgic. On the one hand,
to be useful for proving soundness of the calculus, the subsst only contain tableau
interpretations for which the tableau rule preservesfsaiity (and can be proven to
preserve satisfiability). On the other hand, to be usefulpfmving completeness,
the subset must contain enough interpretations such tleay eatisfiable tableau is
satisfied by an interpretation contained in the subset.

Definition 3.4.2 Let C be a tableau calculus for a logic The semantics df is, for
each signatur&, defined by a sefublnterp(X*) of tableau interpretations. O

Example 3.4.3 To define the semantics of tableaux of calculi for first-onolexdicate
logic, only tableau interpretations are used whose firstipan Herbrand model. O
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3.5 Semantical Properties

3.5.1 The Advantage of Semantical Properties

Semantical properties are needed, because even stromgtsyaltrestrictions such as
idealness still allow calculi to behave “strangely”. Fotamicould be added to the
tableau that syntactically encode knowledge derived froengremisdI, but whose
semantics (i.e., truth value) has nothing to do with thathaf tormulae inll. An
extreme example for this is that two symbols of the signatwesused to encode the
formulae inIl in a binary representation, and a tableau rule is employatdiperates
on that binary representation. It is impossible to apply anjorm methods to such
calculi—though they may be sound and complete—because @arstanding of the
encoding would be required. To assure a more “conservabiebaviour one could
impose additional syntactical restrictions, such as maggia calculus to be analytic.
However, the property of tableau rules that makes it possdapply techniques such
as fibring (Chapter 6) in a uniform way is essentially sentattithe result of a rule
application must be semantically related to its premiss.

Two important semantical properties are already part oflgfaition of tableau inter-
pretations (Def. 3.4.1), namely that the labels in tablemmtilae represent worlds in
models, and that the truth value signs encode truth andhiadgkof a formula; signs
and labels do not contain other information.

Defining a semantics for tableaux is not only important fasvimg soundness and
completeness of a calculus; in addition, pre-conditionsiahy search space restric-
tions and other useful techniques are semantical. To reglach uniform semantical
pre-conditions by uniform syntactical pre-conditionsfien difficult (if not impossi-
ble). That notwithstanding, a tableau calculus can be quséful, in particular sound
and complete, if no semantics for tableaux is provided.

3.5.2 Soundness and Completeness

The most important semantical properties of tableau dadéeal soundness and com-
pleteness:

Definition 3.5.1 A calculusC for a logicL is soundif, for all signatures® € Sig and
all finite sets§ C Form(X) of formulae:

If there is a tableau proof fog, theng is unsatisfiable.

A calculusC for a logicL is completef, for all signatures® € Sig and all finite sets
§ C Form(X) of formulae:

If § is unsatisfiable, then there is a tableau proof or
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3.5.3 Soundness Ensuring Properties

There are three important soundness properties; togdtegmatre sufficient to ensure
soundness of a calculus.

1. Aninitial tableau for a satisfiable set of formulae is Sable;
2. satisfiability is preserved by tableau rule applications

3. aclosed tableau is unsatisfiable.

Together these properties imply that there is no tableaafgor a satisfiable set of
formulae. The last of the properties does not have to be eagds all calculi have it
(according to the following lemma).

Lemma 3.5.2 A closed tableau is unsatisfiable.

Proof: If a tableaul” is closed, then all its branches are closed, which meanstiéat
contain L. Becausel is unsatisfiable, none of the brancheslois satisfied by any
tableau interpretation; thereforéis not satisfied by any tableau interpretation. O

Definition 3.5.3 Let C be a calculus for a logi@.. Then the followingsoundness
propertiesare defined that may have:

Soundness Property 1 (Jweak] appropriateness of the sethdéau interpretations):
For all signatureg’, if a set§ C Form(X) is satisfiable, then there is a tableau
interpretation inTabInterp(X*) that satisfies the initial tableau fgt

Soundness Property 2 ([weak] soundness of expanskan)all signature&’, if there
is a tableau interpretation ifiubInterp(¥X*) satisfying a tablead” and7” is a
successor tableau @f, then there is a tableau interpretationZnbInterp(3*)
satisfyingT". O

A tableau calculus that has the two soundness propertiss@efinition 3.5.3 can be
proven to be sound (whether it is ideal or not).

Theorem 3.5.4 A tableau calculug for a logic L that has the two soundness prop-
erties from Definition 3.5.3 (appropriateness of the setbfdau interpretations and
soundness of expansion) is sound (Def. 3.5.1).
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Proof: Let§ C Form(X) be a finite, satisfiable set of formulae. We prove by contra-
diction that there is no tableau proof f@r which implies soundness of the calculus.

Suppose that there is a tableau prégf. . ., 7,, (n > 0) for §. SinceT,, is closed, itis
unsatisfiable (Lemma 3.5.2).

However, since§ is satisfiable, by Property 1 (appropriateness of the setldéau
interpretations), there is a tableau interpretation I) € TabInterp(X*) satisfying
the initial tableaul. Therefore, by induction onand using Soundness Property 2
(soundness of expansion), all the tableduil < i < n) are satisfied by some tableau
interpretation inTabForm(X*), contradicting the fact thak, is unsatisfiable.

Thus, the assumption is wrong, and there is indeed no tapkea for . O

3.5.4 Completeness Ensuring Properties

Before properties can be formulated that establishes aem@ss of a calculus, the
notion of afully expandedableau branch has to be defined. The definition relies on the
fact that the calculus has an expansion rule (Def. 3.3.4)santnotonic (Def. 3.3.8);
without these properties, it is difficult to define the notmfrfully expanded branches

in a uniform way. Intuitively a branci® is fully expanded if each possible rule appli-
cation creates at least one successor brd@ti¢hat contains the same formulaefs

Definition 3.5.5 Let C be a monotonic tableau calculus with expansion rule for a
logicL; and letX € Sig be a signature.

A (possibly infinite) tableau branch is fully expandedf E C Form(B) for at least
one extensiork in each conclusiot’ € R(X)(B). O

Definition 3.5.6 Let C be a calculus for a logit. Then, the followingcompleteness
propertiesare defined that may have:

Completeness Property 1 ([weak] appropriateness of theosd¢ableau interpreta-
tions): For all signature&, if there is a tableau interpretation fubInterp(3*)
satisfying the initial tableau for a s@tC Form(X) of formulae, then there is a
model inM(X) satisfyingg.

Completeness Property 2 (satisfiability of fully expandeahbhes): For all signa-
turesy, if a tableau branclB is fully expanded and not closed, then there is
a tableau interpretation ifiub Interp(¥X*) satisfyingB. O

The completeness properties from Definition 3.5.6 are seiffidco ensure complete-
ness of amdealcalculus. As said at the end of Section 3.3.7, idealnessasa ofopped
when an ideal calculus is turned into an efficient proof procedure. That is not harm-
ful, because the completeness of these non-ideal procethitews from the com-
pleteness of when the uniform methods for turning a calculus into an edfitproof
procedure from Chapter 5 are employed.
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Theorem 3.5.7 A tableau calculug for a logic LL that is ideal and has the two com-
pleteness properties from Definition 3.5.6 (appropriasmef the set of tableau inter-
pretations and satisfiability of fully expanded branches)omplete.

Proof: Let § C Form(X) be a finite, unsatisfiable set of formulae; we proceed to
prove that there is a tableau proof frLet (7},),>o be a (possibly infinite) sequence
of tableaux forg such that

1. T} is an initial tableau fof;
2. T; is a successor tableausf | (i > 0);

3. the sequence is constructed in a fair way, i.e., all ptessitnclusions ir€ (II)
for all premissedI occurring in one of thd; is sooner or later used to expand
every non-closed branch on whithoccurs (where corresponding branches in
T; andT;. ; are identified).

Because of the monotonicity and non-destructiveness sfich a sequence can be
constructed for all formula sefs

The sequencél,),>o approximates an infinite trég,,; according to its construction,
every non-closed branch iR, is fully expanded (Def. 3.5.5). Suppose there is a non-
closed (and thus fully expanded) branBhin T.. Then, by the satisfiability of fully
expanded branches (Property 2 in Def. 3.5/6)s satisfied by a tableau interpretation
(m*, I) € TabInterp(X*). Since all the formulae of the initial tabledy are onB, the
initial tableau is satisfied bym*, 7) as well. Therefore, by the appropriateness of the
set of tableau interpretations (Property 1 in Def. 3.5/8r¢ is a modein € M(Y)
satisfyingg, in contradiction to the fact tha is unsatisfiable. Thus, the assumption
that there is a non-closed branch’iy, is wrong, and indeed all branches contain
a node labelled withL.. Then, because (by definition) premisses are finite and the
tableaux are finitely branching, Konig’'s Lemma impliesttire is am > 0 such that
already the finite sub-tabledk), of T is closed. This concludes the proof, because
T, is by construction a closed tableau for O

3.5.5 Strong Soundness and Completeness Properties

A stronger version of the soundness properties from Deimi#.5.3 can be formu-
lated. The weak properties only require satisfiability of thitial tableau and that
satisfiability is preserved by tableau rule applicationg,dlow that at each step a dif-
ferent model resp. tableau interpretation may be chosencddculus has the stronger
properties defined below, and the formulae for which a tabje@of is to be con-
structed are satisfied by a moda| then the initial tableau and all subsequent tableaux
are satisfied by one and the same tableau interpretationhwshan extension ah.
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These stronger soundness properties are not needed fangpraaundness but are
important for the fibring technique (Chapter 6).

Definition 3.5.8 Let C be a calculus for a logi&.. Then the followingstrong sound-
ness propertieare defined that may have:

Strong Soundness Property 1 (appropriateness of the sabtdau interpretations):
For all signature&, if a set§ C Form(X) is satisfied by a modeh € M(Y),
then there is a tableau interpretati@n®, 7) € TabInterp(X*) satisfying the ini-
tial tableau forg wherem* is an extension ofn.

Strong Soundness Property 2 soundness of expansionall signaturess, if a ta-
bleauT is satisfied by a tableau interpretation TabInterp(3X*) and 7" is a
successor tableau @f, thenT"” is satisfied bythe saméableau interpretatiori]

A calculus has the strong soundness of expansion propéiityedeabove (and, thus,
the weaker property from Def. 3.5.3) if and only if the corsitinsC' in £(X)(B) are
logical consequences of the formulae BnAn ideal calculus has this property if and
only if a conclusion is a logical consequence of any of itsimal premisses:

Lemma 3.5.9 An ideal calculugC for a logic L has the strong soundness of expan-
sion property (Property 2 from Def. 3.5.8) if, for all signagsy € Sig, all premisses

IT C TabForm(X*), and all conclusiong§’ such thafll is a (minimal) premiss af’ the
following holds:

If a tableau interpretation satisfid$, then it satisfies an extensiohse C.

Proof: For the if-part of the proof, letm, I) € TabInterp(3*) be a tableau interpre-
tation satisfying a tabledli and let7T” be a successor tableau®flet B be the branch
in 7' that is expanded, and I8t C Form(B) be a minimal premiss of the conclusiéh
that is used to expand.

By assumption(m, I) satisfiesT; thus it satisfies some brands’ of T. If B? is
different from B, thenB? is also a branch d¢f’ and we are through.

If, on the other handB® = B and, thus{m, I') satisfieslT ¢ Form(B), then it sat-
isfies one of the extensioris € C'. Therefore(m, ) satisfies the branch &f that
has been constructed by extendiBgwith the formulaeE and, thus, it satisfies the
tableaur”.

For the only-if-part, consider a tableduthat consists of a single branch with the
formulae in a premisH. If I1 is satisfied then so i&, which implies that the successor
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tableauT” is satisfied that is constructed froi using the conclusiod'. But, by
construction]” can only be satisfied if one of the extensiong’iis satisfied. O

A stronger version of Completeness Property 1 (appropréste of the set of tableau
interpretations) can be defined as well.

Definition 3.5.10 Let C be a calculus for a logi&.. Then, the followingstrong com-
pleteness propertig defined that may have:

Strong Completeness Property 1 (appropriateness of thefsitbleau interpretati-
ons): For all signatures:, if (m*, ) € TabForm(X*) satisfies the initial ta-
bleau for a se§ C Form(X) of formulae, thenm* can be restricted to a model
m € M(X) that satisfies. 0

3.5.6 Invertible Expansion Rules

If the converse of the pre-condition of Lemma 3.5.9 holds,, iif each conclusion
logically implies its minimal premiss, then a tableau rdeaid to benvertible

Definition 3.5.11 Let C be a ideal calculus for a logic; let 3 € Sig be a signature;
and letll ¢ TabForm(%*) be a premiss.

The tableau rule of is invertiblew.r.t. IT if, for all conclusionsC' € £(X)(IT) such
thatIl is a minimal premiss of’, the following holds:

If a tableau interpretation satisfies an extensiore C, then it satisfie$l.

The calculu€ is said to benvertibleif its tableau rule is invertible for all signatur&s
and all premisseH C TabForm(X*). O

It is of advantage if a tableau rule is invertible, becausa ttule applications not only
preserve satisfiability but they presemesatisfiabilityas well. This is important for
constructing efficient proof procedures as it allows to étell the minimal premiss of
a conclusiorC from a branch that has been extended using

Example 3.5.12The tableau rule of a calculus for PL1 that allows to deriveedbn-
clusion{{T:0:F},{T:0:G}} from the premis$l, = {T:o:(F Vv G)} is invertible with
respect td1, because every first-order interpretation that satisfieobttee formulae
F and( satisfiesF’' v G as well.

However, the tableau rule that allows to derive the conolu${ T:o:p(¢)}} from the
premissil, = {T:o:(Vz)(p(x))} is notinvertible w.r.t.IT,, because an interpretation
satisfyingp(t) does not necessarily satisfyz)(p(z)). O

I A stronger version of Completeness Property 2 is not defit@thathe same line, as that property
does not involve a transition from one model or tableau pregation to another. In Section 3.5.7,
the property of being semantically analytic is defined, wtdtrengthens Completeness Property 2
in a different way.
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3.5.7 Semantically Analytic Tableau Calculi

A stronger version of Completeness Property 2 in Definitidh & (satisfiability of
fully expanded branches) can be used to ensure that a caisutanalytic down to the
atomic level”. This isnota syntactical property and it doastimply that the calculus
is analytic in the classical sense (Def. 3.3.7).

Definition 3.5.13 A calculusC for a logicL is (weakly)semantically analytidf, for
all signatures:, the following holds: If a tableau brandh is fully expanded and not
closed, then every tableau interpretatiorZih Interp(X*) satisfying theatomson B
satisfiesall formulae onB, and at least one such tableau interpretation exists. O

Example 3.5.141f a tableau calculus for a modal logic is to be semanticatiglgtic,
it has to be possible to extend a tableau branch containedatmulaT:o:Op by
the formulaeT:7:p for all labelsT representing a world reachable from the world
represented by. O

Example 3.5.151n a tableau calculus for classical propositional logid tkdo be se-
mantically analytic, it must be possible to expand a braraftainingT:(p V ¢q) by
sub-branches containinyp andT:q, respectively. Thus, the calculus is not semanti-
cally analytic any more, if the restriction from Section $s5mposed that forbids to
use formulae for expansion that are nohnectedo other formulae. O

If a calculus is semantically analytic, then the atoms onlly fxpanded branctB
explicitly represent all information about the tableatempretations satisfyingg that
can be derived from the (complex) formulae Bn

However, in certain logic&, there may be hidden (implicit) restrictions on the form
of models that are not specific for models satisfying certaimulae but apply to all
models ofLL and, thus, to all tableau interpretations used to define éhsastics of
tableaux. If, for example, a calculus is used for fibring (Gtea6), then it is important
that such hidden information, too, is explicitly represehby the atoms on a fully
expanded branch. This property is formalised as follows:

Definition 3.5.16 A calculusC for a logic L is strongly semantically analytid, for
all signatures:, the following holds:

If
1. Bis a fully expanded tableau branch that is not closed, and

2. ® C TabForm(X*) is a set ofatomictableau formulae such that, fop ¢ in @,
both¢ and¢ are in Form(B) U @,
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then there is a tableau interpretatign, 7) in TabInterp(X*) such that

1. (m, I) satisfiesForm(B) U ®,

2. for all worldsw in m there is a labet in C with I(0) = w. O

Example 3.5.17Kripke-style models that are used to define the semanticatof i
itionistic logic have to satisfy the (hidden) restrictidrat, if a formula is true in some
world w, then it is true in all successor worldsf(if a formula is false in a worldy,

it may be true or false in the successor worlds®f

Thus, if a calculus for intuitionistic logic is to be strogglemantically analytic, then it
must be possible to derivE:7:G from T:0:G for all labelsT that represent successor
worlds of the world represented by O

For most logics, including classical and modal logics, thepprties of being weakly
resp. strongly semantically analytic coincide, i.e., achis that is weakly semanti-
cally analytic is strongly semantically analytic as well.

3.6 An Ildeal Tableau Calculus for PL1

3.6.1 Syntax

To describe our calculu:,; for first-order predicate logic PL1, we have to define, for
each signatur& < Sigp;,, the extensior* to be used for constructing tableaux, the
set of labels, the initial label, and the tableau rule.

Extended Signatures For skolemisation we use a s€t*°(X) of function symbols
that is disjoint fromF'(X) and contains infinitely many symbols of each arity> 0.
The extension of a signhatuke= (P(X), F(X), «(X)) is thus

S = (P(X), F(Z)U F* (%), a(X) U a™(X)) .

Labels The models of first-order logic consist of only one world. Vée the labek

to represent this single world. Thubgb(X) = {x} for all signatures:, andx is the
initial label. To simplify notation, the abbreviatiénG is used for tableau formulae of
first-order predicate logic, i.e., the labeis omitted.
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‘ a ‘ Qaq, oP) ‘ ‘ B ‘ B, o ‘
Tx(FAG) | TxF, TxG T (FVG) | T:xF, TxG
Fx:(FVG) | FxF, FxG Fax:(FAG) | FixeF, FixG
Fx:(F — Q) | TxF, FxG Fix:(F — G) | FoxeF, TG
T:x:=F F:x:F, F:xF
Fox:=F T:x:F, T:xF
(@) [7i(z) | [0(2) [0i(x) |

Tox: (Vo) (F(x)) | Tox:F(x) Fix:(Va)(F(z)) | Frx:F(x)
Fox:(3x)(F(z)) | Fox:F(x) T (Fx) (F(z)) | Tk F(x)

Table 3.1: The four formula types of first-order predicate logic.

Tableau Rule We define an ideal calculus, i.e., a calculus with expansit.

The set of formulae iForm(X*) = Form$, ,(X*) that are not atomic is divided into
four classes (Table 3.1y for formulae of conjunctive typej for formulae of disjunc-
tive type,y for quantified formulae of universal type, atidor quantified formulae of
existential type (unifying notation).

Notation 3.6.1 The letterso, 3, v, andé are used to denote formulae of (and only
of) the appropriate type. In the caseyefandd-formulae the object variable bound
by the (top-most) quantifier is made explicit by writindz) and; (z) (resp.d(z)
ando, (z)); accordingly,y, (¢) denotes the result of replacing all occurrences wf ;
by t. O

In Table 3.2, the expansion rule of the calcullys; is given schematically for the
various formula types.

To preserve monotonicity of the calculus, we use a schemaffmimulae that, for con-
structing the Skolem term, does not introduagesvSkolem function symbol. Rather,
each equivalence class éfformulae identical up to variable renaming and replace-
ment of ground terms may be assigned the same Skolem fursgtiobol. (This is an
adaptation of thé ™ -rule described in (Beckest al, 1993) to the ground case.)

Definition 3.6.2 Given a signaturé& € Sigp;,;, a Skolem term assignmeista func-
tion sko assigning to eacb-formula¢ € TabFormpr,(X*) a term

sko(@) = f(ti,...,tx) € Termy,(X%)

such that

1. (@) f € Feho(%),



3.6 An Ideal Tableau Calculus for PL1 43

o o] v(z) d(z) TG

Qi B | Bo 71(t) d1(2) FixG

(%) wheretisany  wheret = sko(6) L
variable-free term wheredG is atomic

Table 3.2:Rule schemata for first-order predicate logic.

(b) k = agt(f), and
(c) t1,...,t, are (sub-)terms occurring in?

2. for all f' € F** (%), if f' occurs ing, thenf > f' where> is an arbitrary but
fixed ordering onF***(3); and

3. forall§-formulaey € Formp;,(X%), if sko(v) = f(#,...t}), theng andy are
identical up to renaming of bound variables and up to reptaoiccurrences of
termst; by t; (1 <i < k). O

The purpose of Condition 2 in the above definitionséb is to avoid cycles like:
sko(¢) = f(t1,...,t), the symbolf occurs iny, sko(y) = f'(t,...,t;), andf" oc-
curs ing.

According to Condition 3, it is allowed to use the same Skdlenction symbol for an
equivalence class offormulae that are identical up to (a) renaming of boundalaas
and (b) replacement of variable-free terms; the variatdeferms that may be replaced
have to be made arguments of the Skolem term.

Actually, it is not necessary to use complex terms for skadation. It is sufficient
to (uniquely) assign to eachformula (resp. class of-formulae that are identical up
to renaming of bound object variables) a Skoleomstant(observing Condition 2 in
Def. 3.6.2). The possibility to use Skolerarmsplays, however, an important role
for lifting, i.e., constructing the free variable versiohthe calculusCp;; (see Sec-
tion 4.2.10), as the following example illustrates:

Example 3.6.3 The d-formulaed’ = T:(3z)(p(t, z)) may be assigned the same Sko-
lem function symbolf using the Skolentermssko(d') = f(¢) (for all termst), in
which case the expansion rule is liftable for premissesainintg these-formulae.

If, on the other hand, Skoleoonstantsiko(d') = ¢! are used, the expansion rule is not
liftable, asét[t +— '] = 6* butdt[t — '] £ 6¢. =

We now formally define the expansion (and closure) figg of the calculug’py;:

2 Note that the terms; (1 <4 < k) must be elements ofermp; ;(X), i.e, do not contain object
variables.
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Definition 3.6.4 For all signatures. and all premisse$l C TabFormpr,(X*), the
set&pr1(X)(I1) of possible conclusions is the smallest set containing dfleviing
conclusions (where, 3, v, 6 denote formulae of the corresponding type):

—{{a1,a0}} foralla ell,

—{{p1},{B:}} forall g € 11,
—{{m(t)}} forally € Il and all termg € Term$;,(Z*),

—{{6(t)}} for all § € IT wheret = sko(§) (Def. 3.6.2),

—{{L}} if T:0:G, F:0:G € II for any atomG € Atompr; (ZF).
O

Note, that the formulae iformpr, (X) = Formp, ,(X) are first-order sentences, i.e.,
do not contain free object variables, and that the tableparesion rule o€p;,; does
not introduce any free object variables either.

3.6.2 Semantics

To define the semantics of the tableaux’sf;, we use the seTubInterpp;, (X*) that
contains allcanonicaltableau interpretations:

Definition 3.6.5 A tableau interpretatiom = ((D,Z), I) for a signature: of PL1 is
canonicalif:

1. D = Termpy,(Z%).
2. For allé-formulaed(z) € TabForm(X*):
if valz(6(x)) = true, thenvalz(,(t)) = true,
wheret = sko(J).

3. I(x) = w® = (D, T). 0

Intuitively, in a canonical tableau interpretation, thadtionZ assigns to Skolem terms
t = sko(d) an element for which the formulaholds; in addition, the label is inter-
preted byl in the right way.

3.6.3 Soundness and Completeness

Using the setTabInterpp;,(X*) of canonical tableau interpretations as defined in
Def. 3.6.5, the calculuSp;; has the soundness and completeness properties from Def-
initions 3.5.3 and 3.5.6. In particular, if a tableau is Sf&d by a canonical tableau
interpretation, then all its successor tableaux are sadisly the same interpretation;
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and every fully expanded tableau branch that is not closedtisfied by a canonical
interpretation.

Before we prove that the calcul@s;,; is sound and complete using the criteria from
Sections 3.5.3 and 3.5.4, we formulate and prove the apptepersion of Hintikka’s
Lemma.

Definition 3.6.6 A set= C TabFormpr;(X*) of tableau formulae is Hintikka setif
it satisfies the following conditions:

1. There are no complementary atomic formula€’, F:G in =.

2. If o € =, thena; anda, are in=.

3. If g € =, thens; or 3y isin =.
4. If y(z) € Z, theny, (¢) € = for all ground termg in Term; , (X*).
5. If §(x) € =, thend, (t) € = wheret = sko(9). 0

Lemma 3.6.7 If = is a Hintikka set (Def. 3.6.6), then

1. itis satisfied by some tableau interpretationdiab Interp(:*);

2. every tableau interpretation satisfying the atomic &l formulae irE satis-
fies=.

Proof: The second part of the lemma is easy to prove by induction @stitucture of
tableau formulae ifx.

A canonical tableau interpretatidiD, ), I) satisfying the atomic formulae i can
be defined as follows, which—using the second part of the larproves the first
part of the lemma:

e (D,T) is an Herbrand structure, i.e) = Termp; ,(X*) and Z(t) = ¢ for all
termst € Term3;,(2%);

e for all atomsp(ti, . . ., tay)) OVErS*, putp®(ty, ..., tag)) = true if and only if
Tp(ty,... ,ta(p)) SR,

o I(x)=(D,T).

The interpretation functioff is well-defined because of Condition 1 in the definition
of Hintikka sets (Def. 3.6.6). O
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Lemma 3.6.8 The tableau calculuSpr,; for PL1 has the Strong Soundness Property 1
from Definition 3.5.8 (appropriateness of the set of tableserpretations).

Proof: Let (D,Z) be a first-order Herbrand structure satisfying agetf formulae.
Because the Skolem symbols#it*°(3) do not occur irg, it suffices to choose their
interpretation such that the resulting struct(fe Z*) satisfies Condition 2 in the def-
inition of canonical tableau interpretations, leaving ihierpretation of the symbols
in ¥ unchanged. A canonical tableau interpretation satisfiliegnitial tableau fog
can then be constructed combinifi§, Z*) with the label interpretatio defined by
I(x) = (D,T).

The rankrk( f) of the symbolsf € F*(X) is defined as follows:

e rk(f) = 0ifnod € TabForm(X*) exists such thatko(d) = f(t1,...,1t) for
anyty, ...ty € Termd;,(X%);

o rk(f)=11f sko(d) = f(t1,...,t) forsomed € TabForm(3) and some terms
ti, ... tx € Termp,(2);

o rk(f) =1+ max{rk(f") | f' € F} whereF is the set of allf’ € F'***(¥) oc-
curring in anyd € TabForm(X*) such thatko(d) = f(t4,. .., ) for any terms
ti, ...t € Termb;  (5%).

The functionrk is well defined because of Condition 2 in Definition 3.6.2.

We inductively define a sequen¢éD, Z")),,>, of first-order structures that all have
the domainD, where(D, Z") is a structure over the signatur® that is the restriction
of ¥* to function symbols of rank not greater thaythe interpretatiod™*! coincides
with Z" on all symbols in-" U 3.

The initial interpretationZ® is defined byfZ’ = f7 for all f € F(%), and for all
f € F**(%) of rank 0 the value of ¥’ is chosen arbitrarily.

The symbolsf € F*°(3) of rankr < n have already been interpreted Hy. Con-
sider f € F** (%) of rankn + 1; we definefZ" " (by,...,b;) for by,...,b, € D by:
If there are terms,, ..., 1, € Term”(X*) such that?" = b; (1 < i < k) and there is
aformulad(x) € TabForm(X*) with f(t1,...,tx) = sko(d(z)) andvalz(§) = true,
choose am € D with valzn (.0 (01 (2)) = true, and setf>"" (by, ..., b) = e (since
f is of rankn + 1, the symbols iy are from the signatur&™). Otherwise, if no
such termg, ..., t; and formulaj exist, choosq‘f"“(bl, ..., by) to be an arbitrary
elementinD.

If other termst,...,t, and anothep-formula ¢’ exist satisfying the above condi-
tions, thenvalz. (6(z)) = valz- (0'(z)) and valzn oo} (61(2)) = valzn (zsey (37 (2)),
becausel™(t;) = 7"(t}) = b; (1 <i < k) and the formula@ and ¢’ are identical up
to renaming of bound variables and replacement of tefnis/ ¢, (Condition 3 in
Def. 3.6.2).
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We can think of the sequen¢eD,Z™)),~, as an approximation to the first-order in-
terpretation/ D, Z*) overX*. The interpretatio@* coincides withz",Z"*!, ... onthe
symbols inX". It satisfies Condition 2 in Definition 3.6.2 by construction O

Lemma 3.6.9 The tableau calculugp;,; for PL1 has Strong Soundness Property 2
from Definition 3.5.8 (soundness of expansion).

Proof: As the calculus is ideal, we can use Lemma 3.5.9.1Let TabFormpr;(X*)
be a minimal premiss of a conclusiéh and assume that is satisfied by a tableau in-
terpretationm, I) = ((D,Z),I) € TabInterpp;,(X*). We show thatm, I) satisfies
one of the extensions iff by cases according to the form Iof

IT = {a}: In that caseC' = {{a1, a2} }, and sincem, I) satisfies. we have, by the
property ofa-formulae (Def. 2.3.2), tham, 7) satisfiesy; andas.

IT = {3}: Inthat caseC' = {{f:}, {52} }, and sincém, I) satisfiess we have, by the
property of3-formulae (Def. 2.3.2), thatm, /) satisfies3; for somei € {1, 2}.

I1 = {7}: In that case( = {{v,(#)}} for somet € Term{;,(X*), and since/m, I)
satisfiesy(x) we have, by the property efformulae, thatm, 7) satisfiesy; (¢).

IT = {0}: Inthat case' = {{d:(¢)}} wheret = sko(¢), and sinc€m, 7) is canonical
and satisfies, it satisfiesy, (¢).

IT={T:0:F, F:0:F}: A premisslI of this form is not satisfied by any tableau inter-
pretation, which contradicts the assumption tHais satisfied by(m, Z); thus, this
case cannot occur. O

Lemma 3.6.10 The tableau calculu§p;,; for PL1 has the Strong Completeness Prop-
erty 1 from Definition 3.5.10 (appropriateness of the setbfdau interpretations).

Proof: If (m*,Z) € TabForm(X*) satisfies an initial tableau f@, then any restriction
of m* to X satisfiesg, because the symbols i (), which are the only additional
symbols, do not occur i§. O

Lemma 3.6.11 The tableau calculup;; for PL1 has Completeness Property 2 (sat-
isfiability of fully expanded branches) from Definition 8;5and it is strongly seman-
tically analytic (Def. 3.5.16).

Proof: Let B be a fully expanded branch that is not closed; an@let TabForm(3*)
be a set of atomic tableau formulae such that,rfory in ®, both ¢ and ¢ are in
Form(B) U ®.

The setForm(B) U ® is a Hintikka set and Lemma 3.6.7 implies that there is a table
interpretation{m, /) satisfyingForm(B) U ®; thus, the calculu€p;; has Complete-
ness Property 2 from Definition 3.5.6.



48 Chapter 3: Tableau Calculi

Since there is only a single workd® in m and, by definition’ (x) = w°, the second
condition in Definition 3.5.16 is met as well; and the caleuisi indeed strongly se-
mantically analytic. O

Theorem 3.6.12The tableau calculup;; for PL1 is sound and complete.

Proof: According to Theorems 3.5.4 and 3.5.7, it is sufficient tosprihatCp;,; has the
two soundness properties from Definition 3.5.3 and the twopdeteness properties
from Definition 3.5.6. That, however, follows immediatetgiin Lemmata 3.6.8, 3.6.9,
3.6.10. 0

3.7 Ideal Tableau Calculi for Modal Logics

3.7.1 Overview

The first non-structural tableau calculi for modal logicéjei use labels for encoding
the reachability relation between possible worlds (ind@amplicitly encoding them

in the structure of tableaux), were described in (Fitting83). Following Fitting’s
work, non-structural tableau calculi for many modal loghesre been defined, see
(Goré, 1998) for an overview. However, all these calculi aon-monotonic because
they use tableau rules that when applied tofarmula (a formula assertingxistence

of a reachable world in which a formula is true) they skoletise r-formula by
introducing a label that has to lmewto the branch or tableau. In addition, many of
these calculi are not ideal, @l branches that pass through a particular premiss are
extended when that premiss is used for expansion.

In Section 3.7.2, we present a tableau calculus that is lseduse each formula is
assigned its own unique label, which is a godelisatio’afself. This unique label
is used for skolemising the-formula T:0:CF. This calculus is a ground version
(i.e., a version without free variables) of the calculuscdibed in (Beckert & Goreg,
1997). It exemplifies the claim made in Section 3.3.7, thaftén only requires minor
modifications to turn a “slightly” non-ideal calculus into &leal one.

Because a world in a Kripke model may have no successor, thausion of av-
formula (asserting that a certain formula is true in all redale worlds) must only
contain labels representing worlds whose existence is kndis knowledge is de-
duced from labels of other formulae, which leads to non-owiitly of the tableau rule
for all premisses containing &aformula. We define a variant of the calculus whose
rule is continuous for-formulae in Section 3.7.4. It usesnditionallabels, where a
conditional labels does not imply the existence of the wibrigjpresents. An additional
benefit of using conditional labels is that they simplify trefinition of a free variable
version of the calculus. Checking the existence of worldsn@le part of closing a
tableau branch.
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3.7.2 Labels for Modal Logic Calculi

In this section, we introduce labels consisting of natuuahbers, which are frequently
used in labelled tableau calculi. Labels consisting of otmnstituents than natural
numbers can be defined in the same way.

Definition 3.7.1 Let N be the set of natural numbers. The get(N) of (non-condi-
tional) labels consisting of natural numbessdefined by:

e The wordl is an element of.ab(N).

e If o € Lab(N), then the wordr.n is an element oLab(N) for all n € N.

The setCondLab(N) of conditional labels consisting of natural numbessdefined
by:

e The wordl is an element ofondLab(N);

e If 0 € Lab(N), then the wordsr.n ando.(n) are elements of.ab(N) for all
n € N.

Theinitial label of Lab(N) and CondLab(N) is 1.
Thelengthof a labels is the number of dots it contains plus one, and is denoted by

The components of a labelare calledpositionsin ¢. A position isconditionalif it is
of the form(n), and a label is conditional if it contains a conditional piasi.

The equivalence class of all labelsdfwndLab(N) that are identical to a label up to
parentheses indicating conditional positions is denoteld b

The set of all non-emptinitial prefixesof a labelo, excludingo itself, is denoted by
ipr(o). O

Note thatZab(N) C CondLab(N); and that(1) is not an element ofCondLab(N),
becausé represents the initial world in models, which always exists

We often do not differentiate between the labels ando.(n), and we use.[n] to
denote that the label may be of either form.

Definition 3.7.2 A setl" C Lab(N) of labels isstrongly generated:

1. the initial labell is an element of'; and

2. o e I'impliest € T for all 7 € ipr(o). O
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Logic o> 7 iff Logic o > 7 iff
K T = 0.[n| KT T=olnlorr =0
KB T =o0.[n]oro = 71.[m| K4 T=0.0
K5 T =o.[n], Of K45 |7 =00, o0r
ol >2, 7 >2 o] > 2, || >2
KD K-condition, oro is a KDB | KB-condition, or
K-deadend and = 7 I'l=1landoc=7=1
KD4 | K4-condition, oroisa | KD5 | K5-condition, or
K-deadend and = 7 I'l=1lando=7=1
KD45 | K45-condition, or KB4 | |I'| >2
I=1lo=71=1
B T =o0,0rT =0.n|, S4 T=o000rT=0
oro = 7.[m]
S5 forall o, 7

Table 3.3: The accessibility relation on labels for the basic modaideg

The labels inLab(N) capture a basic reachability relation between the worldy th
name, where the world named byn| is reachable from the world named by A
set of strongly generated labels can be viewed as a tree @oth rwhereo.[n] is an
immediate child ob.

Definition 3.7.3 Given a modal logid. and a sel” C Lab(N) of strongly generated
labels, a labet € I' is L-accessibldrom a labels € T, written aso > T, if the condi-
tions set out in Table 3.3 are satisfied.

Alabels € T'is anL-deadendf no 7 € T is L-accessible frona. 0

The following lemma shows that tHe-accessibility relation> on labels captures the
reachability relatior? of L-frames exactly (see (Goré, 1998) for a proof). In parécul
>> has the properties like reflexivity, transitivity, etc. tlaae appropriate for the axioms
of L (see Table 2.1).

Lemma 3.7.4 LetL one of the basic modal logics.lif C Lab(N) is a strongly gener-
ated set of labels, thefi’, ) is anL-frame, where> is theL-accessibility relation.

3.7.3 Syntax and Semantics of Calculi for Modal Logics

The ideal calculCy, for the basic modal logick presented in this section are based on
the labelled tableau calculi described in (Fitting, 1983)e main difference is that, to
ensure monotonicity of the calculi, we use an expansionscdema forr-formulae
that does not introduce mew labels but—similar to the schema fofformulae in
Section 3.6—uses a symbol that is uniquely assigned to tineula to which the rule

is applied.
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‘ a ‘ aq, 8P) ‘ ‘ B ‘ i, o ‘
T:0:(FAG) | T:io:F, T:0:G T:.0:(FVG) | Tio:F, T:0:G
Fio:(FVGQG)|F:.oF, FoG F:io:(FAG) | F:0:F, F.o:G
T:o:mF F:iooF, F:.0:F
F:io:=F T:.o:F, T:.0:F

‘ S:owv ‘ S:o.nivg S:ion:vy S:o:vr ‘

T:.0:0F | T:on:F T:.on:OF T:0:F
Fio:OF | Fion:F Fion:OF Fio:F

‘ S:tniw ‘ S:Tivgr ‘ S:Tivp ‘ S:Tivs ‘
Tirn:OF | T:7:OF | T:7:F | T:7:00F
Firn:OF | F:m:OF | F:m:F | F:r: OOF

‘ S:o:m ‘ S:o.nm ‘
T:0:OF | T:on:F
F:oc:OF | Fion:F

Table 3.4: The four formula types of modal logics.

Extended Signatures No extension of the signatures is necessary, lhuas>* for
all modal logics and all signaturése Sig,, q-

Labels The setLab(X) of labels is, for all signatureE, the setLab(N) of (non-
conditional) labels consisting of natural numbers (Def. B.

Expansion Rule There are four types of complex (non-atomic) tableau foemul
a-formulae (conjunctive) and-formulae (disjunctive) as in calculi for classical logic,
v-formulae (which express truth of a formulaafi reachable worlds), and-formulae
(which express truth of a formula somereachable world); see Table 3.4.

Notation 3.7.5 The lettersy andr are used to denote formulae of (and only of) the
appropriate type. O

The differences in the expansion rules for different modgids are mainly in the rule
schema for-formulae, i.e., in the conclusions of a premiss contaiingformula. In
Table 3.5, the expansion rule is given schematically fovdréous formula types. Ta-
ble 3.6 summarises which formulae are part of the conclusi@premisg {S:o:v}}
consisting of a-formula; in that table4¢ indicates the inclusion af, in cas€a| > 2.

We give the formal definition of the expansion rule for theitol§; the formal defi-
nitions of the expansion rules for the other modal logics e€asily be extracted from
their schematical description.
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Table 3.6: Elements/, of the conclusion of &-formula.

Q 15 S:o:m T:o:F
o By ‘ B Sio.[m|m Fio:F
@2 wheren = [F'| if 1 = T:0:OF, L
andn = [—-F|if r = F:0:OF
S:owv S:ov S:owv
S:o.n:vk S:o.n:vy S:o:vp
whereo.n occurs whereo.n occurs for T, B, S4, Sb5.
on the branch; on the branch;
for all logics for K4, KD4, S4, S5,
and, if|o| > 2, for K5, KD5
S:t.nww S:t.nww S:t.nww
S:Tivy S:t:vp S:T:vs
for K5, KD5, K45 for KB, KDB, KB4, B. if 7 =1 for K5, KD5.
KD45, KB4, S5.
Table 3.5: Rule schemata for modal logics.
| Logic | v, forL = | Logic | v forL = |
K,D K K45, KD45 | K, 4, 4"
T KT KB4 K, B, 4,4
KB,KDB | K, B B K, T,B
K4,KD4 | K, 4 S4 K, T,4
K5,KD5 | K,4¢, 47,5 || S5 K, T, 4,47
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Definition 3.7.6 For all premissesI C TabFormy.q(X), the se€x(X)(I1) consists
of the the following conclusions (whefe] is any bijection from the setorm.,q(X)
of formulae to the set of natural numbers):

—{{a1,a0}} forall a €11,
—{B:1},{B:}} forall g € 11,

—{{T:0.n:F}} forall T:0:0OF € II and all labels of the form.n occurring
in I1,

—{{F:o.n:F}} forall F:0:CF € 1T and all labels of the form.n occurring
in 1T,

—{{F:o.n:F}} forall F:0:0OF € T wheren = [—F],

—{{T:o.n:F}} forall T:0:CF € Il wheren = [F],

—{{L}} if T:o:F,F:0:F € I forany F' € Formuea(X).

Semantics To define the semantics of tableaux for a modal Idgieve use the set
TabInterpy (X*) consisting of tableau interpretation that areIianterpretations and
that are (b) canonical, i.e., interpret labels generatadileyapplications ta-formulae
in the right way.

Definition 3.7.7 Let L. be one of the basic modal logics; [Bte Sig be a signature;
and letLab be the setCondLab(N) of (conditional and non-conditional) labels con-
sisting of natural numbers (Def. 3.7.1).

A tableau interpretatiorim, 7) is an L-interpretationif m = (W, R, V) is a Kripke
L-model and the label interpretation functidmas the following properties:

1. I(1) = w" is the initial world ofm;
2. I(0.(n)) = I(o.n) for all 0.n ando.(n) in Lab;
3. forallo € Lab, if I(7) is undefined for some € ipr(o), thenl (o) is undefined;

4. forallo, T € Lab, if (&) o > 7 and (b)I () and(7) are defined, theR(o) RI(7).]]
An L-interpretation icanonicalif, moreover:

5. For all labelsy = 7.n € Lab:
if I(7) is defined and () = ©F, thenI(o) is defined and (0) E F,

whereF is the formula for whichn. = [F'| ([-] is the bijection from the set of
formulae to the set of natural numbers used by the expangieh r O
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Because we deal only with strongly generated sets of labigsraot 1, the twin re-
quirements that everlz-interpretation(m, Z) define the label, and Condition 3 in
the above definition force the interpretation functibto “define” as many labels in
ipr(o) as is possible. However, for a conditional label of the farim), wheren
is parenthesised, it is perfectly acceptable that(n)) is undefined even if (1) is
defined.

Example 3.7.8 The interpretation functiod must be defined for the labels 1.1,
and1.1.1. It need not be defined fdr.(1); but if it is, then/(1.(1).1) must be defined
as well. O

Using the setTubInterpy, (X*) of canonicalL-interpretations for defining the seman-
tics of tableaux, the calculug, has the soundness and completeness properties from
Definitions 3.5.3 and 3.5.6 (wheieis any of the basic modal logics). If a tableau is
satisfied by a canonical tableau interpretation, then @utccessor tableaux are sat-
isfied by the same interpretation; and every fully expandétetu branch that is not
closed is satisfied by a canonidalinterpretation.

Again, the proof that fully expanded branches are satigisddased on an appropriate
version of Hintikka’s Lemma:

Definition 3.7.9 Let L be a basic modal logic; and I& € Sig,,.4 be a signature. A
set= C TabFormm.q(X*) of tableau formulae not containing conditional labels is a
modalL-Hintikka set if it satisfies the following conditions:

1. There are no complementary atomic formulae:p andF:o:p in =.
2. If o € =, thena; anda, are Iin=.

3. If g € =Z,theng; or By isin=.

4. If Siov € =, thenS:m:vx € Z forall 7 € Lab such that > 7.

5

. If S:o:r € E, thenS:m:m; € = for somer € Lab such that > 7. O

Lemma 3.7.10LetL be a basic modal logic; and let € Sig, .4 be a signature. IE
is a modalL-Hintikka set (Def. 3.7.9), then

1. itis satisfied by some tableau interpretatioriish Interpy, (3*), i.€., a canonical
L-interpretation;

2. every tableau interpretation iffabInterpy, (X*) satisfying the atomic tableau
formulae in= satisfies.
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Proof: The second part of the lemma is easy to prove by induction @stitucture of
tableau formulae ix.

Because of Condition 1 in the definition of modal Hintikkass@def. 3.7.9), a canon-
ical tableau interpretatio W, R, V), I') satisfying the atomic formulae iB can be
defined by:

e Let IV be the sef.ab of all labels occurring irE;
e let/(0) = o if o € W, and letl(0) be undefined otherwise;
o forallo,7 € W,leto R7 iff o > 7;

e letV(p) ={o | T:o:p € Z}. 0

Lemma 3.7.11For all basic modal logicsL, the tableau calculu€;, has Strong
Soundness Property 1 from Definition 3.5.8 (appropriatsradghe set of tableau in-
terpretations).

Proof: Let m = (W, R, V') be anL-model satisfying a set of formulgg We know
thatw® = F for all F' € §, wherew? is the initial world inTV.

Now, forn € N, let F}, be the formula for whiclw = [F'] (where[-] is the bijection
from the set of formulae to the set of natural numbers usetiégxpansion rule) and
createl as follows: Letl(1) = w°, and for every label of the formn:

e if there is a worldw € W that is reachable froni(7) such thatw = F),, then
putl(r.n) = I(r.(n)) = w;

e else, if there is no such world, but there is a worldy’ that is reachable
from I(7), then put/(r.n) = I(7.(n)) = w';

e else, if there is no world reachable frdbir), let I(r.n) and(r.(n) be unde-
fined.

The L-interpretation{m, /) is canonical by way of its definition, and in addition sat-
isfies the tableau formulae on initial tableaux frbecausd (1) = w° = F for all
Feg. O

Lemma 3.7.12 For all basic modal logicsL,, the tableau calculu€;, has Strong
Soundness Property 2 from Definition 3.5.8 (soundness ahsxm).

Proof: As the calculus is ideal, we can use Lemma 3.5.9.1L&t TabFormoq(X*)

be a minimal premiss of a conclusiéfh and assume thét is satisfied by a canonical
L-interpretation(m, I) € TabInterpy,(X*). It can easily be checked by cases accord-
ing to the form oflI that(m, /) satisfies one of the extensionsn O
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Lemma 3.7.13 For all basic modal logicd., the tableau calculu€y, has Strong Com-
pleteness Property 1 from Definition 3.5.10 (appropriatmef the set of tableau in-
terpretations).

Proof: The calculi have this property trivially, because the sigres have not been
extended, i.eX* = ¥, and therefore everlz-model in M (X*) is a restriction of itself
to 3. 0

Lemma 3.7.14 For all basic modal logicd., the tableau calculu§y, has Complete-
ness Property 2 (satisfiability of fully expanded brancliesj Definition 3.5.6; and it
is strongly semantically analytic.

Proof: Let B be a fully expanded branch that is not closed; an@let TabForm(3*)
be a set of atomic tableau formulae such that,rfory in ®, both ¢ and ¢ are in
Form(B) U ®.

The setForm(B) U ® is an L-Hintikka set and Lemma 3.7.10 implies that there is
a tableau interpretatiofm, /) satisfying Form(B) U ®; thus, the calculu§p;; has
Completeness Property 2 from Definition 3.5.6.

By construction of that tableau interpretation (see thepobLemma 3.7.10)/ () = of}
for all o € W and, thus, the second condition in Definition 3.5.16 is meveal§ and
the calculus is indeed strongly semantically analytic. O

Theorem 3.7.15For all basic modal logicd., the tableau calculuéy, for L is sound
and complete.

Proof: According to Theorems 3.5.4 and 3.5.7, it is sufficient tovprthatCy, has the
two soundness properties from Definition 3.5.3 and the twopdeteness properties
from Definition 3.5.6. That, however, follows immediatelpm Lemmata 3.7.11,
3.7.12,3.7.13, and 3.7.14, oberving that a calculus thereastically analytic calculus
trivially has Completeness Property 2 from Definition 3.5.6 O

Example 3.7.16 We prove that
G=0(-pVq) AOpA (O=gV O-p)

is unsatisfiable in the modal logic K (and, thus, that its tiegas a K-tautology). A
(fully expanded) closed tableau, that is part of a tableawfpior (the K-unsatisfia-
bility) of G is shown in Figure 3.1. The nodes of the tableau are numbergdjr
[i; 7] is attached to théth node, the numberrdenotes that nodehas been created by
applying the expansion rule to a premiss containing the édeirim node;.

Note, that after formula 5 has been added to the tableau nilggpossible conclusion
(that is not already on the tableau) is the one consistingh@ilae 6 and 7, which
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14 T:1:0(—p V q) AOp A (O—g V Op)
21 T:1:0(-p V q)
31 T:1:Op A (Og V O—p)

43 T:1:0p
53 1:1:0—q V O—p
65 1:1:0—q (75 T:1:0—p
6] T:1.1:1¢q 1177 T:1.2:=p
t9:8] F:1.1:q g7 F:1.2:p
o2 T:1.1:=p V q [194] T:1.2:p
[azao] T:1.1:=p 1210 T:1.1:q [20;18,|19] 1
(1311 F:1.1:p [16;9,:|I.2] 1
(144 T:1.1:p
[1513,14] L

Figure 3.1: The tableau from Example 3.7.16.

is derived from 5; the twa-formulae 3 and 4 cannot be made use of at that point,
because the tableau does not contain any labels of thelferm

The labels that are introduced applying the tableau ruleg¢mfsses consisting af-
formulae 5resp. 6 arel = 1.[—~¢| and1.2 = 1.[—p]. 0

3.7.4 A Calculus for the Modal Logic K with Continuous Expansion Rule
for v-Formulae

The expansion rule of the calculus for modal logics desdribeghe previous section
is not continuous for premisses containingprmulae, because the condition has to be
observed that the label introduced by a rule applicationtdamula must occur in the
premiss. For example, no conclusion can be deduced fronrémeigsll = {T:1:0p}
and nothing can be derived frofif = {T:1.1:¢}, butT:1.1:p can be derived from the
union of IT andIT'.

The main disadvantage of an expansion rule that is nonfoomtis forv-formulae
is that it makes it impossible to define a free-variable wersif the calculus. The-
formulae allow to derive many similar conclusions suchasekampleT:1.n:p for all
1.n occurring on the branch; to represent all these concludigrassingle conclusion
T:1.X:p containing a free variabl& is, however, only possible if all instances of
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T:1.X:p are valid conclusions (in the example that is not the casm$banced :1.n:p
wherel.n doesnotoccur on the branch).

This problem can be avoided by dropping the pre-conditiat the labels that are
introduced by rule applications teformulae must occur in the premiss; instead the
additional position in the new labels are marked as beinglitional. Thus, in the
above exampleT:1.(1):p can be derived fronhl whether the label.1 occurs on the
branch or not.

Then, however, to preserve soundness of the calculus, theese of worlds corre-
sponding to conditional labels has to be checked later omvisnenches are closed.
For example, the (apparently contradictory) pgit.(1):p andF:1.(1):p is not neces-
sarily inconsistent since the world1.(1)) may not exist in a tableau interpretation.
Before declaring this pair to be inconsistent, we therefaee to ensure thd{(1.(1))

is defined in allL-interpretations satisfying the tableau brari¢hhat is to be closed.
Fortunately, this knowledge can be deduced from other faaenanB. Thus, in our
example, a formula liké/ = T:1.1:¢ on B would “justify” the use of the paif:1.(1):p
andF:1.(1):p for closing B since anyL-interpretationlm, ) satisfyingB has to sat-
isfy G, and, thusJ(1.(1)) = I(1.1) has to be a world in the chosen modeal The
crucial point is that the labdl.1 of G is unconditionalexactly in theconditionalpo-
sition of 1.(1). These observations are now extended to the general caskitofy
labels fromCondLab(N).

Definition 3.7.17 A label o € CondLab(N) with j-th position[n;] (1 < j <o) is
justifiedby a sefll € TabFormu.q Of modal tableau formulae if there is some suliset
of IT such that for every:

1. some label occurring i¥ has an unconditional but otherwise identi¢gdh po-
sitionn;; and

2. for all labelsr occurring in¥: if |7| > j, then thej-th position inr is n; or (n;).
O

The provision that the labels of complementary atomic fdemiave to be justified to
close a branch, makes the expansion rule more non-consrfaopremisses contain-
ing such complementary formulae. That, however, is notygabblematic, because
for these premisses the rule is non-continuous anyway.

Except for the expansion rule and the set of labels, whict'dadLab(N) instead

of Lab(N), syntax and semantics of the new calcuf@® for the modal logid< is the
same as that of the calculdg defined in the previous section. The signatures are not
extended; and the s@lubInterp of tableau interpretations defining the semantics of
tableau consists of the canonidainterpretations (Def. 3.7.7).

The new rule schemata forformulae and for closing branches are shown in Table 3.7;
and all schemata for the expansion rule of the calcGlygs are summarised in Ta-
ble 3.8. The expansion rug?" of C;" is formally defined as follows:
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oV T:0:F
vi(o.(n)) F:o':F
foralln € N L

where[o] = [¢'], and
o, o’ are justified
by formulae on the branch

Table 3.7: The new rule schemata Gf".

Q I} T:0:O0F Fio:OF T:0:OF
a By | Ba T:0.(n):F F:o.(n):F T:on:F
@2 foralln € N wheren = [F]
F:o:OF T:0:=-F F:io:=F T:o:F
F:on:F F:o:F T:0:F F:o:F
L

wheren = [—F']
where[o] = [¢'], and
o, o' are justified
by formulae on the branch

Table 3.8:Expansion rule schemata for the calculli8".

Definition 3.7.18 For all premisse$l C TabFormm.q, the se€?"(I1) is the smallest
set containing the following conclusions (whér¢ is any bijection fromForm.,q(X)
to the set of natural numbers):

—{{a1,a0}}  foralla €I,

—{{61},{B:}} forall g ell
—{{T:0.(n):F}} forall T:0:0OF € ITand alln € N,
—{{F:0.(n):F}} forall F:0:CF € ITand alln € N,

—{{F:o.n:F}} forall F:0:OF € Il wheren = [-F],
—{{T:o.n:F}} forall T:0:CF € Il wheren = [F],
-{{L}} if T:0:F, F:0:F € Il such thafo] = [¢'], ando, ¢’ are justi-

fied byTlI.
O

The new expansion rule schemata feformulae and branch closure can as well be
used for other modal logics that are (a) serial (in which dasejustification test is
not needed anyway as the interpretation of all labels is ééfijror that are (b) neither
symmetric nor euclidean. Calculi for symmetric and eu@mégics are problematic
because their expansion rules can shorten labels. For éxathp tableau formula
T:1:p is derived fromT:1.(1):0p if the logic is symmetric. The semantics for serial
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logics guarantees that all labels define worlds, but in reablogics, the label may

be defined even though(1) is undefined. Therefore, an additional mechanism is
needed to ensure that the formild:p is used to close a branch only if the lakh€]l)

is defined. This can be achieved by attaching a set of labelscto tehleau formula
that all have to be justified when the formula is used to cldseach (see (Beckert &
Gore, 1997)).

To prove completeness 6f", the definition of Hintikka sets has to take conditional
labels into account (only Condition 1 differs from the defom of modal Hintikka sets
without conditional labels, see Def. 3.7.9):

Definition 3.7.19 A set= C TabFormp.q(X*) of tableau formulae is anodal K-
Hintikka set with conditional labels it satisfies the following conditions:

1. There are no complementary atomic formulae:p and F:o’:p in = such that
[o] = [¢'] ando, o’ are justified byE.

2. If o € =, thena; anda, are in=.
3. If g € =, theng; or By isin=.
4. If Siowv € E, thenS:o.(n):vx € Zforall n € N.

5. If S:o:m € =, thenS:o.n:m; € = for somen € N. O

Lemma 3.7.201f = is a modalK-Hintikka set with conditional labels, then

1. itis satisfied by some tableau interpretatiorffim Interpy (¥*), i.e., a canonical
K-interpretation;

2. every tableau interpretation iffabInterp, (X*) satisfying the atomic tableau
formulae in= satisfies=.

Proof: Again, the second part of the lemma is easy to prove by indnan the struc-
ture of tableau formulae ia.

Because of Condition 1 in the definition of modal K-Hintikkets with conditional
labels (Def. 3.7.19), a canonical tableau interpretatiof, R, V'), I') satisfying the
atomic formulae irE can be defined by:

o LetW = {[o] | o € Lab is justified by=};
e let/(o) = [o]if [¢] € W, and letl(0) be undefined otherwise;

e forall o,7 € W, let[r] be reachable froffv] iff 7 = 0.n or 7 = o.(n) for some
n € N;
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o letV(p) ={[o] | T:op € =}. O

Theorem 3.7.21The tableau calculug;?" for the modal logick is sound and com-
plete.

Proof: The theorem can be proven in the same way as soundness ankbtraps of
the calculu€x (Theorem 3.7.15).

The proof for Soundness Property 1 (appropriateness ofethef $ableau interpreta-
tions) remains unchanged.

Proving that the calculus has the strong soundness of expgm®perty is somewhat
more difficult, because now conditional labels may occur tatdeau. But only in the
case of a premiss that allows to close a branch this leadsdalaomplication. In
that case, the following lemma has to be applied, which vadlonmediately from the
definitions: Let(m, I') be a canonicdL-interpretation, and let be a label justified by
a sefll of tableau formulae. Ifm, /) satisfies the formulae ifi, thenI (o) is defined.

The completeness properties are proved in the same way tefoalculugx—with
the exceptions that the alternative Definition 3.7.19 oftikka sets and the alternative
Hintikka Lemma 3.7.20 are used, which take conditionallebeo account. O

Example 3.7.22We continue from Example 3.7.22 and prove unsatisfiabilitthe
same formula& using the new calculu§i®". A closed tablead " for G that has
been constructed using the expansion ruléf is shown in Figure 3.2.

Since the provision that labels introduced by applying thpaasion rule to a-
formula must already occur on the branch has been droppé&iniw possible to
add formulae 6 and 7 although their lalig{1) is new to the branch (it is, however,
conditional in its second position).

The left branchB, of 7" is closed applying the tableau rule to a premiss containing
the complementary paif:1.(1):p andF:1.(1):p in nodes 7 and 14, respectively. The
label1.(1) of these atoms is justified aB, by formulae 10 and 11 whose labellid.

In this case, the complementary formulae contain condititabels which are only
justified by a third formula on the branch, so checking fotificsation is indispensable.
The middle branctB, contains the complementary formulgel.1:¢ andT:1.(1):¢ in
nodes 11 resp. 13. The label is again justified by formula IDfarmula 11, which

in this case is part of the complementary pair. The right @inal; contains the pair
F:1.2:p andT:1.(2):p of complementary atoms in nodes 18 resp. 19. The lal§2)

of the formula in node 19 is justified by formula 18. O
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1 T:1:0(=p V ¢) AOp A (Og V O—p)
211 T:1:0(=p V q)
(31 T:1:0p A (O=g vV O—p)
43) T:1:0p
53 1:1:0—g V O—p
621 T:1.(1):=p V q

(741 T:1.(1):p
85 T:1:0—q \[9;5] T:1:O-p
(o8] T:1.1:—¢q 179 T:1.2:=p
(110 F:1.1:q g1z F:1.2:p
(126] T:1.(1):—p 1136] T:1.(1):q (1941 T:1.(2):p
11412) F:1.(1):p [16;11,'13]J_ [20;18,‘19]J_

[157,14] L
Figure 3.2: The tableaw™°" from Example 3.7.22.

3.8 Ideal Calculi for the Set Logics MLSS and MLSSF

3.8.1 Overview

In this section, we present an ideal tableau calcdluss for the logic MLSS, which
is a decidable fragment of set theory. Furthermore, we desan extensioly ssr
of our calculus for the bigger fragment MLSSF consisting &f3& enriched with free
(uninterpreted) function symbols (Section 2.6). The id=dtuli Cyr.ss and Cyrsse
are slight variations of the calculi described in (BeckerH&rtmer, 1998; Hartmer,
1997), which are not ideal. They are extensions of the tabtesed calculus for
MLSS described in (Cantone, 1997).

The calculugCy;;ss can be used to construct a sound and complete decision proce-
dure for MLSS. It does not require formulae to be in normafrfowhereas Cantone’s
calculus only contains rules for normalised MLSS atoms ¢hare not allowed to
contain complex terms) and relies on a pre-processingftranation for normalis-

ing formulae. The handling of free function symbols in théeexied calculugy; ssr

for MLSSF employs~-unification techniques for reducing the search space binfind
term pairs that, when shown to be equal, close a tableauliranc

Several other methods for handling set theory in tableatutiar the sequent calcu-
lus (without the restriction to a certain fragment) haveropmposed: Brown (1978)
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o g
a Bl ] B

On

Table 3.9: Generalised expansion rule schematacfoand G-formulae.

presents a first-order sequent calculus that containsapatas for many set theoretic
symbols. De Nivelle (1997) and Pastre (1978) introduce eetealculi for set theory.
Shults (1997) describes a tableau calculus with speciahseretic rules. All these
calculi, however, are incomplete (no semi-decision praces).

3.8.2 The Set of Labels and the Extension of Signatures

Labels The models of MLSS and MLSSF consist of only one world. We tge t
label x to represent this single world. Thubgb = {x}, andx is the initial label. As
in calculi for PL1, the abbreviatio®:G is used for tableau formulae, i.e., the labés$
omitted.

Extended Signatures An inequalityF:(s ~ t) implies the existence of an element
that occurs in only one of the two setandt and not in the other. The expansion rule
of our calculus makes use of that fact by introducing a Skaterrstant representing
the existing element when it is applied to an inequality. $lalemisation we use an
infinite setF'*°(%) of constants that is disjoint frof(Y).

The extension of an MLSS or MLSSF signatiie= (P(X), FI(X), (X)) used for
constructing tableau formulae is thus

$* = (P(X), F(S) U F* (%), a(S) Ua®™ (%)) |

wherea®*(3)(c) = 0 for all c € Fsh (%),

3.8.3 The Tableau Expansion Rule for MLSS

Schemata for non-atomic formulae The non-atomic MLSS and MLSSF formu-
lae are divided intav- and §-formulae as usual. The expansion rélg; ss of Cur.ss

is defined for premisses consisting @f and g-formulae by the standard schemata
shown in Table 3.9 (we use a generalisation where the cdnoluslerived fromo-
and s-formulae can consist of an arbitrary number of tableau tdam resp. exten-
sions).
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| Name| o | Q... Oy |
(R1) T:(sCt) T:(s~sMt)

(R2) Fi(sCt) F:(s~sMt)

(R3) T:(s Et1 Mty) T:(s Ety), T:(s Ety)
(R4) T:(s Et;\ t2) T:(sEty), F:i(sEtly)
(R5) F:(s Ety Uty) F:(s Et1), F:(s Ety)
(R6) | F:(sE{t1,...,tn}n) | Fi(s &= t1),...,F:(s = t,)
| Name | 5 | Bis..., B |
(R7) TZ(S Etl L tQ) T(S Etl), T(S Etg)
(R8) F:(s Et1Mty) F:(s Ety), F:(s Ety)
(R9) F:(s Ety\ t2) F:(s Ety), T:(s Ety)
(R10)| T:(s E{t1, ..., tu}tn) | T:(s = t1),..., T:(s = t,)

Table 3.10:Rule schemata for splitting complex set terms.

Schemata for splitting complex set terms There are ten different expansion rule
schemata for splitting complex set terms; they apply simpteheoretic lemmata such
as “if s € t; Uty thens € ¢, or s € t;” to (a) eliminate atoms containing the set inclu-
sion predicaté_ and replace them with (in-)equalities, and to (b) split cterperms

on the right side of the membership predicatato their constituents. These schemata
can be described as instances of the generalised schemadad 3-formulae from
Table 3.9; they are listed in Table 3.10.

Schemata for handling equalities and inequalities There are three types of
special expansion rule schemata for handling the equaldyirrequality of sets. First,
there are two schemata ((EQ1) and (EQZ2) in Table 3.11) thaivab “apply” an
equality T:(#; =~ t,) to other atoms in a very restricted way: an equality can oely b
applied at the top level and only to the right side of a posiatom whose predicate
symbol is£. That is, an equality can only be applied to derive one of tioena
T:(s Et,) andT:(s E to) from the other one. This restriction is important, becabse t
possibility to apply equalities arbitrarily to other atomsuld lead to a much larger
search space.

Second, itis possible to derive the inquakitys; ~ s,) fromT:(s; £¢) andF:(sy Et)
((R11) in Table 3.11). This expansion rule schema is basedefact that two objects
are different if one of them is an element of some set and ther @ not.

Third, the opposite of the above holds as well: if two setandi, are different, then
one of them contains an elemeanthat is not an element of the other set. Unfortu-
nately, this leads to a branching rule schema ((R12) in Taldl&), because can be
an element of; (and not oft;) or of ¢, (and not oft;). Instead of introducing aew
symbol to represent the unknown element, we uS&a@em constant assignmehat
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Ti(tl ~ tg) Ti(tl ~ tg) TZ(Sl Et)
TI(S Etl) TI(S EtQ) FZ(SQ Et)
T:(s Ety) T:(s Ety) F:(s1 & s9)
(EQ1) (EQ2) (R11)
F:(tl ~ tg)
T:(cEf) | F:(cEH) T:(sEt) | F:(s EY)
Fi(cEty) | T:(c Ety) wheresresp.{...,s,...}
h _ ok Fe(t ~ ¢ andt resp.{...,t,...} are
wheree = O(I\éLlsg( (th~ 1)) top-level terms on the branch
(Cut)

Table 3.11:Rule schemata handling equalities and inequalities, amathrule
schema.

uniquely assigns a constant to each inequality (similanédSkolem term assignment
from Definition 3.6.2 that is used to assign a Skolem term thégormula of PL1);
thus, monotonicity and idealness of the expansion ruleasgved.

Definition 3.8.1 Given an MLSS or MLSSF signatude, a Skolem constant assign-
ment(for MLSS resp. MLSSF) is a functiogko,ssr assigning to each inequality
¢ = F:(t; = ty) in TabForm(X*) a constantskoyrssr(¢) = ¢ € F*(X) such that,
for all ¢ € Fs*° (%), if ¢ occurs ing, thenc > ¢ where> is an arbitrary but fixed
ordering onF'sko(33). 0

The cut rule schema The cut rule schema (Table 3.11) may be applied to extend
a tableau brancls using any atony £ ¢ as cut formula where the set termsand¢
occur

e as top-level arguments of an atom Bnor

e as arguments on the second level if the top-level function®y is{-},,.

In practice, the cut rule schema is rarely needed to cortsinumof; it is, for example,
needed to detect implicit membership cycles on a branchSeeton 3.8.3.

Example 3.8.21f T:(t; £ {ta, t3 Mt4}) andT:(t5 M tg & t;) are atoms on the branch,
thent,, to, (t3 M t4), (t5 M tg), t; may be used in a cut rule application andt,, s, tg
may not be used (unless that is justified by other atoms onrtirech). a



66 Chapter 3: Tableau Calculi

Schemata for branch closure An application of the expansion rule 6f;; ss adds
formulae to a tableau branch being true in all set structinasare models of the ex-
panded branch; the purpose of schemata for branch closiordeésect inconsistencies,
i.e., formulae on a branch that are false in all set strustuiidere are four types of
inconsistencies that have to be considered:

1. In no set structure both a formuleand its complement are true; thus, as in all
calculi, a premiss containing a pair ¢ allows to deduce. (for completeness it
is sufficient to only consider complementatpm3.

2. No object is an element of the empty set; thus, an atom dbtine T:(¢ = () is
unsatisfiable.

3. As no object is different from itself, atoms of the foff(¢ ~ ¢) are unsatisfi-
able.

4. The existence of a membership cycle, i.e., of sets. ., u; such that; € u;
(1 <i< k)anduy € uqy, would contradict the Axiom of Foundation. In fact,
there are by construction no sets in the von Neumann higratekt form a
membership cycle. Thus, atoms defining a membership cylde &b close a
branch; in particularT:(¢ £ t) is unsatisfiable.

The following is a formal definition of the expansion rule bétcalculug’y ss:

Definition 3.8.3 Let > be an MLSS signature.

For all premissed] C TabFormyrss(X*), the se€yrss(X*)(IT) consists of the the
following conclusions:

- {{aq,...,an}}
for all o € IT (Tables 3.1 and 3.10);

- {{ﬂl}a R {ﬂn}}
for all 5 € II (Tables 3.1 and 3.10);

- {{T:(s EX)}}
forall (@) T:(s E¢;) and (b)T:(t; & t3) or T:(ty ~ t;) In II;

— {{F:(s1 = 52)}}

forall T:(s; Et) andF:(sy E¢t) inII;

- {{T:(set)}, {F:(sEt)}}

for all set termss and¢ such that (ap or {....s,...}, and (b)tor {... ¢,...},
occur as top-level terms in atomslih

- {{T:(cEH),F:(cEl)}, {F:i(cEL), T:(cELt)}}
forall F:(¢; & t5) in TI, wherec = skoyssr(F:(t ~ t2));
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- {43
if

1. T:0:G, F:0:G € II for any atomG,
2. T:(t £0) €11,
3. F:(t = t) e,

4. forsome: > 1, there are atom8:(¢; Et;41) (1 < i < k)andT:(tx E¢;)inTlL.
O

3.8.4 Soundness, Completeness, Termination

The calculusCM™SS defined in the previous section is sound and complete (a proof
can be found in (Hartmer, 1997)). It has the soundness angleteness ensuring
properties from Definitions 3.5.6 and 3.5.8.

Theorem 3.8.4 The calculugZM™55 for MLSS is sound and complete.

Without further restrictions, the calcul@'"® is not a decision procedure. The rule
schema for inequalities ((R12) in Table 3.11) introduceditamhal constants, and the
cut rule schema can—in connection with schema (R11)—be tesednstruct new
inequalities from these constants; the interaction ofélegansion rule schemata can
lead to infinite branches.

Fortunately, the calculus can easily be turned into a datiprocedure, observing
the completeness preserving restriction that chains, . . . wherec; is added to the
branch applying the schema (R12) for inequalities to anuaéty that contains the
constant; ; must not be infinite; their maximal length is the number ob{terms
the formula set whose satisfiability is to be checked.

Definition 3.8.5 LetT7, ..., T) be a sequence of tableaux for ageif MLSS-formulad
that has been constructed using the expansioréiglegs (Def. 3.8.3).

Therank rk(s) of a set terms in this sequence of tableaux is defined as follows: If

occurs ing or has been generated by an application of rule schemataafRIL{R2),

thenrk(s) = 0; otherwise, i.e., it is a constant that has been introduced by applying

rule (R12) to aninequaliti:(¢; ~ t5), thenitsrankisk(s) = 1 + max{rk(¢;), rk(t2) } |}
0

Definition 3.8.6 A tableauT for a set§ of MLSS-formulae isexhaustedif no expan-
sion rule application t@" is possible without

¢ introducing a constant whose rank is greater than the nuaoil§eub-)terms irf,
or
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¢ adding only tableau formulae to a branBiof 7" that already occur ofb.

Note that a tableau that is exhausted (Def. 3.8.6) is notssecy fully expanded
(Def. 3.5.5).

Theorem 3.8.7 There is an exhausted non-clos&g sg-tableau for a seff of MLSS-
formulae if and only if§ is satisfiable.

Thus, if a sequence of tableaux for a §edf MLSS-formulae is constructed infair
way (i.e., all possible rule applications are executed soonlater), then the construc-
tion will terminate after a finite number of steps with a talehat is (a) closed, in
which casef is unsatisfiable, or (b) exhausted, in which cgsgs satisfiable.

3.8.5 Restricting the Search Space

Although the search space fo€g; ss-tableau proof is finite if the restriction described
in the previous section is used, it is very large becausespiitieterminism of the cut
rule schema and because the number of constants that caindeiioed is exponential
in the size of the formula set whose unsatisfiability it to baven.

Fortunately, it is possible to impose a strong restrictiorcot rule applications, which

at the same time restricts the number of constants that soeluted, because a con-
stantc, of rank & can only be created from an inequality containing a constant

of rank k — 1 after the cut rule has been applied using an atom as cut farthat
containsc,_;. The idea is to apply all rule schemata except the cut rulersehuntil
further applications do not add new formulae to brancheslaen to construct eeal-
isationof an open branch. The realisation of a brafthpproximates a set structure
satisfying the formulae o® (if the branch is satisfiable); it satisfies at least all atoms
of the formT:(¢, E¢,) on B. If the realisation does not satisfy all the other atom#on
as well, it can be used to find cut rule applications that arkeéast potentially) useful.

The switching between the expansion of tableau branchetharabnstruction of pos-
sible models, and the way in which we construct models ardasito the method
described in (Cantone, 1997).

Definition 3.8.8 Let > be an MLSS signature; and lét be a set of MLSS-tableau
formulae over*.

e G denotes the set of all set (sub-)terms aMerccurring inlT;

e V denotes the set of (a) all set terms G such thafT: (¢ £ s) occurs inIl and
(b) all constants fronX that occur infT;

¢ 7 denotes the set of all constants occurringlithat are not ifV;
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~ denotes the equivalence relation@w 7 induced by the equalities ir;

T' denotes the set of alle T such that «¢ s forall s € G;

V' denotes the sé UT) \ 7';

u. is, for eache € 7', an element of the von-Neumann hieraréhythat is dif-
ferent from allu. with ¢ # ¢'. O

Note, that7” contains the constants that have been introduced by applyegexpan-

sion rule schema for inequalities (R12) and that are notleéquaher terms (w.r.t. the
equalities on the branch). The interpretation of thesetemits has to be different from
the interpretation of all other terms, whereas differennin)’ may have the same
interpretation.

Definition 3.8.9 Let ¥ be an MLSS signature; Idil be a set of tableau formulae
over ©*; and lett be a set term ifdl. Then the sePy(¢) of implicit predecessors
of ¢ is defined by:

1. Pu(0) =

—_~ =

2
3
4. Pr(ty Mty) = Pulty) N Pulta);
5. Pu(ty \ ta) = Pul(t1) \ Pu(t2); and
6

{ti, .. tatn) ={s€VUT | T:(sE{tr,...,tu}n) € M} U {t1,... t,}.
O

The sets of implicit predecessors can be used to detectditpiembership cycles. If,
for example;s € Pr(t),t € Pr(s) for some terms, ¢, then the branch can be closed,
and it is not necessary to apply the expansion rule (espedtied cut rule schema)
to make the cycle explicit. Thus, using the predecessor s&tsan strengthen the
calculus by adding another rule schema for closing branches

Definition 3.8.10 The calculuC};; 5 is identical toCyss except for its expansion
rule & 5, Which is defined as follows:

For all MLSS signatures and all premissel C TabFormyrss(X*), the se€y,;; «(X) (I}
consists of

— the conclusions idy.ss(X) (IT) (Def. 3.8.3) and
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— the conclusior{{_L}} if the sets of implicit predecessors of termslincontain a
cycle, i.e., there are set terms ..., t, occurring as (sub-)terms ifl such that
1t € Pn(tg), ceylp_1 € P(tn), t, € Pn(tl). O

Theorem 3.8.11The calculug’y;, ¢ for MLSS is sound and complete.

The setPy (t) of implicit predecessors contains those terms denotinpeiés of the
set represented bywhose membership can be deduced from atoni$ af the form
T:(s E.a) (wherea is a constant) and applying the definition of the set opesafbine
realisationof a set of tableau formulae goes beyond that: it is a paréahidion of a
set structure (different terms may be interpreted by theessat)).

Definition 3.8.12 Let ¥ be an MLSS signature; and [Htbe a set of tableau formulae
overX* not containingl. TherealisationRy(¢) of a termt occurring inIl is defined

by:

2. Ru(t) = {Ru(s) | s € Pu(t)} U{w}if t € T',* and
3. Ru(t) = {Rnu(s) | s € Pu(t)} otherwise. 0

The realisation of a term can be effectively computed andbsansed to restrict the
application of the cut rule schema: provided a brafcls exhausted w.r.t. all other
expansion rule schemata, the cut rule schema has only tqpiecfo terms occurring
in atoms that are not satisfied by the realisatfoi(t) wherell = Form(B) (if there
is no such atom, theR is satisfiable and we are done).

If, for example,F:(t; Et,) isinTI butRy (1) € Ru(t2), then there has to be a term
such that (a)Rn(s) = Ru(t), i.e., the realisation of is the same as that of, and
(b) s is an implicit member of,, i.e., s € P (ty)—but that membership is not (yet)
made explicit on the branch (there is no atdnts £ ¢,) in II). In that case, the cut
rule schema is applied using the atdnts £ ¢,) as cut formula.

The following theorem states that completeness of the kedclj,, ¢ is preserved if
realisations are used to restrict applications of the clg sechema (a proof can be
found in (Hartmer, 1997)). Note that that the calculus isweakened, but that this
restriction is a technique for making proof procedures dase’;; . more efficient.

Definition 3.8.13 If § is an unsatisfiable set of MLSS-formulae, then theredsa-
tableau proof’y, ..., T, for § that is constructed observing the following restriction:

The cut rule schema may only be applied to construct a tableaufrom 7; if the
branchB of T; that is expanded

3 One has to make sure that thgs are different fronfRy; (¢) for all termst; it is always possible to
choose such,’s.
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1. is not closed; and

2. no other expansion rule schema can be used to add a form@ahat is not
already onB;

and the cut formuld:(s ~ t) used for expansion satisfies one of the following condi-
tions, wherdl = Form(B):

1. @T:(t~t)eTl,
(b) Ru(t) # Ru(t'), and
() i.sePult),s¢ Pu(t),andF:(s Et) €11, or
i. s€Pn(t),s¢ Pu(t),andT:(s Et') ¢ II,
2. (@ F:(t~t),F:(cEt),andT:(c ') € II (for some constant),
(b) Ru(t) = Ru(t'), Ru(s) = Ru(c), and
(€) s € Pul(t),s ¢ Pu(t'), andT:(s Et) ¢ II,

3. (@ F:(f'et) eTl,
(b) Ru(t') € Ru(t), Ru(s) = Ru(?'), and
(c) s € Pu(t),andT:(s E¢) ¢ II. 0

3.8.6 A Comparison with Cantone’s Calculus

The calculug’yy;,ss for MLSS described in the previous sections is similar td pra-
sented by Cantone (1997). The main difference is that Catg@alculus is restricted
to normalisedatoms, i.e., atoms not containing complex set terms:

Definition 3.8.14 An atomic MLLS-tableau formul@ is normalisediff it is of the
form

wherea, b, c andby, . . ., b, are constants. a
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There is a satisfiability preserving transformation of ey finite sets of MLSS-
tableau formulae into sets of normalised atoms by intratyoew constants as abbre-
viations for complex set terms. For example,

T:(a E(bNY))

is replaced by
T:(c~ (bMY')) and T:(a Ec)

wherec is a new constant. The overhead for computing the transtowma negli-
gible, because its complexity is polynomial in the size @ Het to be transformed.
However, the introduction of new constants leads to a mugbdrisearch space, even
more so as all these new constants occur in equalities.

Our rule schemata (R7), (R3), (R4), and (R10) are—in contlmnavith rule schemata
(EQ1) and (EQ2)—extensions for handling atoms vatmplexset terms of the cor-
responding rule schemata in Cantone’s calculus. For ex@ropt rule schema (R3),
that allows to derive

T:(aEb) and T:(a Eb') from T:(aE=(b1b)) ,
corresponds to Cantone’s rule schema that allows to derive
T:(aEb) and T:(a £0") from T:(cx~ (bNd')) and T:(a Ec)

(for all a, b, c).

There are no rule schemata in Cantone’s calculus correspptalour rule schemata
(R5), (R8), and (R9) for atoms expressing negated memipersPonsider the three
atoms

¢d=F:(cE (b Uby) \b3), 1 =T:(cEDb), 1o =F:(c Ebs)

whose conjunction is unsatisfiable. To close a branch aointathese atoms, our rule
schemata (R9) and (R5) are applied to split the atoeind derive that one of the
complements);, and1, holds, which allows to close the two resulting sub-branches
(see the tabledun Figure 3.3 (a)). Since no rule schemata for splittingxist in
Cantone’s calculus, instead schemata for positive merhipeasoms have to be used
to derivee from 14 andu,: first, ¢ has to be normalised, the result are the atoms

FI(C Edl), Tl(dl ~ dg \ bg), Tl(dg ~ b1 L b2)

whered,; abbreviategb, LI b,) \ b3 andd, abbreviated, LI b,. Then, with two rule
applications,T:(c Edy) and T:(c £d,) are derived. The latter atom can be used to
close the branch; it corresponds to the non-normalised a@tdsee the tableau Fig-
ure 3.3 (b)).

4 Thei-th node in the tableau is labelled with j; (R)], which indicates that its formula has been

derived applying the expansion rule schema (R}@f ssr to a premiss consisting of the formula in
the j-th node.
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(¢l F:(c £ (b U ba) \ b3) (Ll F:(c & (by LU by) \ bs)

(2411 T:(c E by) [241] T:(c Eby)

[32] T:(c E b3) [3:2] T:(c E bs)

[41,R9)] F:(c £ (b U by)) [5;1})] T:(c Eb) [4;1;(Norm)] I|::(c Edy)

[6:4:R5)] F:(c E bo) [9:(3,5);(Compl)] L [5:1;(Norm)] T:(|d1 ~ dy \ b3)
[8:(2,6);(Compl)] L [6;1;(Norm)] T:(lz2 ~ by U by)

() [7:(2,6)] T:l(c E ds)

18:(3,5)] T:l(c Edy)

[9:4,8);(Compl)] L
(b)

Figure 3.3: Constructing a closed sub-tableau with (a) the calcGlugsss and
(b) Cantone’s calculus.

The need (and possibility) to derive more complex terms fsompler ones leads to a
larger search space. Our calculus, that splits complexstarta simpler ones, is more
goal directed.

3.8.7 An ldeal Calculus for MLSSF

To extend the calculuSy;; ss described in the previous sections to a calcilysgssr
for the larger fragment MLSSF, it suffices

¢ torelax the restrictions on the equality rule schematarfve schemata (EQ1’)
and (EQZ2’) are shown in Table 3.12 on the left), and

¢ to add a cut rule schema that uses equalities as cut fornthlaeghema (Cut’) in
Table 3.12).

The new rule schemata only need to be applied to function&sas. Non-functional
terms, even if they are not pure, can be handled by the expamsle schemata
of Cyir.ss. Below, the expansion rul\; ssi of Cyirssr IS formally defined.

Definition 3.8.15 Let X be an MLSSF signature.

For all premissesl C TabFormypssr(X*), the se€ysse(X*)(I1) consists of the fol-
lowing conclusions:

- {{aq,...,an}}
for all o € IT (Tables 3.1 and 3.10);
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T:(s ~ 1) T:(t ~ s)
¢|s] é[s] T:(t1 ~ ) | Fi(t = ta)
Plt] olt] wheret,, t, occur on the branch
where the occurrence efin ¢ and at least one s & functional term
is inside a functional term (Cut)

(EQ1)  (EQ2)
Table 3.12:Additional expansion rule schemata for MLSSF.

- {61}, {Bn}}
for all 5 € II (Tables 3.1 and 3.10);

- {{olt]}}

for all (a) ¢[s] and (b)T:(s ~ ¢) or T:(¢ ~ s) in IT such thats occurs as a proper
subterm of a functional term i s], whereg|[t] is constructed fromp[s] by replacing
one occurrence of in ¢[s] by ¢;

— {{F:(s1 = 52)}}

forall T:(s; Et) andF:(sy E¢t) inII;

- {{T:(sEt)}, {F:(s EL)}}

for all set termss andt such that (ap or {....s,...}, and (b)tor {... ¢,...},
occur as top-level terms in atomslih

- {{T(tl ~ tQ)}, {F(tl =~ t2)}}
for all set termst; and#, occurring inIl such that at least one of andt, is a
functional set term;

- {{T:(cEt),F:(cEL)}, {F:i(cEL), T:(cEL)}}
forall F:(¢; = t5) in T1, wherec = skonssr(F: (¢ &~ t2))

- {41
if

1. T:0:G, F:0:G € II for any atomG,

2. T:(t £0) e 11,

3. F:(t=~t) eTl,

4. forsomek > 1, T:(t; Et;q) €e I (1 < i< k)andT:(t, Et;) € I O

The calculug’yy,ssr for MLSSF is sound and complete (a proof can be found in (Hart-
mer, 1997)); it is, however, not a decision procedure.

Theorem 3.8.16 The calculugy ssr for MLSSF is sound and complete.
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3.8.8 Using Rigid E-Unification to Restrict the Cut Rule Schema

The additional rule schemata 6f;;.ssr introduced in the previous section are highly
non-deterministic. In this section, we describe an exmamgile schema for MLSSF
that is much more goal-directed and leads to a smaller sspaate. It is based on the
concept ofrigid E-unification

Definition 3.8.17 Let X be an MLSSF-signature.
A rigid equalityis a rigid variable formula ovex;, of the form¢ ~ t'.

A rigid E-unification problem E, s, t) consists of a finite sef of rigid equalities and
termss andt overg,.

A substitutiono € Subst(Xf,) is asolutionto the problem £, s, t) iff so andto are
identical in the free algebra defined By where the free variables ific are treated
as constants. O

The problem of deciding whether a given rigittunification problem has a solution
is decidable (it is NP-complete). In general, the numberadditeons is infinite. An
overview of methods for rigidZ-unification can be found in (Beckert, 1998b).

The basic idea is to use rigiil-unification for handling the functional part of MLSSF
and to use the MLSS expansion rule for handling the non-fonat (i.e. set theoretic)
part. The additional expansion rule schema, we describleeididllowing, forms the
connecting link between the two parts.

Consider, for example, a branéhcontaining the two atoms

T:(f(a) =~ b) and T:(g(f(a T (bUa))) Eg(b)) .

The branchB is unsatisfiable, becausen (b U a) = a and, thus,

g(flan(bUa))) = g(f(a)) =g(b) ;

that impliesg(b) € g(b), which is a membership cycle. To extend the brafchy a
closed sub-tableau using the expansion rulé€gfssr, one first has to discover the
important set theoretic identities that have to be provendantity is proven by using
it as a cut formula; after the branch that contains its negdtias been closed, it is
available on the remaining open branch). In the above exarip identity that has to
be proven isiN (b U a) = a. Itis not easy to discover the right identities; it is fufile
for example, to try to show thatN (b U a) = b.

The question of which set theoretic identities have to begmdo close a branchk
is transformed into rigidZ-unification problems as follows: for each pair of terms
that, if they were identical would allow to close the branelg(, termss, ¢t such that
F:(s ~ t) is on B), one rigid E-unification problem is generated. {randt all max-
imal non-functional sub-terms are replaced by rigid vdaapthe resulting terms™
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andt™ and the equalities on the branch form a rigielnification problem. Each so-

lution to the problem corresponds to identities betweenfoctional sub-terms that,

when proven, allow to close the branch. The correspondiegualities are used as a
conclusion, i.e., they are (disjunctively connected) adethe branch.

Definition 3.8.18 Given a setA of atomic MLSSF-tableau formulae, the s€t is
constructed from\ by replacing all non-functional (sub-)terme A by a rigid vari-
able X;.

Let the substitutiorr, be defined by:r(X;) = ¢ for all terms¢ occurring inA that
have been replaced (i.e, is the inverse of the transformation that turkignto A™:
AV = A). O

Example 3.8.191f A = {T:((aMc)Ub=c¢), T:[f(c) Eg(aNe, f(d\ e))]}, thenthe
result of the transformation i8™ = {T:(X; ~ X,), T:[f(X2) E9(X3, f(X4))]}. O

Definition 3.8.20 Let > be an MLSSF signature; 1&f C TabFormypssr(X*) be a
premiss; letA be the set of all atoms ifl of the formT:(¢; ~ t5), T:(t; Ety), Or
F:(t1 Et2); and letE}y be the set of all rigid variable equalities Ay .

Further lety = {z, < ry,..., 7, < r,} (n > 1) be a simultaneous soluti®to

1. rigid E-unification problemgEL, s1,t1) and(EY, so, t2) such thafT:(s; £ ;)
andF:(sy Ety) are inAjy, or

2. rigid E-unification problems(EY, t1,t}), ..., (EY,t,, t) (n > 1) such that
atomsT:(t; Et,, ..., t, 1 Et)), andT:(t, E¢}) in Ay form a potential mem-

bership cycle.

Then, the conclusion

{{F:(rag (X1) = rimag) by o {Fi(Ta, (Xn) = maTag)} -

is anEU-conclusiorof I1. O

Using the notion of EU-conclusions, the expansion dfl§ .. of Ciii«sp is defined
as follows.

% The substitution: has to be the simultaneous solution of several rigidnification problems, i.e.,
a simultaneous rigidZ-unification problem has to be solved. In genesultaneousigid E-
unification is undecidable. But the simultaneous problemas have to be solved here belong to
a decidable subclass, namely the class of simultaneous Figinification problems of the form
{{E,s1,t1),...,(E, sn, t,)} where the sets of equalities are identical. In that casesabstitution
that (a) is a solution to the non-simultaneous prob{émf (s1, ..., sn), f(t1,...,t,)) and (b) does
not instantiate variables with terms containifigs a solution to the original problem (the function
symbolf must not occur in the original problem).
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T:(f(a) = b)
T:(g(f(a (bl'—' a))) Eg(b))
T:(asan(bUa))
PN
T:(c Ea) F:(cEa)
(cEan (bUa)) T:(cEan(bUa))
3 / \ F:(cED) T:(clEa)
(J_ F:(cEa) T:(cEbUa)
1 1

Figure 3.4: A closed sub-tableau that is constructed using the exparrsie
of Cil oop (Example 3.8.22).

Definition 3.8.21 Let X be an MLSSF signature.

For all premisseH C TabFormymssr(X*), the se€il o (X*)(IT) consists of the con-
clusions infyss(X*)(IT) (Def. 3.8.3) and, in addition, all EU-conclusionsidf O

Example 3.8.22We continue the example from the beginning of this sectiahamn
ply the expansion rule the new calculus@f' .« to construct a closed sub-tableau
below a branch containing the atoms

T:(f(a) =~ b) and T:(g(f(a T (bUa))) Eg(b)) .

The only rigid E-unification problem that can be extracted from these atems i
{f(Xa) = Xo} 9(f (Xareua))) 9(Xs)) -

A most general solution of this problem is the substitut{of, — X,nuq)}- Thus,
the new rule schema @i}y s allows to addF:(a ~ a1 (b U a)) to the branch; the
branch can then be extended to a closed sub-tableau (see BigiL O

The new expansion rule schema partly overlaps with othezraela. It allows, for
example, to derivd:(s; &~ s9) from T:(s; E¢) andF:(sy £¢) if s; ands, are non-
functional set terms. This is also possible applying theswn(R11).

It is not necessary to consider rigid-unification problems that can be constructed
from inequalitiesF:(s ~ t) in L]} because, when rule schema (R11) has been applied,
the branch contains atormis(c E s), F:(c £Et), orF:(c Es), T:(c E1).

The expansion rule dff;} «sr is sound, and the new schema helps to reduce the search
space. It is a conjecture th&tY ... is complete, i.e., that the schema based on rigid
E-unification can replace the schemata (EQ1’), (EQZ2’), anat’j©f Cyrssr, but this

has not been proven this yet.
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Theorem 3.8.23The calculug’}}y s for MLSSF is sound.
Conjecture 3.8.24 The calculug’y o for MLSSF is complete.

Example 3.8.25We proof that the formula
G = [aE[(f(a)\ flaU(bMNa)))LdUe AN eldbEal — aEd

is an MLSSF tautology; it contains the free function sympolntuitively, the reason
for the validity of G is the following: We assume thatis an element of (at least)
one of the three sets= f(a) \ f(a U (bNa)), d, ande, and thate U b is an element
of a. Now, the set; cannot containi, because: = (a U (b N a)) and therefore. is
empty for all interpretations of; the set cannot contaim, otherwise there would be
a membership cycle € (e U b) € a. Therefore containsa.

Figure 3.5 shows a closed tableau fe.° The unsatisfiability of-G implies the
validity of G.

Formula (11) is derived from formulae (9) and (10) applyihg E-unification rule
schema. The substitutida, < z,.nq)} IS @ Solution to the rigidZ-unification prob-
lems (0, X,, X,) and (0, (f(Xa), f(Xaupra))), Which is constructed from 9 and 10.
Accordingly, the inequality:(a ~ a LU (b a)) is added to the branch.

When the rule schema (R12) is applied to formula (11) to @giavmulae (12)—(15),
the Skolem constamy = skoysse(F:(a ~ a U (bMa))) is introduced.

The branch ending in node (30) is closed by the membershile eyc b = a and
a Eellb (formulae (6) and (28)). All other branches are closed byspaf com-
plementary atoms.

If the rule schema for closing branches is used that reliearputing sets of implicit
predecessors to detect implicit membership cycles (D8f18), then the cut rule ap-
plication that generates formulae (28) and (29) is not neéedastead, the branch
ending in node (26) can be closed immediately; it containsrgalicit cycle because
a € e impliesa € e U b (this cycle is made explicit by the cut application). The set
of all possible implicit predecessors for terms on the binageding in node (26) is
{a,b,d,e, f(a), flal (bMa)), (el b)}. The predecessor sets of the constants are

Pr(a) = {eUb}
Pnd) = 0
Pu(d) = 0
Pu(e) = {a}

6 Thei-th node in the tableau is labelled with j; R], which indicates that its formula has been derived
applying the expansion rule scherfteof CY ssr t0 @ premiss consisting of the formula in tjeh
node.
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The predecessor setof /b is
Pr(eUb) = Pu(e) UPr(b) = {a} .

Thus, we have: € Pr(e Ul b) ande LI b € Pr(a), which indicates the presence of an
implicit membership cycle. O
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4 Enhancements

4.1 Overview

In this chapter, we present techniques for improving a tabtlculus for automated
deduction in such a way that proof procedure based on it are efticient. Only
those techniques are the subject of this chapter that eetjuér calculus to be chan-
ged; heuristics and techniques for organising the proatkeae., for constructing an
efficient proof procedure based on a given calculus are ssriin the next chapter.

Strengthening the calculus A calculus is strengthened if it is changed in such a
way that shorter proofs for at least some formulae exist€kample, by enhancing its
expansion rule such that it allows the deduction of addéti@onclusions from certain
premisses). In most cases, strengthening adds non-detemmii.e., there are more
possibilities to proceed at each expansion step. Thus ther trade-off between the
advantage of shorter proofs and the disadvantage thatshesgproofs may be harder
to find, because there are more choice points in the searck.spa

Unfortunately, there is no general rule for judging whethecertain enhancement
is useful for automated deduction. Some automated dedusyistems even use re-
stricted calculi that have less choice points than the stahdersion of the calculus
at the expense of an increase in the size of smallest praufhidiing, for example,
proof procedures for first-order clause logic with the sfreonnectedness condition,
see Section 5.5).

The non-analytic cut rule, which allows to deduce the cosiol{ {o: T:¢}, {o:F:4}}
from the empty premiss for all labetsand formulaey, is a typical example for an en-
hancement where the disadvantage of additional non-detismmoutweighs the ad-
vantage of the existence of shorter proofs. Therefore, ioraated deduction systems
the cut rule isneverused unrestrictedly. There are, however, restricted eersi the
cut rule, such as the generation of local lemmata (Sectiy that still reduce the size
of the smallest proofs for certain formula classes expoakytbut do not lead to too
many additional choice points.

A method for strengthening tableau calculi that is alwaysfuiss thepruningtech-
nique described in Section 4.6, as it reduces the size offpreibhout introducing
additional choice points.

81
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Another very useful way of strengthening tableau calcuthis introduction ofuni-
versal variablegSection 4.3); this technique can lead to exponentiallyilemgaroofs,
and adds only very few additional choice points.

Post-poning choice points Often, it is possible to uniformly represent different
tableaux—and thus different parts of the search space—bykedableau using ad-
ditional syntactical devices. A typical example is ttgid variable technique (Sec-
tion 4.2), where tableaux that are identical up to the reptant of terms by other
terms are all represented by a single tableau in which a edymmy) variable is
used as a place holder for the different terms.

In a certain sense, post-poning choice points leads to atbrdiast search where dif-
ferent parts of the search space are investigated simoltiafye until additional infor-
mation has been gathered that allows to make an informedide@bout which part
of the search space should be further investigated. For gbeaifa tableau rule ap-
plication requires a rigid variabl& to be instantiated with a certain terimthen the
decision to instantiat& with ¢ is informed in the sense that the instantiation is known
to be useful as an expansion rule application exists whialtgossible without it.

Techniques that post-pone choice points are always of aayanf the only measure
considered is the number of expansions steps that have tebated to find a tableau
proof. These techniques can, however, be difficult to imglein For example, if a
rigid variable is instantiated with a term that later turng to be the wrong choice,
then it might become much more difficult to find a tableau prgodugh not impos-
sible provided that the calculus is proof confluent); thiss iof advantage not to
instantiate rigid variables as long as it is not absolutelstasn that a certain instan-
tiation is useful. An instantiation that may or may not befukshould instead be
used as a heuristic, i.e., expansion rule applicationsatteatompatible with such an
instantiation are preferred but are not necessarily thg onés that are considered.
However, because this is difficult to implement, virtuallytableau-based deduction
systems for first-order predicate logic apply a rigid vaeaubstitution to the whole
tableau as soon as it is found to allow the closure of a singladh—instead of first
searching for closing substitutions for all branches, dmhttrying to combine these
substitutions to construct a single substitution thatvedléo simultaneously close all
branches.

Another disadvantage of techniques for post-poning chpaiats is that they make
it more difficult for the deduction system to interact with anian user (where the
reason for interaction may either be that the system is iyt dmtomated or that a
proof that has been constructed is communicated to the.ustnnans prefer cal-
culi with a simple tableau expansion rule; its applicatishsuld be syntactically (not
necessarily semantically) simple, i.e., each applicadtoould be easy to validate, the
pre-conditions should be easy to check, and rule applicasbould not have any side
effects. Enhancements for post-poning choice points, tiekyeypically result in a
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calculus that is syntactically more complicated; rule aggions may have non-local
side effects such as the instantiation of free variables gtloblem of user interaction
is discussed for the case of calculi for first-order predidagic in (?)).

4.2 Rigid Variable Tableau Calculi

4.2.1 The ldea of Rigid Variables

The concept of rigid variabléswhich is well known from theorem proving in first-
order predicate logic, is based on the observation that tparsion rule of many
calculi for logics with terms is stable for certain prems$ew.r.t. the replacement
of terms inIl by other terms; in particular, there are premisses thatvaitoderive
conclusiong”(¢t) for all termst.

Example 4.2.1 A typical example is the expansion rule of the calcullgs; from

Section 3.6. It is stable for premisses consistingvgf3-, v-, andé-formulae. For
example, the conclusiof{«;[t — t'], as[t — t']}} can, for all terms’, be derived
from a premiss containing anformulaa|t — ¢']. Premisses containingyaformula~y

allow to derive the conlcusiofi(t) = {{~1(¢)}} for all termst.

The expansion rule ofp;,; is only unstable for premisses that allow to deduce
i.e., to close a branch; for example, the pren{i$sy(s), F:4(t)}[t — '] allows the
deduction ofL = L[t — #'] only in case’ = s. O

If a calculus has an expansion rule that is stable for cepgmmisses, then instead of
guessing terms when they are introduced, they can be repeesky a rigid variable
that is later instantiated “on demand” when the expansitisuapplied to a premiss
w.r.t. which it is not stable, i.e., in case the applicatiequires the instantiation of
the rigid variable. Usually unification is used to findrest generasubstitution that
allows a certain expansion rule application. Using rigidatales reduces the number
of choice points in the construction of a tableau proof an tihe size of the search
space.

Intuitively, a formula containing a rigid variabl® stands for a single (but unknown)
element of the set of all formulae that are the result of @paX by some term
(cf. Section 4.3 where rigid variables are introduced teptesenall term and that are,
thus, calleduniversalvariables). All occurrences of a rigid variable in a tabléawve
to be instantiated by the same term (which is why these iasadre called “rigid”).
Thus, instantiating a rigid variable to make a non-stablgaesion rule application

1 In the literature—in particular on calculi for first-ordergglicate logic—, several other names have
been used for free and, in particular, for rigid variablesjudingparametey dummy variableand
meta variable
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possible can make other expansions impossible, which tecpkarly problematic if
the calculus is not proof confluent.

Rigid variable tableau calculi are usually constructed higirig” a ground tableau
calculus. Unfortunately, this is often done in ath hocmanner. Starting point is the
observation that the expansion rule of a calculus is stafderureplacement of terms
by terms for some or most premisses. Then, as a first stepxpla@sion rule is lifted
for those premisses that allow the deduction of a concluSi@n for all termst; then,
in the rigid variable version, the conclusi6f{ X') can be deduced from such premisses
where X is an arbitrary rigid variable. In a second step, the rigidalde expansion
rule for other premisses is designed in such a way that tlelcel is sound and com-
plete; that, however, can be difficult and there may be hiddgrs—in particular if
the ground calculus is not ideal. One has to carefully checkvhich premisses the
ground expansion rule is stable and for which it is not.

Example 4.2.2 The fact that lifting a ground calculus can be difficult is ex#ified

by the history of rigid variable tableau calculi for firstder predicate logic: When
the first versions were defined, some authors missed to netiath that the ground
rule they used was not stable féfformulae, as it demanded the Skolem constant
introduced by an application to &formula to benew Other authors solved (resp.
avoided) this problem by designing an expansion rule scHem@aformulae that does
not result from lifting the ground version (see Section 4 discussion of improving
the expansion rule schema formulae). O

Such hidden traps can be avoided by altering the ground loal@nd making it as
stable as possible before it is lifted. The design problethés to make the rule of
the ground calculus stable; an example is the ground expangie from Section 3.6,
which might be somewhat non-intuitive but is stablefdormulae.

If a rigid variable calculug™ has been constructed by lifting a stable ground cal-
culusced, then soundness and completenesgfoffollow from soundness and com-
pleteness of&! and do not have to be proven separately. In particular, asetagon
between the rigid variable and ground calculus is purelyastical, one does not have
to come up separately with an appropriate semantics forigi variable tableaux.
The semantics of a tableau containing rigid variables catdb@ed based on the se-
mantics of its ground instances (Section 4.2.9).

4.2.2 Syntax of Free Variable Tableau Calculi

The replacement of terms by free variables is not restriiéde formula part; of a
tableau formul®:o:G, but they can as well be introduced into the ladbaind the truth
value signS. That is, we assume that the set of tableau formulae is a ayggwith
terms. Labels and formulae may or may not contain free viasabf the same sort
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(and, thus, can have variables in common). Free variabled as truth value signs
have to be of a special sortsuch that the only terms of sorfareT andF.

Definition 4.2.3 A calculusC™ for a logicL is afree variable calculugw.r.t. the set
Var of free variables) if, for each signatuxec Sig, the extensiox;, of X thatis used
to build tableau formulae is an extension of a signakilfrec Sig (that is an extension
of ¥, too) such that:

1. the setTabForm(Xy,) of tableau formulae oveXry, is a language with terms
(Def. 2.2.1);

2. the setTabForm(X},) of tableau formulae ovexy, is the free variable language
constructed fronT'ab Form(3;,) and the seVar of free variables (according to
Definition 2.2.2), i.e.,

TabForm(%§,) = (TabForm(Z;d))fV :

The sets of terms dfab Form(%3,) and TabForm(X},) are denoted byab Term(%y, )
resp.TabTerm(33,).

A calculusce for a logicL is aground calculugw.r.t. the setVar of free variables)
if its tableau formulae do not contain any of the free vaeabh Var. O

Example 4.2.4 One of the rare examples where free variables in truth vagrs sre

useful, is the design of an expansion rule that allows to dedbhe non-branching

conclusion{{ X:F, X:G}} from premiss containing the equivalenfy:(F < G)}.
O

The class of free variable tableau calculi is only charéserby the fact that they use
tableau formulae containing free variables. All definisdrom Chapter 3 of notions
such as branch, tableau, tableau proof, proof confluenceptaopicity, etc. remain
unchanged. The notions of calculi with expansion rule andi@dlness as defined in
Chapter 3, however, are not appropriate and for the rigithlsbe case and have to be
adapted (see Sections 4.2.3 and 4.2.5).

4.2.3 Rigid Variable Tableau Calculi with Expansion Rule

The notions of a calculus with expansion rule (Section 3-3and, thus, that of an
ideal calculus (Section 3.3.7)—are not appropriate fadngriable calculi, because
in a calculus with expansion rule all tableau formulae ontdetau7 must remain
unchanged when it is expanded; it is not allowed to instétigid variables occurring
in T. Therefore, we introduce the notion Bfjid variable expansion rulesvhere a
conclusionC' contains (besides a finite set of extensions) a substitthiains applied
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to the whole tableau whefi is used for expansion. Apart from the application of that
substitution, tableau rule applications are still onlypakd to have onlyocal effects.
That is, a tableau rule application extends on§iraglebranch of a tableau, and, what
the possibilities for extending a branéhare, only depends oAR itself; no additional
pre-conditions are allowed such as the presence of cedaimufae on other branches.

Definition 4.2.5 LetC be a free variable tableau calculus for a logjand let: € Sig
be a signature.

A rigid variable conclusionis a pair(C, o) consisting of a finite se€' of branch
extensions (Def. 3.3.4) and a substitutior Subst(Xf,) such thatC' = Co.

A rigid variable expansion rul€ (X) is a function that assigns to each (finite) tableau

branch whose nodes are labelled with formulae ffBmForm (X5, ) a set€(X)(B) of

(possible) rigid variable conclusions, which may be inérbut has to be enumerable.
O

Definition 4.2.6 LetC be a free variable tableau calculus for a lofjand let: € Sig
be a signature.

A rigid variable expansion rulé(X) characteriseshe tableau rul&k (%) of C if, for
all tableauxi’ overXy : atablead” is a successor tableaudf(i.e., 7’ € R(X)(T)) if
and only if there is a brancB of T and a rigid variable conclusio{@, o) in £(X)(B)
such that the tabledll’ can be constructed froffi by

1. extending the brancB by a new sub-branch for each extensiénn C where
the nodes in that sub-branch are labelled with the eleménis and

2. applying the substitutiom to the tableau.

If the rigid variable expansion rul&(X) characterises the tableau ri@¢>) of C for
all signatures:, then€ is said to betherigid variable expansion rule @f; andC is
said to be aigid variable calculus with expansion rule. O

4.2.4 Rigid Variable Expansion Rules that are Monotonic w.r.t. Substitu-
tion

The intuition behind the substitutienthat is part of a rigid variable conclusi@gy, o)

is that its application is a pre-condition for the derivatiof C' from the formulae on
the branch. If a (ground) calculus is monotonic as definedeicti8n 3.3.5, the pre-
condition for deriving a certain conclusion is the preseoiceertain formulae on the
branch that is expanded—and not the absence of formulaeordiogly a notion of
monotonicity w.r.t. the application of substitutions candefined: Only that a certain
variableis resp.can beinstantiated in a certain way is allowed as a pre-condition—
and not that the variable i®ot instantiated that way. Note, however, that a different,
incompatible instantiation can very well prevent the dation.
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Definition 4.2.7 Let C be a rigid variable tableau calculus with expansion fifer a
logic L.

The expansion rulé and the calculu§ are callednonotonic w.r.t. substitutiaffor all
signatures € Sig and all branche® over£* the following holds: if(C, o) € £(B)
andp, 7 € Subst(X*) are substitutions such that= p o 7, then(C, p) € £(Bt). O

Example 4.2.8 Assume that—in a calculus for PL1 that is monotonic w.rbstilution—j
({{T:p(a,b)}},{X — a,Y — b}) is apossible conclusion for a branch bradX, V) J|
then({{T:p(a,b)}},{Y — b})isapossible conclusion f@&(a, Y), and({{T:p(a, b) }}, id)}]
is a possible conclusion fd8(a, b). O

4.2.5 Ideal Rigid Variable Tableau Calculi

Idealness, the important property of tableau making theiilvedaved, is defined for
rigid variable calculi in a similar same way as for. A grouralctlus is ideal if it
is non-structural, monotonic, and is a calculus with expansule. A rigid variable
calculus is ideal, if it is non-structural (as in the grourade), it is montonic (as in the
ground case) and moreover is monotonic w.r.t. substitytiad it has aigid variable
expansion rule allowing the application of substitutiansiead of a ground expansion
rule).

Definition 4.2.9 A rigid variable tableau calculus with expansion rule ttsafa) non-
structural, (b) monotonic, and (c) monotonic w.r.t. sulngion is calleddeal. O

As in the ground case (see Lemma 3.3.11), the expansior€raiean ideal rigid
variable calculus can be represented as a funétion premisses; and we identify the
expansion rulg€ and the functiorf.

Lemma 4.2.10 LetC be anideal rigid variable tableau calculus with expansiater£
for alogicL. Then, for all signatureg, there is a (single) functioé(z) that assigns
to each (finite) premisB C TubForm(X},) a set€ (X)(T1) of (possible) rigid variable
conclusions such that

£(2)(B) = E(T)(Form(B))

for all tableau branches overX;, .

The notion ofminimal premisses of a rigid variable conclusion is defined as in the
ground case (Def. 3.3.13).

Expansion rules of ideal rigid variable calculi can be disa by means of rule sche-
mata with an explanation attached to them that describesthhaempute the substi-
tution that is to be applied when an instance of the schemseid to extend a tableau
branch (see Sections 4.2.10 and 4.2.11 for examples).
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4.2.6 A Subsumption Relation on Rigid Variable Conclusions

The subsumption (or is-more-general-than) relatdh defined on substitutions can
be extended to rigid variable conclusions as follows:

Definition 4.2.11 Let C be an ideal rigid variable calculus for a lodig let (C, o)
and(C’, ¢') be rigid variable conclusions over the same signaklijfec Sig; and let
W C Var be afinite set of rigid variables.

The conclusiorqC, o) subsumethe conclusionC’, ¢'), which is denoted by
(C.o) <M (", 0')
if there is a substitutiop € Subst(X},) such that

1. 0 <" p <% o' where<" is the subsumption relation on substitutions from Def-
inition 2.2.6;

2.Cp="C".

O

Lemma 4.2.12 The subsumption relatiod™ on rigid variable conclusions is transi-
tive.

Proof: Assume thatC, o) <" (C’, ¢’y and(C",o") <" (C",0").

The substitutiong andp’ that exist according to the definition of the relatigh sat-
isfy the conditiongr <" p <" ¢’ ando’ <" p' <" ¢"; asthe relatior™ is transitive
on substitutions, that implies <" p' <" ¢".

In addition, we have®p’ = (Cp)p' = C'p' = C". Thus,(C,o) <V (C",0"), as the
substitutiony’ has the required properties. O

Lemma 4.2.13If (C, o) and(C, ¢’ are rigid variable conclusions that only differ in
their substitutions and <" o', then(C, o) <" (C, o).

Example 4.2.14 A conclusion with a more general substitution is more gdneea,

({{L}},id) subsumes({{L}} {X — a}) ,
and, ifY ¢ W, then

({1} {X = f(Y)}) subsumes({{L}} {X — f(a)}) .
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Intuitively, completeness of a an ideal rigid variable céls is preserved if only most
general conclusions w.r£" are derived from a given premiss. However, thelget
of variables has to be chosen carefully. If the context issmn(e.g., a certain tableau),
then itis sufficient ifi¥” contains all variables occurring in that context; otheey@ne
has to make sure that for any finite $€tof variables that may occur in the context,
completeness is preserved.

Example 4.2.151f X ¢ W, then the conclusiot’'y = ({{p(X)}}, id) subsumes the
conclusionC; = ({{p(t)}}, id) for all termst, in which case the single conclusiéh
can replace all the conclusions.

If, however, the context is not known and, thus, the 8étmay or may not con-
tain the variableX, one has to be careful &y doesnot subsume’; if X € W.

In that case, one can use the §éty | X € Var} of conclusions to replace the set
{C, | t € TabTerm}, because the number of variable in a given context is always fi
nite and there are, thus, always variablées Var not occurring in the context. 0O

4.2.7 The Rigid Variable Version of an Ideal Ground Tableau Calculus

As said before, a rigid variable tableau calcullisis constructed by lifting a ground
calculusC®d. The following definition clarifies the relationship betwe®" andC#?.

Definition 4.2.16 Let C™ be an ideal rigid variable calculus for a lodi¢ and letC&d
be an ideal ground calculus fdér such that, for all signatures € Sig, the extended
signature:;, used byced is the signature for which

TabForm(3g,) = ( TabForm(Eéd))fv

holds, that has to exist according to the definition of fregalde tableau calculi
(Def. 4.2.3).

The calculug™ is arigid variable versionof the calculug’e? (andC&! is aground
versionof C™) if, for all (rigid variable) premisseH,, C TabForm(X},), all (ground)
premissesly C TabForm(X},), and all substitutions € Subst(Xf,) with finite do-
main such that

g7 = Hgd )

the following holds, wher€#? and£™ are the expansion rules 68 resp.C™, and
W = dom(r):

E8(Ily) = {Cya | there is &C,, o) € £7(I1,,) such thatCyy, o) <V (Cya, 7)}
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[0 | ¢ |
gd | {Tx:(Va)(p(z,0)} | {{T:*plt,c)}} for all termst
v [ {Ta (V) (p(z, Y)} | ({{T*p(X,Y)}},id) forall X € Var
T:{Y|—>c} p:{Yl—>C,Xl—>t}
| [u | ¢ |

gd | {Teowep() Aq(t)} | {{Toxep(t), Texeg(t)}}

v [ {Toep(X) A q(X)} | ({{T:xp(X), Tixg(X)}}, id)
T={X 1t} p={X —t}

[0 | c |
gd | {Texp(t), Fexep(t) } {{L}}

rv | {Tsep(t'), Foep(t”)} ({{L}},0) wheresc an MGU oft', t"
rsuchthat =t'r=t'r | p=1

Table 4.1: Examples for the relationship between the expansion ridlagoound
calculus for PL1 and its rigid variable version (see Exampi17).

Example 4.2.17Table 4.1 shows examples from first-order predicate logictlie
three main types of ground premisses (and their conclusfonsvhich an expansion
rule is liftable and their rigid variable versions.

In each case, the ground expansion rule (see Section 3d8)satb derive the con-
clusionCyq from the premisdl,y, and the rigid variable expansion rule (see Sec-
tion 4.2.10) allows to derive the conclusioh, from the premissl,, .

Using the notation from Definition 4.2.16, the relationstsipndicated by the substi-
tutionst for whichII,,r = II,4 and the substitutiop for which C\,p = Clq.

In the first example, it is1ot sufficient if ({{T:x:p(X,Y)}}, id) is a conclusion of
{T:x:(Vx)(p(z,Y))} for just some rigid variabl& € Var, because a different substi-
tution™ = {Y — ¢, X — d} might instantiateX, in which caseX € W and, thus,

({{T:p(X,Y)}}dd) €7 ({{Tp(t, o)} 1 {Y = e, X — d}) .

A ground version of any rigid variable calculus can easilycbastructed by defining
that, if some paifC,,, o) is a rigid variable conclusion of some premi$s andp is
some substitution grounding far,, andIl,, such thatr < p, thenCyy = C\yp is a
ground conclusion of the premisk, = II,,.

The advantage of using lifting for constructing a rigid adle calculu™ from a
ground calculugs! is that soundness and completenes&ofollows from soundness
and completeness 6#4.
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Theorem 4.2.18Let C™ be an ideal rigid variable calculus for a logit, and let
C#! be an ideal ground calculus fdi such thatC™ is a rigid variable version o’s¢
(Def. 4.2.16).

Then, for all signature¥ € Sig and all finite sets7 C Form(X) of formulae, there is
aC™-tableau proof forGG if and only if there is a&¢-tableau proof forG.

Proof: If-part: Assume thaTOgd, ..., T8 (n > 0) is a tableau proof fo& constructed
using the ground calculu@.

By induction on:, we prove that there is a rigid variable tableau prégf,..., 7"
such thatf}¥r, = T2 for substitutions; € Subst(X%,) (0 < i < n).

i = 0: SinceG does not contain rigid variables, add is non-structuralf ¥, = T2
for T = T8 andr, = id.

P — i+ 10 If Tffl has been constructed froﬁfd applying the expansion rule ¢#¢

to a premisd1&? on a branchB#! of 75! and deriving a conclusio6®d, then there is
a premisdI'" on a branchB!¥ of TV such thaf "7, = 184 and BI¥r; = B Thus,
according to the relationship between a ground calculustandid variable version
(Def. 4.2.16), there is a rigid variable conclusi@ii™, o) that is derivable froniI™
using the expansion rule ¢, and there is a substitutign such thatC™ p;, = C#&d
andr; <" p; whereW is the domain ofr; (that contains all rigid variables occur-
ring in T'¥), which impliesTp; = T*. Thus, the substitutiom,,, = p; and the
tableaul}y, that is derived fron¥;" expanding the brancB;" of 7" using the con-
clusionC* satisfy the conditior ¥, 7, = T&,.

Only-if-part: Assume that/}",..., T (n > 0) is a tableau proof fotz constructed
using the rigid variable calculug".

Again, by induction on, we prove that there is a ground tableau pr?ﬁ@ci‘, o, Tl
such thaff® = T!vr; for substitutions; € Subst(X%) (0 < i < n).

i = 0: SinceG does not contain rigid variables, adg, is non-structurall&! = Tivr,
for T8 = T¢¥ andr, = id.

i — i+ 1. If T;Y, has been constructed frofij* applying the rigid variable expan-
sion rule ofC™ to a premisdI™ on a branchB!" of T!* and deriving a rigid variable
conclusion(C™, o), then there is a premigg#? on a branchB' of T&! such that
184 = II5Vry andBZ.gd = B!Y1;. Thus, according to the relationship between a ground
calculus and its rigid variable version (Def. 4.2.16), thexa substitutiop such that

o <" r; <" p; and the ground conclusiaf#! = C™p; is derivable fromII&? using

the expansion rule of’®?. Sinceo <" 7; <" p;, we haveTl-gd = T,m;, = Tyop; and
Cced = Cp; = Cop;. Thus, the substitution,; = p; and the tableaﬂ”f_f1 that is de-
rived from 75! expanding the brancB®® of T& using the conclusion®? satisfy the

.- gd _
conditionTy, = TV, 7;41. -
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Corollary 4.2.19 LetC™ be an ideal rigid variable calculus for a logit, and letC#?
be an ideal ground calculus fdt such thatC*™ is a rigid variable version of.

Then,C™ is sound and complete if and onlydif¢ is sound and complete.

Theorem 4.2.18 also implies that soundness and complstehesrigid variable cal-
culusC; follows from soundness and completeness of a rigid variedlleulusCy” if
CIV andC}’ have the same ground versiG#f.

4.2.8 Lifting: Constructing a Rigid Variable Calculus

In this section, we discuss how to actually construct a ngidable versiorC™ of a
ground calculugsd.

A trivial rigid variable versionC™ can easily be constructed by defining that, given
some ground conclusiafl,y of some ground premids,; and some substitutionthat

is grounding for a rigid variable premi$s., such thafl,,p = Il,4, then(Cyq, p) is a
rigid variable conclusion offl,..

Consider the following example from first-order predicatgit: As

Cea = {{T:p(a)}, {Tq(a)}}

is a ground conclusion of

Mg = {T:(p(a) V q(a))} ,

andIl,,p = II,4 for p = {X — «} and

I, = {T:(p(X) vV q(X))}

we conclude that

(Crv, p) = ({T:p(a)}, {T:q(a) }},{X = a})

is a rigid variable conclusion dfl,, in the rigid variable calculus. Such trivial rigid
variable conclusions are, of course, not what we want. Wenohto construct a rigid
variable calculus where the conclusion of the above prenmijsss the more general
conclusion

Cly = ({T:p(X)}. {T:q(X)}}, id) -

Thus, the general idea of lifting is to (repeatedly) repleseclusions (or sets of con-
clusions) of the trivial rigid variable calculus by more geal conclusions in such a
way that soundness and completeness is preserved.
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Theorem 4.2.20Let C andC’ be ideal rigid variable calculi for a logid. that are
identical except for their expansion rulésesp.£’.

If C is sound and complete and, for all signatutesc Sig, all rigid variable pre-
missedI overX} , and all finite set3V” of rigid variables,

fv?

1. for each rigid variable conclusioC’, ') € £'(X)(11), if C&! is any ground
conclusion oved:}; such that(C’, 7') <" (C®, id), then there is a rigid vari-
able conclusionC, 7) € £(X)(I1) such that{C, 7) <" (C®&4 id) (soundness)
and

2. for each rigid variable conclusiofC, 7) € £(X)(I1) there is a rigid variable
conclusionC’, ') € £'(X)(I1) such thatC’, ') <" (C, T) (completeness)

then the calculug’ is sound and complete as well.

The above theorem states the properties that a set of caomdugplacing a set of less
general conclusions must have to preserve soundness ampdeteness of the calculus.
It does not answer the question of how to construct such aroppate set of more
general conclusions. Unfortunately, there is no unifornthoé for constructing an
optimal set containing only most general conclusions. &lethowever, a method that
yields good results in most cases; it is the method that iallysused (in an informal
way) when a ground calculus is lifted in @u hocmanner. The idea is to replace
all occurrences of terms in a certain ground prenii§$ and in one of its ground
conclusiong”®¢ by arbitrary terms containing rigid variables and then teathwhat
most general substitutionhas to be applied and what other properties the new terms
have to have to make sure that using the resulting rigid brieonclusionC™, 7) as

a possible conclusion for the resulting rigid variable pissfi' leads to an expansion
rule satisfying the conditions of Theorem 4.2.20 and, thois sound and complete
calculus.

Example 4.2.21 Assume that{{T:p(f(b))}} is a ground conclusion of the ground
premiss{T:(a ~ b), T:p(f(a))}, i.e., the expansion rule allows the “application” of
equalities to terms in formulae.

We replace the term occurrences in the premiss and the coiclby arbitrary rigid
variable terms, namely the occurrencef¢#) by ¢, the occurrence af in a =~ b by ¢/,
the occurrence dfin a ~ b by s, and the occurrence gf(b) in the conclusion by'.

Now, it is easy to check that usind{T:p(s')}}, ) as a conclusion for the pre-
miss{T:(¢ ~ s), T:p(t)} preserves soundness and completeness according to The-
orem 4.2.20 ifr is a unifier oft’ and a subtermy’ of ¢ ands’ is the result of replacing
t"int' by st. a
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In some cases a more general conclusjoh 7') cannot be used, because it just
slightly violates the soundness condition in Theorem 4.2i2., for many or even
most—Dbut not for all—ground conclusiai®? such that(C’, ') <% (C®4, id) there

is a (less general) rigid variable conclusién, 7) with (C,7) <" (C®4, id). This
problem can be overcome if decidable symbolic (i.e., syiak} constraintscan be
formulated that separate the “good” from the “bad” groundatosionsC?,

The syntactical objects that are constituents of symbolnstraints have to be included
in the extended signatur&s that are used to construct tableau formulae, which imme-
diately implies that no constraints are attached to (a)dhmdlae in an initial tableau
and (b) the special tableau formula The constraints are made part of the label of a
tableau formula. A special set of tableau interpretatisnsed to define the semantics
of the ground calculus with constraints; in these integdrens all labels containing a
constraint that evaluates false represent a special world in which all formulae are
false (thus, if the constraint in a labelevaluates tgfalse, a tableau formula of the
form o:T:¢ is not satisfied byanytableau interpretation and a tableau formula of the
form o:F:¢ is satisfied byall tableau interpretations).

Example 4.2.22 Assume that the ground conclusi¢fiT:¢(succ(pred(n)))}} can be
derived from the premis§{T:¢(pred(succ(n)))}} for all termsn that cannot (syn-
tactically) be reduced t6. In that case, it is not sound to derive the rigid variable
conclusion{{T:¢(succ(pred(X)))}} from the premisg{T:¢(pred(succ(X)))}}.

If, however, the restriction that cannot (syntactically) be reduced@@an be formu-

lated as a symbolic constraifit # 0}, then it is sound forll termsn to derive the
ground conclusiof{T:{n # 0}:¢(succ(pred(n)))}} from {{T:¢(pred(succ(n)))}};

and itis, thus, sound to derive the rigid variable conclnsior :{ X # 0}:¢(succ(pred(X)))} 11
from the rigid variable premis§{ T:¢(pred(suce(X)))}}. O

The symbolic constraints attached to tableau formulaedrehecessary to preserve
soundness of expansion rule applications have to be cleaplgrated from constraints
that are used to organise proof search such as, for examgejrg constraints that
implement selection functions (see Section 5.5).

4.2.9 Semantics of Rigid Variable Tableaux

Rigid variable calculi usually do not have a model semartiesed on tableau inter-
pretations, because the truth of different tableau foreglantaining the same rigid
variable is interrelated. Nevertheless, it is possible ¢éing a semantics for rigid
variable tableaux based on the semantics of the groundovedia rigid variable
calculusC™; this semantics can be used to prove soundneS¥ dfy showing that ex-
pansion rule applications preserve satisfiability. Fovprg completeness, however,
one cannot use this semantics, because the completertesa érom Definition 3.5.6
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and Theorem 3.5.7 only apply to non-destructive calculil, agid variable calculi are
inherently destructive.

Definition 4.2.23 Let C*" be an ideal rigid variable calculus for a lodic and letC&4
be an ideal ground calculus flwsuch thatC™ is a rigid variable version af#d.

A rigid variable tablead™ over a signaturé&;, is satisfiedby a tableau interpreta-

tion (m, I) € TabInterp(X},) of C&¢ iff for all substitutionsr € Subst(3},) that are

grounding for7™, the ground tableaif’®® = T is satisfied by(m, ) (Def. 3.4.1).
0

Definition 4.2.24 Let C*" be an ideal rigid variable calculus for a lodic and letC&4
be an ideal ground calculus flwsuch that’™ is a rigid variable version af#d.

The calculuC™ has thestrong soundness of expansion property for rigid variable
calculi if, for all signaturesXy, and all tableau’, 7" over Xf,: if 7" is a successor
tableau of7’, thenT" is satisfied by the all tableau interpretationslia Interp(3;,)
that satisfyl’ (Def. 4.2.23). O

Lemma 4.2.25LetC™ be an ideal rigid variable calculus for a logik, and letC&4
be an ideal ground calculus fdi such thatC™ is a rigid variable version of’&d.

The calculuC™ has the strong soundness of expansion property for rigidabe
calculi (Def. 4.2.24) if and only i€8¢ has the strong soundness of expansion property
for ground calculi (Property 2 in Def. 3.5.8).

Proof: The lemma follows trivially from the definitions of the sourebs properties
and the relation between a rigid variable calculus and tsigd version. O

Theorem 4.2.26LetC™ be an ideal rigid variable calculus for a logik, and letCs¢
be an ideal ground calculus fdt such thatC*™ is a rigid variable version of.

If C™ has Property 1 from Definition 3.5.8 (appropriateness ofdéeof tableau inter-
pretations) and the strong soundness of expansion propartygid variable calculi
(Def. 4.2.24), the@™ is sound.

Proof: As C™ has Property 1 from Definition 3.5.8, théf has that property as
well, because the initial tableaux for a geof formulae are the same in both calculi.
SinceC"™ has the strong soundness of expansion property for rigicar calculi,
C#d has the strong soundness of expansion property for grodadlicéProperty 2 in
Def. 3.5.8) according to Lemma 4.2.25.

Thus,C&! is sound (Theorem 3.5.4), which implies tig4t is sound as well (Corol-
lary 4.2.19). O
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4.2.10 An ldeal Rigid Variable Calculus for PL1

In this section, as an example, an ideal rigid variable da$atf) , for first-order pred-
icate logic is defined, which is a rigid variable version o tround calculug®;
from Section 3.6 and can constructed frdé‘i1 using the lifting technique described
in Section 4.2.8.

For each first-order signatuke (see Section 2.3), the extended signaitjfecontains
the free variables fronVar as constants (see Section 2.3) and, in addition, the set
F#(3) of Skolem function symbols containing infinitely many syrisbof each arity
n > 0. Consequently, the sdlubForm(X},) is a language with the séterm(Xf,) of
terms (where all free variables and terms are of the samg aod it is easy to verify
that

TabForm(%f,) = (TabForm(Egd)fV

whereX}, is the extensions df by the setF** (%) of Skolem function symbols.

Example 4.2.271f a is a constant of the signatdr but it is not a Skolem constant,
then the atomp(a) is a formula ove: and the extended signaturgg, and>, . If cis

a Skolem constant, theric) is a formula oved’;; and¥; but not overs. The atoms
p(X) andp(c, X) are formulae only oveE;,. Note thatp(c, z) is not a formula over
any signature, as formulae must not contain free objechlbas. O

The set of labels and the initial label 6F are the same as that &%, i.e., the labek
represents the single world of PL1-models.

To define the expansion rule 6f¥, we again us@nifying notation i.e., tableau for-
mulae with rigid variables are devided inte, -, -, and~-formulae according to
Table 3.1 in the same way as ground tableau formulae.

The expansion rule schemata®f are constructed lifting the schemata@®f. The
schemata for premisses consistingwef 3-, andvy-formulae are obviously stable w.r.t.
replacement of terms by terms; new rigid variables are thtced by rule applications
to premisses containingformulae.

The schema for premisses consistingdefbrmulae can be lifted as well, provided
that an appropriate version of the schema is used. As is easlyeick, the version
of the schema is stable where all ground terms occurring oradlad(z) are made
arguments of the Skolem term that replaces the bound obgeibler. Thus, the
main difficulty in designing an ideal rigid variable calcsltor PL1 has already been
overcome by designing a stable ground expansion rule scfemdormulae.

Definition 4.2.28 Given a signatur& € Sigp;,,, afree variable Skolem term assign-
mentis a functionskoy, assigning to each-formula¢ € TabFormer,(Xf,) a term

SkOfV(QS) = f(Xla cee 7Xk) € TermOPLl(E;kv)

such that
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1. (a) f € Fobo(D),
(b) k = ag*(f), und

(c) X4,..., X are the free variables occurringn

2. for all f' € Fk (%), if f' occurs ing, thenf > f' where> is an arbitrary but
fixed ordering onF*#(%); and

3. for all 6-formulaey € TabFormpr,(X*), if sko(y) = f(X1,...X}), then the
formulae¢ andv are identical up to renaming of bound object variables and up
to replacing all occurrences of free variablésby X/ (1 < ¢ < k). O

The expansion rule of the ground calculifs is only unstable for premisses allowing
to close a branch. It requires the formulae in the two complaiary atomd :x:G and
F:x:G that form the minimal premiss for the deduction _bfto be identical. Thus,
the rigid variable version of the rule schema for closingniofees is that a premiss
[T = {T:x:G, F:xG"} allows the deduction of a conclusiof{ L}}, u) if 1 is a unifier
of G andG’. As it is sufficient to use set of most general conclusionst{Se 4.2.8),
the restriction to conclusiong{_L}}, ) wherey is amost generalinifier of G andG’
preserves completeness.

In Table 4.2, the rigid variable expansion rdl& | of Cy ; is given schematically; and
the following is its formal definition:

Definition 4.2.29 The expansion rul€yy , of Cpy, is, for all signatures € Sigp;,
and all premisseH C TabFormpr,(X},), defined by: the sef(X)p; , (II) of possible
conclusions is the smallest set containing the followiggdrivariable conclusions:

—{{{a1, 0}, id)} foralla €T,

- {<{61}: {52}7 Zd)} for all ﬂ € H;

—{{{m1(X)},id)} forall~ € Il and all rigid variablesY € Var,

—{{{o(t)},id)} for all 6 € I1 wheret = skoy, (0) (Def. 4.2.28),

—{{{L}, )} if T:0:G, F:0:G' € II such that7, G’ € Atompr1(X},) are
unifiable atoms, angd is an MGU ofG andG’

It is easy to check that the calculd§; , is a rigid variable version of the sound and
complete ground calculu®:,; defined in Section 3.6, which (using Corollary 4.2.19)
implies soundness and completenesSif .

Theorem 4.2.30The calculug’y ; is sound and complete.
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a B V() 0(x)
(¢3] Bi | B 71 (X) d1(1)
%) whgreX i.s any wheret = skoy, ()
rigid variable (see Def. 4.2.28)
¢
Y
1

where¢ andt) are unifiable atomic formulae and
an MGU of¢ andv is applied to the tableau

Table 4.2:Rigid variable rule schemata for first-order predicatedogi

4.2.11 An ldeal Rigid Variable Tableau for the Modal Logic K

As a second example, we define a rigid variable ver§jpf the ground calculug§i™”
for the modal logid< from Section 3.7.4, which an expansion rule that is contirsuo
w.r.t. premisses containingformulae and that is, thus, for these premisses liftable.

Since Formmoq(X) is @ not a language with terms, rigid variables are not intced
into the formula part of a tableau formulae but into labdig; et of labels of *" is a
language with terms (where terms are natural numbers)., Theset of labels ofy’
is Labg, = CondLab(N U Var) (where CondLab(N U Var) is defined analogously to
CondLab(N), see Definition 3.7.1), with the initial labél Using this setlaby, of
labels, we trivially haveTubFormy, (Smoa) = (TabFormga(Smoa))™ (the signatures
are not extended by additional [Skolem] symbols).

As in calculi for first-order predicate logic, the expansrake schemata is obviously
stable for premisses consisting @f and g-formulae. The role of the schema for
v-formulae inCpy,, however, is now played by the schema for théormulae of
modal logics. This schema allows, for example, to derivenfeopremisgI containing
T:1:0G the conclusion{{T:1.(n):p}} for all n € N. The schema is liftable, and its
rigid variable version allows to deduce froihthe conclusion{{T:1.(X):p}} for all
rigid variablesX .

When a branch is closed, all rigid variables occurring in ltdeels of the involved
complementary atoms are instantiated because the labadgdnae justified by other
labels on the branch, and all non-conditional positiongbels are ground (i.e., they
consist of natural numbers and not of variables). For exangamplementary atoms
¢ = T:1.(X):p and¢, = F:1.(Y'):p can only be used to close a branch if the branch
contains formula such ag = T:1.1:¢ whose label justifies (instances of) the label
1.(X) and1.(Y). Thus, the conclusiot{{ L }}, {X — 1,Y — 1} is derived from the

premiSS{¢1, ¢27 w}

In Table 4.2, the rigid variable expansion rdlg , of C;v ; is given schematically; and

(0]
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Q v T:0:0G F:0:0G

o o ‘ o T:0.(X):G Fo.(X):G

&2 forall X € Var
T:0:OF F:0:0G T:0:0G F:.o:m-G
T:0.n:G F:on:G F.o:G T:0:G

wheren = |G wheren = [-G]

T:.0:G
F.o':G
1

if there is a substitutiop such thato ] = [0’ ] and
that label is justified by formulae on the branch
after has been applied;
a most general such substitutiprnas to be applied to the tableau

Table 4.3: Expansion rule schemata of the rigid variable calculgs for the
modal logicK].

it is formally defined as follows:

Definition 4.2.31 For all premisseB C TabFormmea, the se€’(X)(I1) is the small-
est set containing the following conclusions (whérgis any bijection from the set
Formmeq(2) of modal formulae to the set of natural numbers):

—({{a1,0}} for all o € I,

{51}, {Ba}},id) forall g eI,

{{T:0.(X):G}},id) forall T:0:0G € ITand allX € Var,
{{F:0.(X):G}},id) forall F:0:0G € ITand allX € Var,
{{F:0.n:G}},id) forall F:0:0G € II wheren = [=G,
{{T:o.n:G}},id)  forall T:o:OG € Il wheren = [G],

{{L}}, ) if T:0:G, F:0":G € Il andyu is a most general substitution
such thafou] = [0'u], andop, o' i are justified bylT .

N o~ o~ o~~~

There may be different ways to instantiate variables in allabch that it is justified
on a tableau branch.

Example 4.2.32Consider the premiss

IM={T:1.1.1:q, T:1.2:r, T:1.(X):p F:1.(X):p} .



100 Chapter 4: Enhancements

The setrv

mod

(IT) of consists of the conclusions

({1 A{X = 1}) and ({{L}},{X = 2}) .

The calculugy is sound and complete, because it is a rigid variable versidhe
sound and complete calculd®" defined in Section 3.7.4.

Theorem 4.2.33The calculug’y’ for the logicK is sound and complete.

Example 4.2.34 As an example, we again prove unsatisfiability of the forndafeom
Examples 3.7.16 and 3.7.22, now using the rigid variableutasC;’ defined above.

A closed rigid variable tableali’>" for GG that has been constructed using the expan-
sion rule ofCi?™ is shown in Figure 4.1 (the figure shows the tableau formuldle w
uninstantiated rigid variables; the substitutions thaeha be applied during the con-
struction of the tableau proof are listed separately).

The proof has the same structure as that shown in Figure 3i2hvis constructed
using the ground version of the calculus. The differencéas, twhen the expansion
rule schema for-formulae is applied to add formulae 6, 7, and 19, the labe ith
introduced does not have to be “guessed”. Instead, the vayidble labeldl.(X}),
1.(X5,), and1.(X3) are introduced, respectively. The rigid variables areaimsated
later on when the expansion rule is applied to close the teftthe right branch of the
tableau.

When the left branch is closed, it is not sufficient to applyshbstitutioq X; — X},

i.e., ({{L}},{X1 — Xy}) is not a valid conclusion of any premiss on the left branch
of the tableau, because the labglX,) is not justified. BothX; and X, have to be
instantiated with 1, such that the justified labgll) is created.

After oy = {X; — 1, X5 — 1} has been applied to the tableau, closing the middle
branch does not require a further instantiation of rigidalales. However, to close the
right branch, the substitutiaon, has to be applied, that instantiatg€g with 2.

This example demonstrates the advantage of using rigidbas. When the branches
are closed, there is only one most general substitutioncirabe applied (in this ex-
ample), i.e., in each case the choice of instantiationgéar variables is deterministic.
Contrary to that, when the ground version of the calculusedy new labels indeed
have to be guessed because at the points where labels aduirgd, it is not obvious
whether the label.(1) or the labell.(2) should be used, which corresponds to the
alternative of instantiating any of the rigid variablesiwgither 1 or 2. O
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- 1 T:1:0(=p V q) AOp A (O—g V O—p)
Substitutions

to be applied: (21 T:1:0(=p V q)
o ={X;1—1,Xy— 1} 3y T:1:Op A (O—g V O—p)
o ={Xs =2} 43 T:1:0Op

53 T:1:0—q vV O—p
62 T:1.(X1):=p V q

(74 T:1.(X3):p
85 1:1:0—q 195 T:1:0—p
og) T:1.1:—¢q 179 T:1.2:=p
[1x10) F:1.1:q g1z F:1.2:p
(126] T:1.(X7):=p 1136] T:1.(X1):¢q 11941 T:1.(X3):p
11412] F:1.(X4):p [16:11,13] L [20;18,|19]J_

[157,14] L

Figure 4.1: The tableadl 5" from Example 4.2.34 is the result of applying the
listed substitutions to the above tree.

4.3 Universal Variable Calculi

4.3.1 The Idea of Universal Variable Calculi

Under certain conditions, there is an alternative use @& ff&riables for strengthen-
ing a tableau calculus. Instead of using a free variable ppoesent a single but un-
known term, it can be used as well to represahterms. Then, a formula containing
such a free variable stands for the set ddll formulae that are the result of replac-
ing by some term. Intuitively, these free variables can be sedreang universally
guantified on the meta-level; accordingly they are callad/ersal variables In the
following, to clearly separate rigid and universal vared)lwe use the variables in
the setVar only as rigid variables; universal variables are taken ftbenseparate set
UVar = {x1, s, ...} that is disjoint fromVar = { X, X,,...}. Universal variables
are never instantiated; no substitutions are applied tedal containing universal
(and no rigid) variables.

Definition 4.3.1 Let L be a logic. A free variable calculu&" for L is auniversal
variable calculug(for L) if its tableau formulae only contain free variables frore th
setUVar and not from the seVar. O
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Definition 4.3.2 Let C" be a universal variable calculus for a lodiglet X € Sig be
a signature; and lek C TubForm(Xf,) be a set of tableau formulae.

The setlnst(®) C TabForm(Xy,) of instanceof formulae in® is defined by:
Inst(®) = {¢7 | 7 € Subst™ (2*) is grounding forp} .
O

Idealness and other syntactical notions such as conchkisind expansion rules are
defined for universal variable calculi in the same way as fougd calculi.

The advantage of using universal variables is the followi@dten several different
instances of a tableau formula containing free variable® lta be used to close a
branch (or a subtableau). In rigid variable calculi the nasi$m to do so is to ap-
ply the expansion rule more than once to premisses that alewntroduction of
new rigid variables to generate variants of the tableau ddemm Rigid variables are
not implicitly universally quantified (as it is, for instancdet case with variables in
clauses when using a resolution calculus). Suppose a tabl@mchB contains a
formula ¢(X); assume further that the expansion of the tableau then @dsceith
creating new branches. Some of these new (sub-)branch&srconcurrences of the
rigid variable X'; when X is instantiated, the same substitution férhas to be used
on all of them. In particular situations, however, it may lesgible—without destroy-
ing soundness of the calculus—to add the formi(la) to B. In such cases, different
instances)(t) of ¢(x) can be used to expand the brarg¢h-without first generating
variantso(X'), (X"), ... of ¢(X). Recognising such situations and exploiting them
yields shorter tableau proofs, and in most cases reduces#reh space. If both uni-
versal and rigid variables are used in a calculus, then memergl substitutions can be
used in rigid variable conclusions as compared to the gooreing calculus that uses
only rigid variables.

Intuitively, if a branchB contains a tableau formut&x), that means that one could
add¢(t) to B for arbitrary termg without creating any new non-closed branches (this
intuition, however, is only appropriate if no informationhidden in the structure of a
tableau branch, i.e., if the calculus is ideal).

Example 4.3.3 Figure 4.2 shows an example for the usefulness of univeaselhles.
The tableau}” (top left in the figure) for the s = {(Vx)(p(z)), —p(a) vV —p(b)}
of PL1-formulae cannot be closed immediately as no singbstsution for X' allows
to add_L to both branches. To find a proof, the expansion rule has t@pkea again
to thevy-formulaT:(Vz)(p(z)) to add a variand(X') = T:p(X') of ¢(X) = T:p(X).
Then, the closed tabledy" (top right in the figure) can be deduced.

The tablead " (bottom left in the figure), however, that contains the folenlip(x)
instead ofT:p(X) can expanded to a closed tableBY (bottom right in the figure)
without applying a substitution, becau$ep(x) represents all formulae of the form
T:p(t), includingT:p(a) andT:p(b). O
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/TZP(X)\
T:=p(a) T:=p(b)
| |
F:p(a F:p(b)

e
T:=p(a) T:ﬂlp(b)
F:p(a) F:p(b)

b
T:=p(a) T:=p(b)
| |
F:p(a F:pl(b)

Jl_ T:p?X’)

with {X — «} and{X' — b} applied

T:(Vx)l(p(x))
Tr(ﬁp(a)lv —p(b))

e

T:=p(a) T:ﬂlp(b)

F:pl(a) F:pl(b)
1 1

Figure 4.2: Example for the usefulness of universal variables; theetabt
TV (top left), T3V (top right), TV (bottom left), 75" (bottom right) from Ex-

ample 4.3.3.
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An additional advantage of universal variables is that thelp to avoid redundan-
cies inherent to rigid variable calculi. If, for example,igid variable tableau branch
contains the formulae

(
P(X2) = Tip(Xy)
Y1 = F:p(a)
Yy = Fip(b)

then there are four different possibilities to close thenbha If, however, the branch
contains the universal variable formubéxz) = T:p(x) instead ofp(X;) and¢(Xs),
then there is only one conclusion that closes the branchelyafi.L }}, and not vari-
able has to be instantiated.

Universal variables in a tableau can be renamed arbitraslipong as all occurrences of
a variable in the same tableau formula are replaced by the sam variable. There-
fore, a premiss containing the complementary atdmg) and F:p(f(x)) can be
used to close a branch, as the universal variabtan be renamed in one of the two
atoms.

The method of using universal variables in a tableau cascidufirst-order predicate
logic has first been described in (Beckert & Hahnle, 1992) laas been further im-
proved in (Beckert & Hahnle, 1998). A universal variablécatus for modal logics

has been described in (Beckert & Goré, 1997). In (Bibel,2)98 technique called
splitting by neechas been proposed for the connection method; it is—like the u
versal variable method—based on the idea to avoid copying\ersally quantified

formula in cases where it is sound to use a single copy wiferéift instantiations for
its variables.

4.3.2 The Universal Variable Version of a Ground Calculus

Universal variable calcuti"” are usually constructed by lifting a ground calcudli$
(similar to rigid variable calculi), such that soundnesd eompleteness @i follows
from soundness and completenes€®f

Definition 4.3.4 Let C" be an ideal universal variable calculus for a loficand let
C#d be an ideal ground calculus frsuch that, for all signaturés € Sig, the extended
signatureX;; used byced is the signature for which

TabForm(X},) = (Ta,bForm(Egd))fv

holds, that has to exist according to the definition of fredalde tableau calculi
(Def. 4.2.3).
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The calculug" is auniversal variable versionf 8¢ (andC&! is aground version
of ™) if, for all (universal variable) premissék,, C TabForm(X},), the sets

| {5 (TT,a) | T is a finite subset ofnst (T, )}
and

({Eir,... Eara} | {Er,..., Es} € £%(T,,) and, forl < i < n,
; € Subst™ (34 ) is a substitution that is grounding fé; }

are identical. 0

The following theorem relates soundness and completeriessideal universal vari-
able calculus and soundness and completeness of its greusidiv. The proof ot the
theorem is constructive; thus, it provides an algorithmdonstructing a ground ta-
bleau proof from a universal variable tableau proof. As tfeugd tableau proof may
be exponentially larger, the only-if part of the proof is sswhat tricky; there is no
one-to-one correspondence between expansion rule ajptisan the ground an the
universal variable proof (in Example 4.3.7 an example ferttansformation is given).

Theorem 4.3.5LetC"" be an ideal universal variable calculus for a lodi¢ and let
C&d be an ideal ground calculus fdi such thatC"" is a universal variable version
of C&d (Def. 4.3.4).

Then, for all signature& € Sig and all finite set&7 C Form(X) of formulae, there is
aC"-tableau proof forGG if and only if there is a’#¢-tableau proof forG.

Proof: If-part: Assume thaTlgd, ..., T8 (n > 1) is a tableau proof fo& constructed
using the ground calculu@.

By induction oni, we prove that a sequen€g”, ..., 7"V of universal variable tableaux
for G exists such that for each branh" of 7" there is a branciBs! of 75¢ with

Form(B#&Y) C Inst(Form(B™)) .

That implies, as all branches of the closed tablgati contain 1, that all branches
of 7'V contain_L. Thereforel\"" is closed.

i = 1: An arbitrary initial tablead}"” for G does not contain any universal variables;
therefore, Form(B&) = Form(BY) = Inst(Form(B")).

1 — 1+ 1 Let de be the branch oﬂgd that has been expanded using a premiss
I1 ¢ Form(B&') and a conclusion’s! = { E%¢, ... E'}. According to the definition

of the relationship between universal variable calculi #rer ground version, there
has to be a premisE" on each branctB!" with Form(B") C Inst(Form(BM))
such that a universal variable conclusi@i’ = {E}", ..., E}V} can be derived from
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the premisdI"" WhereEfd C Inst(E}Y) (1 < j < k). Let the tablead’;y; be con-
structed from the tableal" by extending all such branches using the premi%s
and the conclusioo™.

Now, let B}YY, be an arbitrary branch iff;\',. The only interesting case is where

Form(BY,) = Form(B{) U EY for somej € {1,...,k}. But then the branciB¥;,

in 7% that has been constructed by extendBfg with E%* satisfies the condition in
the induction hypothesis, becauBerm (BE') ¢ Inst(Form(BM)) and, therefore,

Form(B%.) = Form(B&)U Ejgd
C Inst(Form(B;"™)) U Inst(E}")
= Inst(Form(B;") U E}")
Inst(Form(B;Y,)) .

Only-if part: Assume that/}"v, ..., 7 (n > 1) is a tableau proof fo6; constructed
using the universal variable calculds’.

By induction oni, starting from: = n, we prove the following:

Induction hypothesisFor each branciB" in T*¥ there is a se®&! C Inst(B}) of
ground tableau formulae such that every ground tableawchrB#' containing these
formulae can be expanded to a closed (sub-)tableau.

The use a kind of “backward” induction, starting froim= n, reflects the fact that
one first has to know which instances of universal variabtentdae are needed as
premisses to derive the leaves of the ground tableau, wheshdllows to compute the
instances needed in the premisses of the premisses, etc.

Once the induction hypothesis has been proven to hold fer, we can conclude
that the single branclB%d of the initial ground tableau can be extended to a closed
ground tableau, agorm(B&) = Form(BYY) = Inst(Form(BY)) where Bl is the
single branch of the initial universal variable tabl&gty.

i = n: AsT" is closed, each of its branché&y" contains | ; therefore, the sebsd
can be chosen to bl }. Every ground tableau branch containingrivially can be
extended to a closed sub-tableau.

i+1 — . Let B} be an arbitrary branch @f"". If B} is a branch off ¥, as well, we
are done. Otherwisd,, has been constructed froii}” extending the brancks;
using some premids§"’ C Form(B}") and a conclusio@™ = {E}",..., E}V}.

Let @%ﬁlﬂ. C Form(B}Y, ;) be the set of ground tableau formulae that exists according
to the induction hypothesis for the brangtiy, ; of 7}, that has been constructed by

expandingB;™ by Ej* (1 < j < k). Further, for allj € {1,...,k}, letr{,..., 7/ be
substitutions grounding fa}" such that all tableau formulae fnst(E£3") that occur
in ®&, arein{y_, Ev7).
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Choosebt’  Inst(Form(B})) to be the smallest set such that:

1. containing all ground formulae ifnst(Form(B}Y)) that occur in any of the
setsd¥), . (1 < j < k), and

2. containing all minimal premissd$? C Inst(Form(B}")) as subsets that are
necessary to derive the conclusiars = {E{"7, ..., Ey¥7) }wherer; € {1,...,1;}]
for 1 < j < k. Such premissds#? exist as subsets dfist( Form(B}")) accord-
ing to the definition of the relationship between a univevsaiable calculus and
its ground version.

Now, every ground tableau brand@j" such tha®?' c Form(B%') can be extended
to a closed sub-tableau as follows: Expd‘ﬁ\iﬂii repeatedly using all the conclusions
Ced = {E\r),..., E{¥7} } in such a way that in the construction of each resulting

new sub-branch each of these conclusions has been used ®heee are]’[;‘?:1 l;

of these conclusions; thus, the number of new sub-bransregonential ir]_[f:1 lj.
The pigeon-hole principle implies that each of the new stanthes contains for some

j € {1,....k} the formulae otll the extension& "7/ (r € {1,...,1;}); as otherwise
there would be a branch that does not contain S(E}*ﬂé"ﬂ; forall j € {1,...,k},
in contradiction to the assumption that all the conclusiphg‘7! , ..., E{¥7! } have

been used in the expansion of all new sub-branches.
We can conclude that each of the new sub-branches contaditsbblau formulae

in @fﬁl’j for somej € {1,...,k}, because a formulae in
@lgil’j C Inst(Form(B}Y, ;)) = Inst(Form(B}")) U Inst(E}")

is either an element dfust( Form(B}™)), in which case it occurs i’ according to
condition 1 in the definition of%' and thus onB$", or it is an element ofnst (E4)
and occurs, thus, by construction on the new sub-branch.

The induction hypothesis applies to each of the new subebemas they all contain
the formulae of one of the seﬂzfjilij, and they can all be extended to a closed sub-
tableau. Therefore, the bran&§” can be extended to a closed sub-tableau. O

Corollary 4.3.6 LetC"" be an ideal universal variable calculus for a lodic and let
C&d be an ideal ground calculus fdi such thatC"" is a universal variable version
of c&¢ (Def. 4.3.4).

Then,C" is sound and complete if and only(if is sound and complete.

Example 4.3.7 As the ground tableau proofs that are constructed from usaveari-
able proofs are exponentially larger, we can only presentallexample for one step
in that construction.
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Figure 4.3: A universal variable tableau proof (see Example 4.3.7).

Consider the universal variable tableau proof shown in legu3 (it is constructed
using the universal variable calculdgy, for PL1 presented in Section 4.3.6); as-
sume that the sub-tableaU¥" and7," are closed (the sédt of tableau formulae in
the initial tableau might, for example, contain the fornaula(—p(a) vV —p(b)) and
T:(—q(c) V =q(d))).

Assume further that the construction of a ground tableaafgexcording to the proof
of Theorem 4.3.5) has already been applied to all expanseps srecessary to gen-
erate the sub-tablealX™ and7,"”. We now consider the expansion step in which
the universal variable conclusidq T:p(x)}, {T:p(y)}} is derived from the premiss
{T:(p(x) Vp(y))}. Let BY be the single branch of the tableau before ajd
and BV the two branches of the tableau after that expansion rulécagipn. The
construction of the ground tableau proof has already paexrtéo the step where we
have closed sub-talblea(Bp%d anqugd that can be generated by expanding any ground
tableau branches containing certain instances of the faemanB,;" andB;", respec-
tively. Assume tha®s’ = {T:p(a), T:p(b)} and®&! = {T:¢(c), T:q(d)} are these sets
of instances.

Figure 4.4 shows the completed ground tableau proof. It $y ¢@ check that on
each of the new sub-branches either bbth(a) andT:p(b) or bothT:¢(¢) andT:q(d)
occur?. O

For many logics, the same decrease in the length of shontestspthat results from
using the universal variable technique can be achievedjusimon-analytic cut rule.
In the above example, one could use the cut formula

G = (Va)(Vy)(p(z) V a(y)) = (Vo)(p(2)) V (Vy)(a(y)) -

Then, the resulting branch that contains: could be closed using a sub-tableau proof
of constant size, whereas the branch containing could be closed using a sub-
tableau proof of the same size as the universal variabledalproof. Thus, in some
sense, the universal variable technique can be seen agiateglsapplication of the

2 Note that both in the ground and the universal variable @sexpansion rule schema fpiformulae
is used that allows to deriv&:(p(t) V ¢(t')) in one step fromT:(Vz)(Vy)(p(z) V ¢(y)) without
deriving first an intermediate formule (Vy) (p(¢) V ¢(y))
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Figure 4.4: A ground tableau proof constructed from the universal deida-
bleau proof in Figure 4.3 (see Example 4.3.7); to enhancdatslity, the labels
and truth-value signs are omitted (which areesp.T in all cases).

non-analytic cut rule (using the cut rule in an unrestrictey leads to an explosion in
the size of the search space).

In (Stenz, 1997), a transformation of tableau proofs coegtd using a universal vari-
able calculus for PL1 into ground tableau proofs is desdribEhat transformation,
however, only works if universal variables do never occunia conclusion with more
than one extension in the original proof, in which case a gdaableau proof can be
constructed whose size is polynomial in the size of the usalevariable proof.

4.3.3 Constructing a Universal Variable Calculus

In this section, we discuss the problem of how to construatigeusal variable ver-
sionC" of a ground calculugsq.

One possibility is to turn an ideal rigid variable versioi of &8¢ that has been con-
structed using the lifting technique described in Sectidhidto a universal variable
calculus. That can be done as follows: Given a universabbéipremisdl,,, re-
place the universal variablesin,, by rigid variables to construct a rigid variable pre-
misslI,,, where occurrences of a universal variablie the same formula are replaced
by the same rigid variable, but occurrencescah different formulae are replaced by
different rigid variables; and different universal valedare alway replaced by dif-
ferent rigid variables. Then, the set of possible univeraabble conclusions fa,,
consists of allC,,, that can be constructed from rigid variable conclusiofis,, 7)

of IT,, by

1. replacing each rigid variable that occurs in only one msiten ofC, by a uni-
versal variable, and

2. replacing each rigid variable that occurs in more thanextension o’ by a
ground termt € TabTerm.



110 Chapter 4: Enhancements

All occurrences of a rigid variable are replaced by the sameeusal variable resp.
the same term. Note that the substitutiom the free variable conclusion does not
play any role in the construction of the universal variat®clusion. The resulting
universal variable calculus is by construction ideal.

Example 4.3.8 Table 4.4 shows examples for the most important phenomeananiy
occur when the above method for computing universal vagiabhclusions is used.

(a) A new universal variable is introduced.

(b) A variable is distributed over two extensions; it loogssuniversal power and
has to replaced by ground terms.

(c) A variable occurs in only one extension and, therefamains universal.

(d) A combination of cases (b) and (c); the variablbas to be replaced by ground
terms whereas the varialbjeremains universal.

(e) Inthe rigid variable version a substitution has to bdiadgdo the tableau; in the
universal variable version it is not applied as the variab& would have to be
instantiated is universal.

() Inthis case, the method for constructing a universakimde conclusion does not
lead to an optimal result. Each of the two universal variadedistributed over
both extensions and they are therefore replaced by groumd tdHowever, the
alternative schema

T:p(e) < q(y)

©q
Tip(z) | Fop()
T:q(y) | Fq(y)
for PL1-formulae of the formp(x) < ¢(y) describes a sound expansion rule as
well; the two veriables remain universal although they astrithuted over two

extensions. This schema is sound provided that the univeagablesx andy
each occur in only one subformula of the prentiss. O

As Cases (a) and (b) in the above example demonstrate, iersalwariable calculi,
different variants (or instances) of a conclusion are gaeerby branching rule sche-
mata and not by the schemata that introduce new variablesragd variable calculi.

For certain formula classes, using a universal variableubasC" constructed from
a free variable calculu§™ can lead to proofs that are exponentially smaller than the
shortest proofs built using™ or its ground versior€s!. That notwithstanding, as

3 Intuitively, this more liberal schema is sound becausep(if and ¢(t') are equivalent for all
t,t' € Term, thenp(t) andgq(t) are either both true for all € Term or both false for alk € Term.
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Iy = T:(Vz)(p(z,y))

Iy = T:(Vz)(p(z,Y))
<Crv:7—> = <Tp(X: Y) ) Zd>

Cw = Tp(x, y)

Iy, = Tip(x) Agx)
I, = Trp()(f) )Aq(X)
Tp(X .
(Crn ) = () - )
_ Tip(z)
Cav = T:q(x)
(c)
_ T:p(f(a))
My T.f(x) ~x
. ([ ()
v T:f(X) ~ X
(Cr,7) = (Tip(a) , {X = a})
Cy = T:p(a)
(e)

I, = T:p(x) V q(x)
M, = T:p(X)Vq(X)
(Cry, 7) = (T:p(X) | T:q(X) , id)
Cow = Tip(t) | Trq(t)
forall t € Term
(b)

I, = Tip(z) V q(z, y)
II,, = T:p(X)Vq(X,Y)
(Cry,7) = (T:p(X) | T:q(X,Y), id)

Cow = Tpt)| Tt y)
forallt € Term

(d)
Iy, = T:p(x) <> q(y)
I, = T(rp()X ) <—>(q(§)
T:p(X) | Fip(X .
(Coo) = (1igv) | Frg(v) » ¥
o Tp®) [ Fp()
v T:q(t') | F:q(t)

forall ¢,t' € Term

(f)

Table 4.4: Examples for the construction of universal variable cosidos (see

Example 4.3.8).
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Case (f) in Example 4.3.8 shows, this construction not adnaglds an optimal uni-
versal variable calculus. In fact, the question whetherigeugal variable occurring
in the premiss can remain universal in the conclusion or ddstreplaced by ground
terms is undecidable in general (for the case of first-ordedlipate logic, this problem
is discussed in (Beckert & Hahnle, 1998)).

4.3.4 Semantics of Universal Variable Tableaux

Itis usually not possible to define model semantics for usialevariable calculi if both
truth value sign§ andT can occur in tableaux. The reason is that, if one defiries

to be true inl (o) if ¢(t) is true inI(o) for all termst, theng(x) is false inI(o) if
there is a single termsuch that(t) is false inl (o), i.e., F:0:¢(x) is satisfied if there

is a single ternt such that-:0:¢(¢) is satisfied, which is not the intended semantics of
the universal variable.

Therefore, we define semantics tableaux of a universalbaralculuL"" based on
the semantics of the tableaux of the ground versinof C"¥; where the relationship,
however, is different from that between the semanticsigii variable and ground
tableaux.

Definition 4.3.9 Let C"Y be an ideal universal variable calculus for a lobicand let
C#! be an ideal ground calculus fdr such thatC"v is a universal variable version
of ced,

A universal variable tableau formufac TabForm(X?,) is satisfiedby a tableau inter-
pretation(m, I) € TabInterp(X*) of C& iff all ground tableau formulae ifnst({¢})
are satisfied bym, 7). O

As in the ground case, a branéh, of a universal variable tableau is satisfied by a ta-
bleau interpretatiofim, 7) if it satisfies all formulae orB,, (or, equivalently, if it sat-
isfies all formulae innst(B,)); and,(m, I) satisfies a universal variable tabl€Bu

if it satisfies at least one branch Bf,.

Lemma 4.3.10LetC"" be an ideal universal variable calculus for a lodig and let
C#d be an ideal ground calculus fdi such thatC"" is a universal variable version
of c&d,

The calculusC" has the strong soundness of expansion property w.r.t. thieda
interpretations o8¢ if and only ifC&¢ has the strong soundness of expansion property
(Property 2 in Def. 3.5.8).

Proof: The lemma follows trivially from the definitions of the souress property and
the relation between a universal variable calculus anddsrg version. O
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Theorem 4.3.11LetC" be an ideal universal variable calculus for a lodic and let
C&d be an ideal ground calculus fdt such thatC"’ is a universal variable version
of C#d.

If C* has the soundness properties from Definition 3.5.8 (appatgmess of the set of
tableau interpretations and strong soundness of expapgioanC"" is sound.

Proof: As C"" has Property 1 (strong appropriateness of the set of taliéawpre-
tations) from Definition 3.5.8, the@&! has that property as well, because the initial
tableaux for a sef of formulae are the same in both calculi. Sin€€ has Prop-
erty 2 (strong soundness of expansiaff has that property as well (according to
Lemma 4.3.10).

Thus,C&! is sound (Theorem 3.5.4), which implies tli#t is sound as well (Corol-
lary 4.3.6). O

4.3.5 Mixing Rigid and Universal Variables

A universal variable calculus can syntactically be congddo be a ground calculus
(as it does not contain rigid variables) and can thus belléied enriched by introduc-
ing rigid variables. Then, both universal and free varialdecur in tableaux. We call
such a calculumixedvariable calculus.

The method from Section 4.3.3 for constructinguaiversal variable version of a
ground calculug®? from a rigid variable versiod™ of C&¢ can be adapted such that it
can be used to construct a mixed variable calcdltiSthat is a rigid variable version
of a universal variable version @®¢ and thus uses both the universal and the rigid
variable technique.

The construction starts in the same way as for building a pareersal variable cal-
culus: Given a mixed variable premiBs,, (i.e., a premiss containing both rigid and
universal variables), construct pure rigid variable pissti,, by replacing the univer-
sal variables ifil,,,, by rigid variables, where—as before—occurrences of a usale
variablez in the same formula are replaced by the same rigid variabtedzurrences
of x in different formulae are replaced by different rigid vénes; and different uni-
versal variables are alway replaced by different rigid alales. In addition, we now
assume that the new rigid variables that are introduced iffexeht from the rigid
variables that already occur in,,. Then, the set of possible mixed variable con-
clusions forll,,, consists of allC,,, that can be constructed from a rigid variable
conclusion(C.,, ) of TI,, by

1. replacing all rigid variables in',, that have been introduced as a replacement
for a universal variable and occur in only one extension 6f, by the original
variablez,
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2. replacing all rigid variables i@, that have been introduced as a replacement for
a universal variable and occur in more than one extensia@r,aby an arbitrary
rigid variable,

3. restricting the substitutionto the rigid variables that occur in the original mixed
variable premiss$l,,,, .

The second step above may seem redundant; but it is needadskeedor example,
{{T:p(X)}, T:q(X)}} must be a conclusion df{ T:p(x) V ¢(x)}} for all rigid vari-
ablesX. Intuitively, expansion rule applications that destroyvensality of a vari-
ablexz must allow the deduction of an arbitrary number of variaritdhhe conclusion
containing different rigid variable&” instead of the universal variabde

Example 4.3.12Tables 4.5 and 4.6 show examples for mixed variable presmsse
the mixed variable conclusions that are computed for themmigses using the method
described above (cf. Table 4.4 and Example 4.3.8 whereaiexamples are used to
demonstrate the construction of (pure) universal variablelusions).

(&) A new universal variable is introduced. The rigid variablg is not affected.

(b) The universal variable is distributed over two extensions; it looses its universal
power and has to replaced by an arbitrary rigid variableThe rigid variablet”
is not affected.

(c) The universal variable occurs in only one extension and, therefore, remains
universal. The rigid variabl® is not affected.

(d) A combination of cases (b) and (c); the universal vadgabhas to be replaced
by an arbitrary rigid variabléX whereas the variablg remains universal. The
rigid variableZ is not affected.

(e) Intherigid variable version, a substitution has to b@iep to the tableau; one of
the instantiated variables (the rigid variabl¢ has been introduced as a replace-
ment for the universal variable, the other instantiated variable (the rigid vari-
ableY’) already occurred in the mixed variable premiss. In the chixariable
conclusion only the rigid variabl¥ that occurred in the premiss is instantiated.

(H This example demonstrates that a universal varight®ses its universal power
and has to be replaced by an arbitrary rigid variallé& it occurs in a term in
the range of the substitution that is part of the free vaea&oinclusion. O

As shown in Case (f) in the above example, a universal varibas to be replaced by
a rigid variable if it occurs in the range of a substitutioatts applied to the tableau.
Consequently, if one has the choice to either instanstatéth Y or instantiaté” with
(arigid replacement) fox, it is better to choose the former possibility.
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Mo = T:(Vz)(p( )
My = T:(V)(p(x,Y, Z))

(Cry,m) = (T:p(X,Y,7), id)
(Cov, 7) = (Top(m,y,Z) , id)
(a)

I, Tp(z,Y)Vg(e,Y)
II,, = Tp(X,Y)Vq(X,Y)

(Crv,7) = (Tip(X,Y) | Tq(X,Y), id)
<Cmv:7->: <T:p(X,Y) T:Q( ) )7 Zd>

(b)
My = Tip(x,Y) Ag(e,Y)
My = Tp(X,Y)Ag(X,Y)
Conth = 2T i)
Cor) = (o) id)
(c)
My = Tp(x, Z)Vq(z,y, Z)
m,, = Tp(X, Z)V ¢(X,Y, 2)
(Cr,m) = (Tip(X, 2) | Twq(X,Y, Z) , id)
(Coy, 7) = (Tp(X,2) | Tiq(X,y, Z) , id)

forall X € Var
(d)

Table 4.5: Examples for the construction of mixed variable conclusidfirst
part), see see Example 4.3.12.
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Hrv =

(Cry,7) = (Tipla), {X = a,Y —b})
<Cmva T> = <T:p(a) ) {Y = b}>

(€)

Tip(f(z))
F:p(Y)

T:p(f(X
v = 5;(;7((3/)))

(Crvym) = (L, {Y = [(X)})
(Coy,7) = (L, {Y = fF(X)])

forall X € Var
(f)

Table 4.6: Examples for the construction of mixed variable conclusi¢second
part), see Example 4.3.12.

In the design of mixed variable calculi, a generalised motd unification, which
we calluv-unification plays an important role. In the rigid variable as well ashe
universal variable case, standard unification as definedatich 2.2.3 is sufficient (the
difference is that in the universal variable case unifieesrent applied to the tableau).
In the mixed variable case, however, both types of variatd@soccur simultaneously,
and uv-unification has to be used, which takes the differatuine of both types of
variables into account.

Definition 4.3.13 Let ¢ and be tableau formulae over a signatutg, containing
both rigid and universal variables; and let

Tn={x1— Xy,...,xpy = X} and p={y, —» Y1,...,y, = Y1}

be substitutions that replace all universal variables iasp.y) by new rigid variables,
i.e.,

1. z,,...,x; are all the universal variables occurringdgnandy,, ..., y, are all
the universal variables occurring in

2. Xq,..., X, Y1, ..., Y are pairwise distinct rigid variables neither occurring in
¢ norinay.
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A substitutionu € Subst (X ) is auniversal variable unifier (uv-unifieQf ¢ and
if it is the restriction of a unifier ofhpr andp to the rigid variables occurring in
and/ory. O

Note that both the domain and the range of a uv-unifier corgalg rigid and no
universal variables.

Example 4.3.14The substitution{Y — b} is a uv-unifier of the tableau formu-
lae T:p(x,Y) and T:p(a, b); the empty substitutiond is a uv-unifier of T:p(x) and
T:p(f(x)); and{X — f(Y)}is a uv-unifier of T:p(X) andT:p(f(y)). m

The definitions of the semantics of rigid and universal J@ddableaux (Def. 4.2.23
and Def. 4.3.9) can easily be combined to define a semantiagsif@d variable ta-
bleaux:

Definition 4.3.15 Let C™" be an ideal mixed variable calculus for a lodic and let
C&d be an ideal ground calculus fdr such thatC™" is a rigid variable version of a
universal variable version @f.

A mixed variable tablead™" is satisfied by a tableau interpretatiom, 7) of the
ground calculugs! iff, for all substitutionr € Subst(X*,) such thatI™ 7 does not
contain rigid variables, the tablegi"' 7 is satisfied by(m, I') according to Def. 4.3.9
(satisfiability of universal variable tableaux), i.e.,hiere is a brancl8 of 7™Vr such
that(m, I) satisfies all (ground) tableau formulaeliwst ( Form(B)). O

4.3.6 An ldeal Mixed Variable Calculus for PL1

In this section, we define a mixed variable calculf#s, for PL1. Itis constructed from
the pure rigid variable calculu®;, described in Section 4.2.10 using the method for
computing mixed variable conclusions from Section 4.3.5.

For each first-order signatude (see Section 2.3), the extended signatiigs now
contains the rigid variables frorfiar and the universal variables frofVar as con-
stants (see Section 2.3) and, in addition, the/&&t(3) of Skolem function symbols
containing infinitely many symbols of each arity> 0. All free (rigid and universal)
variables are of the same sort.

The set of labels and the initial label 6V are the same as that 6¢¢ andC™, i.e.,
the labelx represents the single world of PL1-models.

As before, unifying notation is used to describe the exmangile ofC™, and the set
of tableau formulae divided inte-, 5-, v-, andd-formulae according to Table 3.1.

As said above, the expansion rule schemat&"f are constructed from the sche-
mata ofC™ using the method described in the previous section. ThensataeofC™"
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o g

o Bip | Bap

@2 for all substitutionp = {z; — X1,...,z; — X3}
wherex,, ..., x; are the universal variables occurring

in both 3, and, and{ X}, ..., X} are rigid variables

() 0()

71 () d1(2)
for some wheret = skoy, (0)
universal variablec (see Def. 4.2.28)

not occurring iny

I—‘@I <

where¢ andt) are unifiable atomic formulae; and
a most general uv-unifier af, ¢ is applied to the tableau

Table 4.7: Rule schemata for first-order predicate logic using botensal and
rigid variables.

differ notably in two ways from the corresponding schemditthe rigid variable cal-
culusC™: First. it is not the schema for-formulae any more that introduces variants
of a formulae with different rigid variables but the scheroa f#-formulae. Second,
the schema for closing branches applies substitutionsrenqlyires thatigid variables
are instaniated (and no universal variables); that is,ptiap a most general uv-unifier
(Def. 4.3.13) of the complementary atoms.

The same Skolem terms are used as in the rigid variable ca$e4[2.28); however,
all free variables, i.e., both universal and rigid variablare made arguments of the
Skolem term.

In Table 4.7, the expansion rule for premisses that contath bgid and universal
variables is given schematically for the different formtylpes.

The following is the formal definition of the expansion rdl&", of the mixed variable
calculusCpy;.

Definition 4.3.16 The expansion rul€ry; of Ciy; is, for all signatures € Sigpr,
and all premisseH C TabFormpy, (3}, ), defined by: the set(X)py, (IT) of possible
conclusions is the smallest set containing the followingedivariable conclusions:
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—{{{a1, s}, id)} for all o € 11,
—{{{Bip}. {Bap},id)} forall 5 € Tand allp = {x; — Xi,...,xx — X;} where

xi,...,x; are the universal variables occurring in bgih
andfj, and{ X, ..., X\ } are rigid variables,

—{{{m(x)},id)} for all v € Il wherex is a universal variable not occurring
in-,

—{{{o(t)},id)} for all 0 € 11 wheret = skog, (0) (Def. 4.2.28),

—{{L}, )} if T:0:G, F:0:G" € Tl such that7, G' € Atompr(35,,) are

unifiable atomsy: is a uv-unifier ofG andG’.
O

Theorem 4.3.17 The calculug’sY; is a rigid variable version of a universal variable
version of the calculu§p;,; defined in Section 3.6.

Corollary 4.3.18 The calculug’l}, is sound and complete.

4.3.7 An ldeal Mixed Variable Calculus for the Modal Logic K

In this section, we define a mixed variable vers@§t of the calculusC?" for the
modal logicK from Section 3.7.4, i.e., a calculus with continuous exmansule
schema fow-formulae. As in the rigid variable version, free variabéese introduced
into labels (and not in the formula part of tableau formulag)e set of labels of the
mixed variable calculus is

Lab,, = CondLab(NU Var U UVar)

with the initial labell.

The relationship between the mixed variable calc@lpgsand the rigid variable calcu-
lusCy is similar to that between the mixed variable calcul#§, and the rigid variable
calculusCyy , for PL1: InCpy , variants of a formula are generated by applying the ex-
pansion rule toy-formulae, whereas i@z}, such rule application introduce universal
variables, and variants are generated by expansion ruleajgns tos-formulae that
distribute universal variables over different branchamil@rly, in Cy’, variants of ta-
bleau formulae are generated by applying the expansionaquléormulae, whereas in
CRY universal variables are introduced by rule applicationstormulae, and variants
are generated by expansion rule applications-formulae when universal variables
are distributed over different branches and loose theirarsal power.

In the rigid variable calculu€y’, because of the justification test, all variables occur-
ring in a pair of complementary atoms are instantiated wherptir is used to close a
branch. For example, a pdir1.(X):p, F:1.(Y"):p can only be used to close a branch if
formulae such a3:1.1:¢ are available to justify the labels of the complementary. pai
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o g

o Bip | Bap

@2 for all substitutionp = {z; — X1,...,z; — X3}
wherex,, ..., x; are the universal variables occurring

in both 3, and, and{ X}, ..., X} are rigid variables

T:0:0G F:0:0G T:0:0G F:0:0G
T.o.(x)G Fio.(x):G T:on:G F:on:G
for somex € UVar notino wheren = |G wheren = [=G]
T:0:0G Fio:mG
F:o:G T:0:G
T:0:G
F:0o"G
1

if there are a substitution € Subst,, and substitutiong, p' € Subst,,
such thafopp] = [0'p'p] and
the labelsypp ando’p' 11 are justified by formulae idnst (Bpu)
whereB is the branch being expanded; a most general such sulmstituis to be applied to the tabl

Table 4.8: Expansion rule schemata for the calcullf’.

Thus, the substitutiodX — 1,Y +— 1} has to be applied in that case. If, however,
complementary atoms containing universal variables agd,usuch ag:1.(x):p and
F:1.(y):p, then one still has to check that there are formulae on thechrthat justify

an instancd.(n) of 1.(z) and1.(y), but it is not necessary to actually instantiate the
universal variableg andy to close the branch.

In contrast to the expansion rule of the mixed variable dakdpy, for PL1, the
expansion rule of the mixed variable calculis’ for K is not defined using the notion
of uv-unification, because the free variables in labels aténstantiated with complex
terms but only with other free variables or with natural nemsh Mixed variable labels
are unifiable if there are substitutions instantiating thiwersal variables they contain,
respectively, and another common substitution instangdheir rigid variables, such
that the combination of these substitutions is a unifier efléibels. The substitutions
instantiation universal variables and the substitutistentiation rigid variables cannot
influence each other, and only the rigid variable substituis applied to the tableau.

The expansion rul€z™ of Cg" is shown schematically in Table 4.8. Formally it is
defined as follows:
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Definition 4.3.19 The expansion ruléz of Cy" is, for all signature& € Sig,,,q @and
all premissedl C TabFormu,.q(%), defined by: the sefY (3)(I1) is the smallest set
containing the following conclusions (whefd is any bijection fromForm,,,q(X) to
the set of natural numbers):

—({{a1, a2}} for all o € I,
—({{Bip}. {Bap}},id) forall p e ITand allp = {x; — Xy, ...,z — X;} where
xi,...,x; are the universal variables occurring in bgih

andfj, and{ X, ..., X\ } are rigid variables,

—({{T:0.(x):G}},id) forall T:0:0G € Il wherex € UVar is a universal variable
not occurring ino,

— ({{F:0.(x):G}},id) forall F:0:OG € Il wherex € UVar is a universal variable
not occurring ino,

—({{F:0.n:G}},id) forall F:0:0G e Il wheren = [-G],
—({{T:0.n:G}},id) forall T:0:0G € IT wheren = [G],

—({{L}}, ) if T:0:G, F:0":G € Il andyu is a most general substitution
in Subst,, for which there are substitutions p' € Subst,,
such thafopu| = [o'p'] and the labelspp ando’p'1 are

justified byTI .
O

Theorem 4.3.20The calculug’y" is a rigid variable version of a universal variable
version of the calculu§yk defined in Section 3.7.4.

Corollary 4.3.21 The calculug’y" is sound and complete.

Example 4.3.22We continue from Examples 3.7.22 and 4.2.34 and again prwve t
formula
G =0(=pVq)AOpA (O=gV Op)

to be K-unsatisfiable, now using the mixed variable calculgs defined above. A
closed mixed variable tabledtfo" for G is shown in Figure 4.5.

When the expansion rule is applied to théormulae 2 and 4 to add formulae 6 resp. 7
to the tableau, the universal variabesresp.z, are introduced (instead of introducing
rigid variables).

When the expansion rule is applied to formula 6, and form@aand 13 are added
to the tableau, the universal varialtan the premiss loses its universal power as it is
distributed over both extensions; in 12 and 13 it is repldnethe rigid variableX;.

In the rigid variable version of the proof, the substitut{oX, — 1, X, — 1} hasto be
applied to close the left branch of the tableau. Now, howetertableau contains the

4 The figure shows the tableau formulae with uninstantiatgid viariables; the substitution\; +— 1}
that has to be applied during the construction of the prolidtied separately.
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1] T:l:D(ﬁp V q) A OpA (<>—|q V <>—|p)

Substitution
to be applied: 21 T:1:0(=p V q)
o ={X; —~ 1} 3y T:1:Op A (O—g V O—p)
43 T:1:0p
53 T:1:0—q vV Op
62 T:1.(x1):—p V q
(7:4) T:1.(x2):p
85 T:1:0—q 19,5 T:1:0—p
o8] T:1.1:—¢ 179 T:1.2:=p
[1g10) F:1.1:q g1z F:1.2:p
[126] T:1.(X7):=p 1136] T:1.(X1):q [197,18) L
11412] F:1.(Xq):p [16:11,13] L
[157,14] L

Figure 4.5: The tableadls>" from Example 4.2.34 is the result of applying the
substitutiono; to the above tree.

universal variable, instead ofX,. Thus, it is sufficient to check that an instantiation
of x, existsthat allows to close the branch. Only the substitutjory — 1} that
instantiates the rigid variabl&; is applied to the tableau.

As in the rigid variable case, aftdrX; — 1} has been applied, closing the middle
branch does not require a further instantiation. But nowhawariablex; is universal
and hasot been instantiated with when closing the left branch, it is not necessary
to generate a second variant of formula 7. The right branahbeaclosed using the
complementary atoms 7 and 18, becaugeould be instantiated with 2 in which case
the labell.(x,) of formula 7 were justified by formulae on the right branchn(redy
formula 18); again, it is not necessary to actually applygshlestitution{x, — 2} to
the tableau, which instantiates a universal variable xistence is sufficient. a

4.4 |Improved Skolemisation

Skolemisation is a satisfiability preserving deductionha following general form:

When a formula (in our framework a premids)s given that implies the existence of
objects with certain properties in all modelsiof then a Skolem symbol, a Skolem
term, or other syntactical construct is introduced to re@né an arbitrary one of these
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objects whose existence is known, and a formula is dedugeesing the fact that
the object represented by the Skolem symbol has the propéstiynown to have.

Example 4.4.1 A formula 6 = (3x)(¢(x)) of first-order predicate logic implies the
existence of elementsin the domain of all first-oder structuf®, 7) satisfyingj that
have the property thatalz ;. ,q(¢(x)) = true. A Skolem constant or a termt is
introduced that represenisand the formulap(c) resp.¢(t) is deduced. O

Example 4.4.2 An inequalityF:(s = t) implies, if s and¢ are interpreted as sets, the
existence of an elemeritthat occurs in only one of the two sets and not in the other.

Thus, the expansion rule of the calculiig, ss from Section 3.8 for the fragment MLSS
of set theory introduces a constantepresenting the existing elemehtwvhen it is
applied to an inequality. O

The objects whose existence is known do not have to be elsnoéra universe or
domain. They can as well be functions, relations, or possilarids (as is the case in
calculi for modal logics).

Tableau calculi for many logics have to use some sort of skisiation. Often, how-

ever, the “standard” way of skolemising does not yield optinesults. These calculi
can be improved as follows: Instead of introducing a new bhitrary Skolem sym-

bol, each premiss from which the existence of objects wittage properties can be
deduced is assigned its own unigue symbol, constant, or. tévimen the same pre-
miss is used again for expansion, the same Skolem symbads Gnce the set of all
premisses is enumerable, they can only express enumerally different properties
such that an enumerable set of Skolem symbols is sufficient.

Such an improved skolemisation rule is used by the ideak&abkalculi for first-
order predicate logic PL1 and for the modal logicdescribed in Chapter 3 and in
Sections 4.2 and 4.3. It was first described for the case ¢fdicker predicate logic
in (Beckertet al,, 1993), namely in form of a liberalised expansion rule schéon)-
formulae. An improved version of the expansion rule schesnafformulae in modal
logics was first introduced in (Beckert & Goré, 1997). Imyed skolemisation in first-
order predicate logic in not a new idea; using a Skolem tesigasd to the formula
to be skolemised, resembles tieerms first defined in (Hilbert & Bernays, 1939) (a
good introduction to epsilon logic can be found in (MeyerlVik995)).

Employing this improved skolemisation in tableau calcafidutomated deduction has
several important advantages: First, it preserves the toaiaity of expansion rules,
whereas a rule that introduces symbols that have tadweis non-monotonic (and
calculi using such a rule are not ideal). Second, using tipeaked skolemisation re-
stricts the search space as the number of different Skolembalg that are used in a
proof is smaller. And third, calculi using standard skolgation usually do not have
the strongsoundness of expansion property (Property 2 in Def. 3.be8)they do not
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necessarily preserve satisfiability by s@meableau interpretation. The reason is that
a conclusion constructed using standard skolemisationlyssatisfied by tableau in-
terpretations in which the new Skolem symbol is interpreatetthe right way, namely
by one of the objects known to exist. If the improved Skoletia is used, however,
it is known beforehand what the properties of the objecthat ts represented by a
certain Skolem symbol. Thus, it is possible to choose thefdableau interpretations
such that it only containsanonicalinterpretations in which the Skolem symbols are
interpreted by object that have the appropriate propertfesuch canonical interpre-
tations are used, then (improved) skolemisation not ondsgnves satisfiability, but
the premiss and the conclusion are satisfied byg#meeg(canonical) tableau interpreta-
tions. Of course, to prove soundness, one has to guararaeéiiion that every initial
tableau for a satisfiable formula set is satisfied byaaonicalinterpretation. That,
usually, is only possible, if the Skolem symbols are knowhtonoccur in an initial
tableau—which is the main reason why we allow the use of aenebdd signature for
the construction of tableau proofs, as the additional syshicthe extended signature
do not occur in initial tableaux.

Often—depending on the expressivity of the particular degit is also possible to
syntacticallyprove soundness of an expansion rule using the improvedovecs
skolemisation, based on soundness of an expansion rulg s&ndard skolemisa-
tion. For example, Egly (1998) proved that in a tableau daktor PL1 with standard
skolemisation rule and non-analytic cut (since the cut isieivially sound, using it
does not impair the argument), it is possible to derive (iresa steps) from the empty
premiss the tableau formula

T:(Va)(F)(G(z,y) = Gz, f(2)))) ,

where f = skog, ((3y) (G(X, y)), for all formulaeG. That implies soundness of the
improved skolemisation rule for first-order predicate &y@s this formula allows to
deriveT:G(X, f(X)) from T:(Jy)G(X, y)) anywhere in a tableau proof.

Besides the question of which Skolem symbol to use theresiptbblem of ensuring
soundness of skolemisation in the presence of free vagdbtgh rigid and universal).
One has to make sure that the instantiation of rigid vargabliéh Skolem symbols (or
terms that contain Skolem symbols) does not lead to unadksssallts.

Example 4.4.3 For all instantiationgY” — ¢} of the rigid variableY’, the formula
(Fz)(p(z,Y)){Y — t} implies the existence of an objetfor which

valz paq(p(x, Y){Y — t}) = true .

In general, however, there is not a singleith this property for alk. O

The problem exemplified in the above example is usually sbbyeusing a complex
Skolem term instead of a Skolem constant and using the freabl@ on which the
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choice of the object/ depends as arguments of that Skolem term, i.e., in the above
example, the formula(c(Y'),Y") is derived instead g(c, V).

The difficulty in designing a sound rule schema with skolexties is to find out what

exactly influences what the objects are whose existenceoiknAll free variables

whose instantiations may have an influence have to be useglasents of the Skolem
term. On the other hand, if too many variables are includetienSkolem terms, the
calculus is weakened and the size of the search space iadreas

For example, earlier versions of rigid variable calculi firl used a skolemisation
where, when the expansion rule is applied to a premiss aontpad-formulad, all
rigid variables occurring on the tableau branch being edpdnvere used as argu-
ments of the new Skolem term. Later, it was realised that wieabbjects are in the
domain of a tableau interpretation whose existence is gdflyé only depends on the
instantiation of the rigid variables occurring drand not on the instantiation of other
rigid variables on the branch and that, thus, it is suffictenise the rigid variables in
o as arguments of the Skolem term (Hahnle & Schmitt, 1994).

Of course, one can get around the problems resulting fronuskeeof free variables
by skolemising the input formulae in a preprocessing stept i@ done in all calculi
using clausal normal form. However, in some logics that ispossible such as, for
example, in intuitionistic predicate logic. In additiofkodemisation results in a loss
of information (and early skolemisation in an early loss m@brmation). Consider,
for example, the formula = T:(3z)(p(x)) and its skolemised versiopl = T:p(c).

If a local lemmag resp.¢’ is generated (see Section 4.5), then the lengmanhich
is equivalent toT:(Vz)(=p(z)), is much more useful than the lemmg which is
equivalent toT:—p(c). In fact, tableau calculi for PL1 with lemma generation and
dynamic skolemisation have non-elementary shorter pfoofsertain formula classes
than calculi with lemma generation and skolemisation aseprpcessing step (Egly,
1998).

4.5 Local Lemmata

A simple and in many cases useful way of strengthening taldekuli with expansion
rule is to make sure that the extensions of a conclusion dmtersect semantically

Definition 4.5.1 Let C be a (ground) tableau calculus for a lodicand letY € Sig
be a signature.

Two branch extensionB;, E; C TabForm(X*) intersect semanticallif there is a ta-
bleau interpretation ifabInterp(X*), that satisfies botf; andE,. O

Example 4.5.2 Consider the tableau calculds;,; for PL1 from Section 3.6. The two
extensions( T:p} and{T:q} of the conclusion for the premidsT:(p V q)} intersect
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semantically, ad:p and T:¢ can both be satisfied by a single tableau interpretation
of Cle. O

The application of an expansion rule using a conclusion setiantically intersecting
extensions adds, in some sense, less information to theatablntuitively, to close a
tableau, one has to show that no tableau interpretatiosfieatany of its branches; and
if there are branches that are satisfied by the same tablesapretations, then these
interpretations have to be considered more than once.

Extensions can be made intersection-free by adding talbbeaulae; this may require
to use additional extensions, and one has to be careful e soundness.

Theorem 4.5.3 LetC be a (ground) ideal tableau calculus for a lodidhat (1) has the
soundness properties from Definition 3.5.3 (and is thusdpand that is (2) complete.

For each conclusio® = {E, ..., Ex} (k > 1) over some signature* € Sig where
B, ={¢},...,¢.} (1 <i<k), the conclusior" is defined by

i—1
C' ={Bu|J{g]. 6,0l | 1<i<handl <l <rjfor1<j<i} .
j=1

Let the calculug' be defined as follows: The expansion réleof C' is, for all signa-
turesY € Sig and all premisse$l € TabForm(X*), given by

E(D)(M) ={C" | C € £(2)(TM)}
wheref is the expansion rule af; and C' is identical toC except for the expansion

rules.
Then,

1. the calculug’' has the soundness properties from Definition 3.5.3 (anduis th
sound);

2. the calculug’ is complete;

3. for all signatures: € Sig and all premisse$l € TabForm(¥*), any two exten-
sions in a conclusion ig'(X)(11) do notintersect semantically.

Proof: Soundness propertiesthe first soundness property from Definition 3.5.3 is
trivially preserved ag andC' only differ in their expansion rule.

To prove that the second soundness property (soundnespafisrn) is preserved,
we can make use of Lemma 3.5.9. It suffices to show that if on@ekxtensions
in a conclusiorC' = {Ey, ..., E}} is satisfied by some tableau interpretation, 7),
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then one of the extensions @t is satisfied by(m, I). Let E; be the first extension
in C that is satisfied bym, /), i.e., (m, I) does not satisfy any of th&, ..., E;_;
and Ietqﬁfj be the first tableau formulae i, that is not satisfiedl(< ;7 <i — 1), i.e.,

oo ¢flj_1 are satisfied bym, I'). Consequently, the extension
i-1
. Iy j
Eiu| el ol 0l 1}
j=1

which is an element of ', is satisfied by(m, I).

CompletenessThe completeness 6f follows trivially from the completeness dfas
both calculi are ideal and, therefore, the additional fdamun the extensions @f do

not impede the construction of(-tableau proof using the same rule application that
are used to construct@tableau proof (note that for each extensiBhin a conclu-
sionC' there is an extensioA € C such thatf C E'.

No semantical intersectiork:et £; and £y be two different extensions i0'; then, by
construction ofC", there is a tableau formulasuch thaip € E; and¢ € E;, which
implies thatE; and E;; do not intersect semantically. O

Example 4.5.4 Assume thap, ¢, r, s, t are tableau formulae and that

I1
plr|t
q|Ss
is an expansion rule schema of a tableau calcGlu§hen, the corresponding expan-

sion rule schema without semantical intersection of theutasC' (Theorem 4.5.3)

Is
I

plrir|t|t
s|s

~
~

S|
<
S|
&S]

=
=3
s W
BV s < At

O

The formulae that are added to extensions to make them eateya-free can be con-
sidered to bdocal lemmata If in the above example, a brané¢hhas been extended
by C' and the new sub-branch containingindq has been closed, one can conclude
that in all tableau interpretations satisfyimeitherp or ¢ is not satisfied and, more-
over, either (a)p is not satisfied or (bp is satisfied and is not satisfied. Thus, these
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formulae can be added as “lemmata” to the subsequent estensThe lemmata are
“local”, because they are only used in the local conclusion.

As Example 4.5.4 demonstrates, making sure that all exaeasn all conclusions that
an expansion rule generates are intersection-free maydemdrastic increase in the
number of extensions per conclusion, and is therefore m@tys of advantage. Never-
theless, the method is useful, because one is free to egkeha original conclusioff

or the intersection-free conclusi@i constructed according to Theorem 4.5.3 depend-
ing on the number of extensionsd@hresp.C"'; in many cases the conclusi6h can be
simplified as some of its extensions are inconsistent.

Example 4.5.5 Consider the following expansion rule schema that may bd bgea
calculus for the three-valued tukasiewicz lodig:

T{;}:FVG
TA0,5}:F | T{3}h:F
T{3}:G | TH{0,3}:G

The labels are subsets of the $@,t%, 1} of truth-values. Appropriate tableau interpre-
tations for this calculus can be constructed as follows:gamh model of Lukasiewicz
logic, there is a tableau interpretatiam, /) with a world/ (o) for each possible label;
such that/ (o) = F iff the truth value ofF" in the corresponding many-valued model
is an element of.

Applying the construction from Theorem 4.5.3 yields the m&ersection-free schema

TA{}:FVG
T:{0, %}F T:{%}:F T:{%}:F
T{i}:G | T:{0,3}:G | T:{0,3}:G
F:{0, %}F F:{%}:G
T:H{0,3}:F

The second extension in this schema is unsatisfiable asutievalue of 7' cannot
be both an element df;} andnot be an element of0, ;}. The third extension can
be simplified as the first of its formulae subsumes the last and the second and
third formula together imply that the truth value Gfis 0. The result is the following
schema that is intersection-free and has the same numbxeteofséons as the original
rule schema:
T{;}:FVG
THA0, s }:F [ T{S}:F
T:{3}:G | T:{0}:G

O

The above example has been taken from (Hahnle, 1993), vameetgorithm is de-
scribed for constructing intersection free expansionsrdiée arbitrary many-valued
logics.
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Making extensions intersection-free is also useful foe fvariable and universal vari-
able calculi; but, since these do not have semantics defynéablbeau interpretations,
the construction from Theorem 4.5.3 is not applicable imiatedy. Instead one has to
make sure that the extensions in the ground version of aloslawe intersection-free
before the calculus is lifted, and its free variable verssoconstructed.

Example 4.5.6 The expansion rule of the calculds;,; for PL1 allows to derive con-
clusions fromg-formulae that are not intersection-free. An alternatieesion of the
schema

s

B | B

p
Br | B
A
which preduces intersection-free conclusions; it can leel usrigid variable versions
of Cp1,; as well.

for s-formulae is the schema

Using this new schema has been shown to non-elementaryeduisize of the short-
est proofs for certain classes of PL1-formulae (Egly, 1998) O

The following example shows that care has to be taken if lleraimata are generated
that contain universal variables, and that the result ofuthiéorm construction from
Theorem 4.5.3 is not always optimal.

Example 4.5.7 Consider the rule schema

T:(F(t) vV G)
T.F(t) ‘ T:G
for all termst

It can be lifted to construct the universal variable schema
T:.(F(x)V G)
T.F(x) ‘ TG
provided thate does not occur iid/

Unfortunately, if the ground schema is made intersecties-by adding the comple-
ment of T: F'(¢) as a lemma to the right extension, then the resulting schema

T:(F(t) vV GQG)
T:F(t)| T:G
F:F(t)

for all termst
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does not have a universal variable version anymore, be¢hagerm: now occurs in
both extension.

It is, however, possible to use the lemmdVzx)(F(x)) instead ofF:F'(¢). Then, the
rule produces conclusions that are not not completely setgion-free but there are
less tableau interpretation satisfying both extensiomstha schema has a universal
variable version:
T:.(F(x)V G)
T.F(x) T.G
F:(Va)(F(x))
provided thate does not occur iid/

4.6 Pruning

The pruning method, which is closely related to the techaicglledcondensindOp-
pacher & Suen, 1988), allows to reduce both the size of thelsepace and the size
of generated tableau proofs.

Suppose a brancB of a tableau is extended using a conclusiors- {E, ..., E.},

and subsequently a closed sub-tableau is constructed loelewf the extensiong;
wherenoneof the tableau formulae i®; has been used in a premiss for the construc-
tion of that sub-tableau; then the sub-tableau can be appiendany of the other sub-
branches below any of the extensidiis(;j # 7) or even immediately to the branch

There are several possible ways of making use of such singti

1. The calculus can be strengthened by changing the tahiésaunisuch a way that
1 can be added to all sub-branches below any of the extensip@ys# ); this,
however, makes the calculus non-ideal, lagh that case is not deduced from
premisses on the branches that it is added to.

2. One can change the calculus in such a way that it is possiljest-pone the
decision of whether a conclusion should be used to expardeaiabranch. The
conclusionC' is used preliminarily for expansion @&. Only if later on formulae
of all its extensions are actually used to close a branchdéusion is made
thatC' has indeed to be used for expandiigotherwise, the decision is made
thatC' should not be used, the preliminary expansion is undonettendiosed
sub-tableau below; is attached immediately tB. This, however, again makes
the calculus non-ideal, as in an ideal calculus formulagecthe deleted once
they have been added to a tableau.

3. The calculus remains unchanged; the information thatkhsed sub-tableau
below E; can be constructed without using formulae frdimin premisses is
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made use attaching this sub-tableau to all open branches bely of the exten-
sionsE; (j # ¢). Then, the calculus remains ideal; and pruning is merefy co
sidered to be a technique for deterministically constngctlosed sub-tableaux.
Of course, an implementation does not have to actually oactghe sub-tableau
repeatedly; the information that this would be possiblel(aow) is sufficien®.

Definition 4.6.1 Let C be an ideal calculus for a logi; let 3 € Sig be a signature;
and letTq, ..., T, be a sequence of tableaux for a&et. Form () of formulae such
thatT; . is a successor tableautf (1 < i < n).

An occurrence of a tableau formutain some nodeV of a tableaul’; has beenused
for the construction of; ¢, ..., T, if

1. ¢ = L (i.e., all occurrences of the tableau formulare used); or

2. thereis atabledll; (i < j < n — 1) and a branclB; through the nodéV; in T}
that corresponds &y such thafl;.; has been constructed frafi expanding the

branchB; using a premiss containingand a conclusio; = {F, ..., E;};
and an occurrence iff;,, of at least one formula in each of the extensions
E,. ..., E}is used for the construction @f_ 1, ..., T,. a

If there are several occurrences of the same formula on Zlbi@one of which has
to be used to expanA, then, by definition, they are all used. One could insteag onl
consider one of the occurrences to be used (preferably #neloser to the root of the
tableau); however, too many occurrences of the same forarukabranch should be
avoided anyway (see Section 5.2).

Example 4.6.2 Consider the tableau shown in Figure 4.6 (a); and assumehbat
tableau has been constructed by first using the conclydipnF,} of the premisdl,
then using the conclusiof\E;, E), E} of the premisdl’ = FE;, and then adding a
closed sub-tableail; to the branch belowr; and the closed sub-tabledy to the
branch belowF; the branches containing; and E, are still open.

Further assume that none of the formulaefinhas been used for the construction
of the sub-tableall;, and that none of the formulae i, and E}, has been used for
the construction ofl,. Then, by definition, all the formulae i are considered to
be unused. Whether formulae frof{ have been used for the constructionZofis
irrelevant.

If the first of the possibilities for using pruning is emplalye¢hen_ can be added to
the remaining open branches (Figure 4.6 (b)). If the secasdipility is employed,
i.e., all branch extensions that turn out to be unnecessargeleted, the tableau in

® Note, however, that the sub-tableau has to be assumed t¢ leagaimplicitly) present below each
of the E; the regularity of an expansion rule application is checles@ (Section 5.2).
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Figure 4.6: Using the pruning technique (Example 4.6.2).

Figure 4.6 (c) can be constructed. And the tableau in Figus€d) results from em-
ploying the third possibility for using pruning, which pezses idealness. Note that
the different pruning techniques all have to be appliedéwiamely once for each of
the two expansion rule applications that add the (unusddheionst, resp.EY, to the
tableau. O

4.7 Additional Rule Schemata

A simple but often effective way of strengthening a calcutut use additional rule

schemata. If a certain sequence of rule applications odoegsently, the expansion
rule is enhanced such that a one-step rule application #sathe same effect as the
frequently occurring sequence of applications.

Example 4.7.1 Assume that in a certain application domain frequently idaa of
the form T:(true — ¢) occur, which may happen if the formulae to be proven are
generated automatically.

Then, it is useful to enhance the expansion rulégf with the additional schema

T:(true — ¢)
T:¢
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such thatT:¢ can be derived in one step without first extending the braniti the

conclusion{{F:true}, {T:¢}} and closing one of the two new sub-branches by deriv-
ing L from the premisgF:true}. O
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Constructing an Efficient
Proof Procedure

5.1 Overview

5.1.1 Search Trees

In the previous chapter we discussed methods for improvitadpkeau calculus such
that shorter proofs can be constructed. The subject of bi@pter is how to efficiently
search for proofs in the remaining smaller search space.

The proof search space can be visualised as a search tree @duwdr possible choice
of the next expansion rule application to a tabledugreates a node with as many
successor nodes @shas different successor tableaux.

There are two main concepts for proof seartineadth firstand depth firstsearch.
Depth first search requires that either there are no patteisdarch tree that do not
contain proofs or it is possible to avoid such paths usinghéss strategies for the
construction of tableaux.

5.1.2 Breadth First Proof Search and Iterative Deepening

As fairness strategies that allow depth first search arecdiffto construct for rigid
variable calculi, breadth first search is used by most autesndeduction systems.
Breadth first search allows to find shorter proofs than depsh $earch because all
paths of the search tree are considered whereas, usingftepgearch, paths in the
search tree that contain short proofs may be missed; faistestegies only guarantee
that some proof is found but it may not the shortest one. Hewelre length of found
proofs is not of great importance in automated deductioa @tily advantage of short
proofs is that they require less expansion rule applicatand are thus easier to find);
and breadth first search is very expensive as compared th fegitsearch because
neighbouring paths in the search tree contain many similaven identical tableaux
that using breadth first search all have to be considered. dikadvantage of breadth
first search by far outweighs any advantages it may have.

For all (practical) completion modes, i.e., (monotone)ctionsm from N to sets of
tableaux such that],_,, m(7) includes all constructible tableaux, the sjz€(i)| of the
search tree grows exponentiallyinlIt is—even for small—usually not possible to

135



136 Chapter 5: Constructing an Efficient Proof Procedure

store all tableaux ima(7) in the memory of a machine. Therefore, most implementa-
tions (see, for example, (Beckert & Posegga, 1995))deseh first iterative deepen-
ing (DFID) (Korf, 1985): the partial, finite search space cotisgsof all tableaux in
M(i) = U;; m(j) for somei € N is searched for proofs in a depth first manner using
backtracking, and if it turns out not to contain a proof, thea increased. The ta-
bleaux in) (i) are not available for the construction of the tableauk/ii + 1); they
have to be constructed again from scratch, which, howeweeimncauses polynomial
overhead as compared to a breadth first search at the “rigvefil becauseV/ (i + 1)

is exponentially larger than/ (). Although DFID search leads to acceptable perfor-
mance of tableau-based automated theorem provers, itshewtressed that it is only
a compromise used when no completeness preserving fastragsgy for depth first
search is available.

5.1.3 Depth First Proof Search and Fairness Strategies

The advantage of depth first proof search is that the infaonaepresented by the
tableaux that are constructed, increases at each prooist@pformation is lost since

there is no backtracking. In addition, considering simiksleaux or sequences of
tableaux repeatedly that different paths of the searchti@econtain are avoided.

In the case of ground tableau calculi, it is relatively easyde depth first proof search.
Their rules are not destructive; thus it suffices to systerally add all possible con-

clusions until all branches of the tableau that is constdietre either fully expanded
or closed.

The situation is much more complicated in rigid variableca&) which are destructive
even if they are proof confluent. Applying a substitution nagtroy formulae on a
tableau that are needed for the proof such that they havededeced again from their
premisses.

Up to now there was no practical solution to the problem ostatting deterministic
proof procedures for rigid variable calculi that performepth first search and are
complete, i.e., that never fail to find a proof. Such proceduere only known for
the special case of non-destructive rigid variable caleutiere branches are expanded
without instantiating variables and only a single subsbtuis finally applied that is
known to allow to close all branches simultaneously.

In this chapter, we analyse the problem of constructing @rdenistic proof procedure
for rigid variable calculi; and we present a solution for tieneral case of arbitrary
rigid variable calculi that are ideal (and, in particluarp@f confluent). No other as-
sumptions are made; in particular, the method is not résttito calculi for certain

logics or formulae in certain normal forms (such as clausainal form).

The deterministic search strategy we propose is basadguiarity (Section 5.2) to
make sure that there are no “cycles” in the search (it is nssipte to deduce the same
formulae or sub-tableau again and again), amight orderings(Section 5.3), i.e.,
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each tableau formula is assigned a “weight” in such a wayttieat are only finitely
many different formulae (up to variable renaming) of a dart@eight; thus, if tableau
formulae with lesser weight are deduced first, then soont&ter each conclusion is
added to all branches containing its premiss, i.e., théesjyasfair.

The main difficulty is to define a regularity condition thattbie one hand is restrictive
enough to avoid all cycles in the proof construction and @ndther hand is not too
restrictive such that completeness is presefved.

Our fairness strategy considers the whole tableau (andmgtaosingle branch) both
for checking regularity and for choosing a conclusion of imial weight; a procedure
based on this strategy may extend any branch of a tableawdaima@. Note that
this does not imply a large memory consumption; at leastnbisworse than that of
proof strategies where a “current” branch is extended unisl closed before other
branches are considered and where DFID-based breadthetnrsihsis used to ensure
completeness, as in that case all closed branches have tioréeé for backtracking.

5.1.4 When is a Proof Procedure Practical?

As said above, n@ractical deterministic proof procedures for rigid variable calculi
were known up to now. By “practical” we mean that the compatetl complexity of
deciding what the next expansion rule application shoulishleach situation has to be
reasonably low. In addition, the number of expansion ste@isare necessary to find a
proof has to be reasonably small as compared to the numbecetsary steps when
a breadth first search strategy is used.

There is trivially a (non-practical) deterministic proabpedure for all monotonic ta-
bleau calculi—namely the trivial procedure that perforntseadth firstsearch in the
background. Until a proof is found (in the background), ibokes arbitrary (fore-
ground) expansion rule applications. When a proof has bmamf, it is appended as a
sub-tableau to all open branches, which is possible bed¢hasmlculus is monotonic.
Such a proof procedure is of course completely useless., Naesuch a procedure
can even be defined if the computational complexity of eagiaesion step is, for
example, restricted to be polynomial in the size of the tablbat is expanded.

If the fairness strategy we present in the following sedisrused, then the complexity
of deciding what the next expansion step should be is in thetwase quadratic in the
size of the tableau to be expanded (resp. the size of itslessiccessor tableaux). In
the average case the complexity is much lower as only thase @iea tableau have to
be considered that are affected by one of the possible expangde applications.

The size of the tableau proofs that are found (and thus thdauof expansion steps)

! Baumgartner (1998) suggests a regularity condition th@ms slightly) too strong, such that cycles
in the proof search are avoided but depth first searchiteitative deepeningas to be used to ensure
completeness.
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is at most that of the tableau proof constructed using DFIEhéeworst case (i.e., if
coincidently all paths in the search tree not containingamfpare considered first).

5.2 Regularity

The notion ofregularityis well known from tableau calculi for classical logic in a&al
normal form ) and negation normal form (Hahnle & Klingenbeck, 1996;hHiz&
et al, 1997); it is extended to the non-clausal case in (Beckeré&frie, 1998).

In the following, we define a concept of regularity for araity ideal rigid variable
calculi. Our concept differs from the classical notion iattit takes the whole tableau
into concern and not only a single branch; it turns out to pF@griate for constructing
a deterministic proof procedure for rigid variable calculi

Assume that a sequendg, ..., T, of tableaux has already been constructed. We
define an expansion rule applicationZpto be irregular if the successor tabléBy

is containedin one of the predecessor tabledlix—in particular, if7,, ., is contained

in 7,,. In that case, the sequen€g ..., T, , constitutes a cycle in the proof search
becausd’, ., does not contain any information that is not alread¥’jinA tableauT);
contains7,, if each branch ofl; contains (up to renaming of free variables) all
formulae from one of the branches’tf, ;. Intuitively, the tablead’, . is redundant

if it is contained inT}; because, if closed sub-tableaux can be constructed below al
branches off,, 1, it is possible to construct the same closed sub-tablealowie|
branches off;.

Note that checking whether an expansion rule applicatioegsilar or not does not
involve unifiability tests because rigid variables may doéyrenamed but not instanti-
ated with terms, i.e., checking regularity is not as complexhe problem of checking
whether a tableaill; subsumeg, ., (which is NP-complete).

An important class of irregular expansion steps is the falg: Assume a branch;

of a tableadl" is extended using a rigid variable conclusi@n o), and a branctB}o

in the resulting tablead” is contained in all brancheB of T that are affected by
the expansion step, i.e., the branBh (which is extended) and all other branches
containing rigid variables that are instantiation by apgpdyo. This is in particular
the case ifB)o is contained in an initial sub-brancky of 7' that ends above the first
occurrence of any rigid variable in the domairvofThe branchB)o of 7" may be one
of the branches that result from adding one of the extensioasto B, or it may be
any other branch that is affected by applying the subsbituti

Example 5.2.1 Assume that the expansion rule of the rigid variable cakfu PL1
from Section 4.2.10 is used to close the bramighof the tableaul” shown in Fig-

2 We do not consider universal variable calculi as they belikeground calculi w.r.t. regularity.
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So So
F:p(a)\ F:p(a)/\/
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Figure 5.1: An irregular expansion rule application (Example 5.2.1).

ure 5.1 (a). This is done by deriving the conclusidd L}}, {X — a}) from the
premiss{ F:p(a), T:p(X)}; the tablead” shown in Figure 5.1 (b) is constructed.

This expansion rule application belongs to the class of eadgtect irregular applica-
tions described above. The right branBfy of 7" whose nodes are labelled with the
formulaeF:p(a) and twiceT:¢(a) is contained in the initial sub-branch of T’ whose
nodes are labelled with:p(a) andT:¢(a); andS, ends above the first occurrenceXof

in T which is the only variable instantiated by

Intuitively, this expansion rule application is useless@ese any closed sub-tableau
that can be constructed beld#,c can be constructed as well below bd#h and B,.
0

An expansion rule application as described above is iregqadcording to the defini-
tion of regularity that is usually given in the literaturege(Beckert & Hahnle, 1998)),
if the branchB!o contains the same branch extension multiply; its relatmother
branches is irrelevant.

Example 5.2.2 Figure 5.2 illustrates the difference between our and thssital no-
tion of regularity. The situation is very similar to that stmoin Figure 5.1 and ex-
plained in Example 5.2.1. But now, the initial sub-brarizhof 7" that contains the
branchB)o of the tablead™ does not end above the first occurrence of the variahle
which is instantiated by. Thus, this expansion rule application does not belongeo th
class of easy to detect irregular applications; moreoves,indeedregular according

to our definition of regularity, because the brarig¢hof T' doesnot contain any of the
branches of”.

According to the classical definition of regularity, howewihis expansion rule ap-
plication isirregular because the brandB,o of 7' contains the extensiofiT:¢(a)}
twice. 0

As Example 5.2.2 demonstrates, the classical notion oflaetyis more restrictive
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Fip(a) N\ TONN
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1 By Jl_ Blo
(a) (b)

Figure 5.2: Example for the difference between the new and the classatain
of regularity.

than our notion in certain cases, which may destroy proofiegence? In the ground,
case where no variables are instantiated, there is no@ifterbetween the two notions
of regularity.

According to the regularity condition described aboves ihot irregular to add an ar-
bitrary number of differenvariantsof a formula to a tableau branch, which of course
is useless and must be considered a violation of reguldiitys, we enhance our def-
inition such that expansion steps are irregular that addméaint variants of formulae
already occurring on a tableau branch. We have to be catejulever, because it is
not sufficient to allow only one variant of each formula to occaraobranch. The so-
lution is to define the maximal number of variants of a fornthkt are not considered
to be redundant to be the maximal size N of minimal premisses in the calculus
(how to handle a calculus with an expansion rule where mihpremisses can be of
any size is discussed at the end of Section 5.4).

Example 5.2.3 Minimal premisses in the calculus from Section 3.6 for PLas3st of
at mostk = 2 formulae. Thus, the number of different variants of a tablEamula
that a branch contains at any given time can be restrictegido t

It may indeed be necessary to add two variants of a formulagXample, a branch
containing only one variant af = T:—p(X) A p(f(X)) cannot be closed; a second
variant¢' is needed. O

Definition 5.2.4 Let C be a rigid variable calculus; let;, be a signature; and let

k € N be a natural number. Further [Etand7” be tableaux; leBj, ..., B;, be the
branches of’; and letV,, ..., ¥,, be the sets of tableau formulae on these branches,
i.e., ¥, = Form(B)) (1 <i<m).

The tablead” k-contains the tabledll’, denoted by’ C, 17, if

3 Whether using the classical, more restrictive notion ofitadty does indeed destroy proof conflu-
ence, depends on which other restrictions are imposed;\feweobody has been able to define a
deterministic proof procedure for rigid variable calcuding the classical notion. And the reason
may very well be that it is too restrictive to preserve pramfituence when it is combined with other
restrictions for ensuring fairness of the strategy (sucheight orderings).
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T:¢$X1) T:6(X3) T:6(11) T:¢|(Y1) T:¢|(Y1)
T:(X5) T:p(Y>) T:qﬁl(Yg)
T:p(Y3)

T, T, T T} T}

Figure 5.3: The tableaux from Example 5.2.6.

1. there is a variable renaminge Subst(Xf,), and
2. there are subsets’ C ¥; (1 < i < m) that contain of each formula € ¥,

— k variants or
— as many variants as there arelip

whatever is less; i.e., the number of variants of eadh ¥¥ is the minimum
of k£ and the number of variants gfin V;,

such that for each brandb of T" there is a branctB; of 7" (1 < < m) with
¥ C Form(Br) .

O

Intuitively, a tableaul” k-contains a tableail” if each branchB of T containsup to
renaming of rigid variableshe formulae in some brandb' of 7’ where, however, it is
sufficient if B only containg: different variants of each formula i8'. If two branches
B, and B, “contain” the same brancBh’ of 7", then they have to contain tleame
k variants of each formula if’.

The following lemma follows immediately from the definitioh C,.

Lemma 5.2.5 The relationC, on tableaux (Def. 5.2.4) is transitive and reflexive.

Example 5.2.6 Consider the tableaux shown in Figure 5.3. kl= 2, then the ta-
bleauT’ contains all the tableauk/, T3, T;. The tablead’,, however, only contairs;.
O

Example 5.2.7 The tableaux’; and7, shown in Figure 5.4 (a) and (b), respectively,
do not 1-contain each other.

If 77 was considered to contaify and, thus, the construction @} from 7}, was con-
sidered to be irregular, then completeness would be imghdieeause the tabledu
can be closed buf; cannot be closed.
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F:p(a F:p(a
I I
F:p(b) F:p(b)
RN 7\
T:p(X)  Tip(X) T:p(X)  Tep(Y)
(a) (b)
Figure 5.4: Nearly identical tableaurot containing each other (Example 5.2.7).
T:pl(X) .
. N
:pg) Tp |(X ) T:pl(Y)
'q|( ) Tq(Y) T:qX)
Tq(Y) (b)
(a)

Figure 5.5: Two tableaux one of which 1-contains the other (Exampleg}.2.

If 75 was considered to contaifi, then neither soundness nor completeness would
be affected. However, if the definition was changed such dhtableaul’ contains

a tableadl” if an instanceof T' containsT” (according to the current definition)—in
which casé€l; would 1-containl;—, then the computational complexity of checking
regularity would be too high. O

Example 5.2.8 The tableauxl’; shown in Figure 5.5 (a) 1-contains the tablégu
shown in Figure 5.5 (b). HoweveT, doesnot 1-contain7; although both branches
of T, contain one variant of each of the formulae in the single ¢aof 77 ; the reason
why T €, T is that the branches @f, containdifferentvariants and would have to
containthe samevariants. For example, the left branch contalng(X) whereas the
right branch contain3:p(Y") but they would have to contain either bothp(X) or
bothT:p(Y). O

Based on the concept of a tablgagontaining another tableau, we can now formally
define our notion of regularity.

Definition 5.2.9 LetC be an ideal rigid variable calculus; [Etbe a signature; and let
k € N be a natural number.

A (finite or infinite) sequencgl;);>, of tableaux (and in particular a tableau proof
Ti,...,T,) for a set§ C Form(X) of formulae isk-regular if it does not contain
tableauxl; andT; where;j < i such thafl; k-containsT; (Def. 5.2.4).

A sequence of tableaux that is rietegular isk-irregular. O
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If a sequencd?, ..., T, of tableaux isk-regular,7,,,; is a successor tableau of,
and the sequencg, ..., T,, T, is k-irregular, then the expansion rule application
that is used to construdt, ., from 7T, is said to bek-irregular (because it causes the
irregularity). Whether an expansion rule application igular or not depends on the
context in which it is used.

To check whether an expansion rule application is regulés,sufficient to only con-
sider those parts of the expanded tableau that are affaaedhe branch that is ex-
tended and the branches containing rigid variables thahatentiated.

If the notion of regularity as defined above is used to respioof search by only
allowing regular sequences of tableaux, then completespssserved; i.e., our notion
of regularity is not too restrictive.

Theorem 5.2.10LetC be an ideal rigid variable calculus that has a ground instanc
let > be a signature; and let € N be the maximal size of the minimal premisses of all
possible conclusions if.

If there is a tableau proof for a st C Form(3*) of formulae, then there is a regular
tableau proof forg.

Proof: This theorem follows immediately from Theorem 5.4.4, whathtes the ex-
istence of complete deterministic proof procedures thit construct regular tableau
proofs for all ideal rigid variable calculi that have a grdunstance. O

The existence of a complete deterministic proof procedtinas construct regular
proofs (Theorem 5.4.4) not only implies Theorem 5.2.10 abdwalso indicates that
our notion of regularity is restrictive enough to serve sgose. The proof of Theo-
rem 5.4.4 makes use of the following lemma in which the reisteness of regularity
is formalised. An infinite regular sequence of tableaux amst infinitely many dif-

ferent formulae or, equivalently, if a regular sequencebfdaux only contains (up to
renaming of rigid variables) finitely many different tablgfarmulae, then it is finite.

Lemma5.2.11LetC be an ideal rigid variable calculus; lIef be a signature; and let
k € N be a natural number. Further Idt C TabForm(X*) be a finite set of tableau
formulae.

Then, there is no infinite regular sequen@),-, of tableaux such that, for ail > 0,
the tableau formulae iff; are variants of tableau formulae .

Proof: Let the equivalence relation, on tableaux be defined by

We proceed to prove that there are only finitely many equnadeclasses w.r.t-, of
tableaux that consist of variants of formuladinLet'* be a set containing different
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variants of each formula ifi such that no two formulae ifi* have a rigid variable in
common. Sincé is finite, ['* is finite as well.

Let 71+ be the set of all tableaux consisting of formulae frofhwhere no branch
contains the same formula more than once. The length of bearia these tableaux is
at mostT*|, which implies that there are only finitely many of them; tHiis is finite.

It is easy to see that every tableau consisting of variantsrofulae inl” is equivalent
w.r.t. ~, to a tableau ir¥;«. Therefore;J;-« contains representatives of all equivalence
classes of tableaux w.rd.,, and there can be only finitely many such classes.

To complete the proof of the lemma, assume that the numbejudfaence classes of
tableaux (as defined above)isc N. There cannot be an infinite regular sequence of
tableaux consisting of variants of formulaelinbecause in a sequenée, ..., T,

of lengthn + 1, there have to be at least two different tabledixand; belonging to
the same equivalence class, i.e., we have oth, 7; andT; C, T). As eitherj < i

ori < j, that renders the sequence irregular. O

5.3 Weight Orderings

Weight orderings are the second important concept (besedgsarity) on which our
fairness strategy is based, that allows to construct datestic proof procedures for
arbitrary ideal rigid variable tableau calculi.

The important properties an ordering on tableau formulatishused to ensure fairness
has to have are the following:

1. Itis a well-ordering on the set of tableau formulae (upetoaming of rigid vari-
ables), i.e., it is well founded and there are only finitelynjméableau formulae
that are incomparable to a given tableau formula.

2. Proper instances of a tableau formulbhave a higher weight tham

Intuitively, these are typical properties of orderings ahléau formulae that are de-
fined by assigning a “weight” to the symbols of a signaturei¢iviis why we call them
weightorderings).

Definition 5.3.1 LetC be a rigid variable calculus; and [Etbe a signature af.

A weight functionw assignes to each tableau formulaeZiah Form(X*) a natural
number (itsweighi such that the the following conditions are satisfied:

1. Given any tableau formulg, there isno infiniteset¥ of tableau formulae such
that

(&) ¥ does not contain any, ¢’ that are identical up to renaming of rigid
variables (i.e., all formulae i¥ are really different),
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(b) w(y) < w(gp)forally € V.
2. If X € Var occurs ing € TabForm(X*) andt € Termy, (3*),t ¢ Var, then
w(e) < w(¢{X —1}) .

Given a weight functiono, the weight ordering<,, on tableau formulae (that is in-
duced byw) is, for all ¢, 1) € TabForm(X*), defined by

¢ <, ¢ iff w(¢) <w(y) .
0

A weight ordering is extended tsetsof tableau formulae by comparing timeaxi-
mal weight of the formulae they contain. This extension is a wetlering as well,
provided the sets that are compared are only allowed to iroataertain number of
variants of each tableau formula.

Example 5.3.2 Let Y be a signature of PL1. Assume that a positive weight is asdign
to each function and each predicate symbokinin such a way that only a finite
number of function and/or predicate symbols have the sanghivgigid variables are
implicitly assigned the weight 0); and let(¢) be the sum of the weights of all function
and predicate symbols occurripgs TabForm(X*) (multiple occurrences of the same
symbol count multiply). Theny is a weight function according to Definition 5.3.1.

The condition that only a finite number of symbols must begresd the same weight
is not important in practice, as only a finite number of difgrfunction and predicate
symbols can occur in the tableaux for a given set of PL1-fdaenif the improved
skolemisation as described in Section 4.4 is used; thuacalblly occurring symbols
can be assigned the same weight. O

The purpose of Condition 1 in the definition of weight funasois obvious; it en-
sure that if infinitely many different formulae are added t@alleau branch, then the
maximal weight of formulae on the branch will sooner or latsch each value. Con-
dition 2 might need some more explanation. It makes surdltleateight increases in
case no new formulae are appended to a branch but it is chaggéd and again by
instantiating rigid variables; note that such a sequenepplications does not violate
regularity because a new formula is created by each inataonti

Example 5.3.3 Assume that an expansion rule allows to derive from each iseeof
the form{p(f(---(X)---))} therigid variable conclusiot{{q}, {r}}, {X — f(X")}
where X' is any rigid variable different fromY. Then, the (sub-)tableau shown in
Figure 5.6 can be constructed for allfrom the (sub-)tableau consisting of a single
node marked witi :p(X}).

Condition 2 in the definition of weight functions makes surattthe maximal weight
of the formulae in the tableauk, increases. O
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n times

n times
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Figure 5.6: A tableau illustrating the necessity of Condition 2 in théimigon of
weight functions (see Example 5.3.3).

5.4 Deterministic Proof Procedures for Rigid Variable Calculi

In this section, we show that complete deterministic praotpdures can be defined
for arbitrary ideal rigid variable calculi that have a grdunstance; such proof proce-
dures can be used to perform depth first search for tableaispfeee the discussion
in Section 5.1). They are constructed using the notionsgflegity and weight order-
ings as described in Sections 5.2 and 5.3. For example, ardetstic proof procedure
can be defined in this way for the rigid and the mixed varialaleudi for PL1 from
Sections 4.2.10 and 4.3.6.

Idealness of the calculus is indispensable. It has to bestroictural because otherwise
the order in which formulae are added to the tableau is nelevant, and complete-
ness may be lost when they are added in the order of their wéigle calculus has to
be monotonic since a deterministic procedure may execdtengant proof steps be-
tween useful ones, and the redundant formulae that are addstnot prevent useful
expansion rule applications later on. We demand in additian the calculus has a
ground version because then it has the following propeft{C'io) is a conclusion of
some premis$l, then(Cor, id) is a conclusion ofIr for all substitutions-.

We only consider calculi in which minimal premisses are rffarbitrary size, i.e., do
not contain more thah formulae for some fixed € N. How to handle calculi that do
not have this property is discussed at the end of this section

To ensure that a proof procedure constructs a tableau gpoofifled a proof exists),
the sequences of tableaux that are constructed must stesfpllowing two condi-
tions:

1. The sequence of tableaux that is constructed mustregular, i.e., expansion
rule applications creating a tableau thatisontained in one of its predecessors
are forbidden.

2. At each step, from all the possible expansion rule apipdica not violating the
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regularity condition, one is chosen that creates a succéssieau in which the
maximal weight of formulae is as small as possible (i.e.ceasor tableaux are
compared according to the maximal weight of the formulag tumtain).

If several possible expansion rule applications satisé/dahove conditions, a proof
procedure may employ arbitrary heuristics to choose onkasfit A typical heuristic
is, for example, to prefer conclusions that contain few esit@ns such that less new
sub-branches are created.

Note that formulae are not necessarily added to a tableanctia the order defined
by their weight, because a formupecan only be added when its premigss present
on the branch and weight of the formuladimay be higher than that gf.

To comply with the condition thaall expansion rule applications adding formulae
of less weight have to be executed before formulae of higheght are added to a
tableau, it may be necessary to expand branches that aaelylcosed. That is not
always redundant, because closed branches still containlusformation and can
influence other branches by the substitutions that areepplhen they are expanded
(the first substitution that is applied to close a branch tsegessarily the “right one”
that allows to complete the proof). If a closed branch hasgid variables in common
with other branches, it needs not be further expanded.

Unfortunately, the regularity condition as defined abowsiisvery difficult to imple-
ment; it requires to compare a tabl€ay, ; with all its predecessorsg, ..., T, and

not only with the tablead;, from which it is constructed. Such a regularity check
is prohibitively expensive w.r.t. both space and time. Mweg, if an irregularity is
encountered, i.e., if,, 4, is contained in one of the predecessor tableBiixhen other
successor tableaux @} (besided;. ) have to be considered, which in a certain sense
amounts to backtracking. The reason for this is the follgwiA tableaur;, ., that is
contained in a tableall; does not have to be considered for proof search because all
the proofs that may be constructed frdf,; can be constructed frof;. Now, if

j = n, then we can just exclude the successor tabléay and be sure that if there

is a proof derivable fronT,,, is is derivable fronil,, without considerindl},, . If,
however,; # n, then the tableau proof that is known to be derivable ffGm; and
thus from7; may not involveT,, but require to procceed with an alternative successor

tableauT;, , different fromT;,,.

All these problems stem from the fact that a tabléais not necessarily contained in
its successor tableall; because rigid variable calculi are destructive and foreula
occurring in7; may not occur irfj; any more. Indeed, an irregular infinite sequence
of tableaux can contain a cycle consisting of infinitely méadyleaux’;,, that all con-
tain each other, where none of the irregular expansion segasy to detect, i.e., there
is no tableau in the sequence that is contained in its imrteegr@decessor.

Example 5.4.1 Assume that the following symmetric rule schemata charsetehe
expansion rule of a rigid variable calculus:



148 Chapter 5: Constructing an Efficient Proof Procedure

T:pl(a) T pl(a) T:pl(a) T:pl(a)
T:ql(b) T:ql(b) T:ql(b) T:ql(b)
T:p(Xy) T:pl(a) Trpl(a) T:pl(a)
T:q(V1) T:ql(b) Tiql(b)
T:p(Xs) Tipl(a)
T:q(Y2)

T, T, T Ty

Figure 5.7: Anirregular sequence of tableaux containing a cycle (Exarbg.1).

Tp(t) T:q(t)

Tiq(Y) T:p(X)
if ¢ is unifiable with the constart, if ¢ is unifiable with the constart
Y is an arbitrary rigid variable; X is an arbitrary rigid variable;

a unifier oft anda hat to be applied a unifier oft andb hat to be applied

Then, starting from an initial tableal consisting of the tableau formuldep(a),

T:q(b), andT:p(X,), a sequencé;, T, . .. of tableaux can be derived such that each

tableau’; in the sequence 1-contains the tabldaw, but no tablead’; contains the

tableau’;,, (: > 0). The first four tableaux in the sequence are shown in Figute 5
O

The above example illustrates the reason why cycles mayr dbatiare difficult to
detect, but it is rather artificial and the cycle could be dediby always using the most
specific premiss that allows to derive a certain conclusiamdgh is a good heuristic
anyway). That is, instead of deriving the conclusi@gfT:p(Y)}}, {X — a}) from
the premisg T:p(X)}, the conclusion{{T:p(Y")}}, id) is derived from the premiss
{T:p(a)}. There are, however, more complicated situations whergyuabst specific
premisses does not help, as the following example demaestra

Example 5.4.2 Figures 5.8 and 5.9 show one cycle in an infinite irregulausage
of tableaux that is constructed using the mixed variableutas for PL1 from Sec-
tion 4.3.6.

To construct this sequence, the following expansion rulgliestions are repeated
again and again:

— Aconclusion of the forrd {T:r(Y)}, {T:s(Y)}} is derived from{ T:(r(y) V s(y)) }
and is used to expand the rightmost branch of the tableaeample, to derive
tableauls from tableaurs).
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— The third branch from the right is closed and a variables instantiated with (for
example, to derivd’; from Tg).

— Aconclusion of the ford{T:p(X)}, {T:q(X)} } is derived from{ T:(p(x) V q(x)) }}}
and is used to expand the rightmost branch of the tableaextmple, to derivd;
from T7).

— The third branch from the right is closed and a varidblis instantiated witlb (for
example, to derivd, from Ty).

When these four steps have been executed, the cycle is deyipe each tablead] in

the sequence contains the tablday, for ; > 5. No tableau in the sequence contains
its immediate successor tableau, such that the cycle isutiffo detect. Note that for
each expansion rule application, the most specific premigsed. O

The problems discussed above that all result from the fattaiablead;,; may not
contain its predecessor tabledy can be solved by making the proof procedure less
destructive in the following sense: We demand that immediafter an expansion
step that destroys formulae, the expansion steps that adeddo recreate the de-
stroyed formulae are executed. In the worst case, a new dojne sub-tableau that
was affected by the instantiation is created and appendatisob-branches that have
been affected. To execute such a reconstruction step iyspassible if the calculus
has a ground version. The result is a tablé‘a;q that contains botf; and7;,; and

all the tableaux that occur as intermediate results duhegéconstruction.

Example 5.4.3 The left branch of the tabledl; in Figure 5.10 (a) is closed using
the conclusio{{ L }}, {X — a}. The result is the tabledl} . in Figure 5.10 (b), in
which all formulae containing the rigid variablé have been destroyed. They are re-
constructed by appending a copy of the sub-table@Xi) that consists of all formulae
in T; in which X occurs to all the branches . ; from which formulae are missing;
the resulting tableail , (Figure 5.10 (c)) contains botf and7;_;. O

If a deterministic proof procedure executes a reconstintep after each expansion
rule application, then a sequentg, T, . . . of tableaux is constructed whef#, | is
constructed fron¥;” by applying a regular expansion step and then reconstrect th
destroyed formulae. To check whether such a sequence igrggis sufficient to test
whether the immediate successor tabl@ay of 7" is contained irl;". The earlier
predecessors do not have to be considered as they are airehtn".

Theorem 5.4.4 LetC be an ideal rigid variable calculus that has a ground instanc
let 3 be a signature; let € N be the maximal size of the minimal premisses of all
possible conclusions i}; and letw be a weight function.

If there is a tableau proof for a s C Form(X*) of formulae, then every sequence
(T;");>1 of tableaux forg that is constructed as described below contains a closed

1

tableau”, (n € N):
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Figure 5.8: A more complex irregular sequence of tableaux containingctec

(part 1); see Example 5.4.2.
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Figure 5.9: A more complex irregular sequence of tableaux containingckec

(part 2); see Example 5.4.2.
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T:(p(z) v (Q|(-’l=) Ar(z))) T:(p(z) v (ql(fv) Ar(e)))
T:(sll\/ $9) Ti(Sll\/ S9)
F:p(a) F:p(a)
~ ~ - ~
T:p(X) Ti(q(X)l/\ r(X)) Tipl(a) TZ(Q(G)l/\ r(a))
T:ql(X) 1 T:ql(a)
T (X) T:r(a)
7\ VRN
T:siy  Tisy T:sy  T:isy
(@) (b)
T:(p(x) v (ql(fb) Ar(e)))
T:(s1V s9)
szl(a> whereS(X) =
~
T:pl(a) T:(q(a)l/\ r(a))
1 Trql(a) T:p(X) Tr(q(X)l/\ r(X))
T:r(a) T:q(X)
T:sq T:s9 T:r(X)
SN\ /S(X)
(c)

Figure 5.10: A tableau reconstruction step (Example 5.4.3).
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e T," is aninitial tableau forg.
e Forall:>1,

1. T;,, IS a successor tableau 61’2.+ such that (a)7;,, is not k-contained
in 7;", and (b) there is no successor tableBy, of 7;" that satisfies con-
dition (a) and has a smaller maximal formula weight tHBn; (w.r.t. the
weight functionw).

2. Let(C;,7;) be the conclusion derivable from some premissignthat
is used to construct;,, and letS; be the minimal sub-tableau @t
that contains all occurrences of free variables instam@thby7;. The ta-
bleauT}!, is constructed fronT;,; by repeatedly executing all expansion
rule applications needed to construct the sub-tabl8aand thus append-
ing S; at the end of each branch going through the sub-tabledt) in that
results from applying; to S;.

Proof: Part 1: SinceC is ideal, if (C, o) is a conclusion of some premi$g then
(C,1id) is a conclusion oflo. Therefore, the expansion rule applications needed to
constructZ;" from 7; do not require any instantiations of rigid variables, iteey are
non-destructive, which implies that, for alp> 1,

T, C. T} .

By construction off};, all formulae that are destroyed by applying the substitutj
to 7. are reintroduced to all branches from which they are misising, ;. Thus, we
have

TS Ty
Part 2: We show that the sequen¢g;"),> is regular (Def. 5.2.9). Assume the con-
trary; then the sequence contains table&ix7;", i > j, such thafl;" C, T;". Using
the results of Part 1, that implies

T, G TG T C T
which contradicts the fact that (by definition) the tabl@ais not k-contained irf;" |.

Part 3: Let w,.x € N be an arbitrary weight. We prove that the initial sub-segeen
of (7;");>1 that only contains formulag of weightw(¢) < wmay is finite.

Let T be a set of representatives of each class of tableau forrivu(g¢"),>; that are
identical up to variable renaming and whose weight is nog®ighanw,,.; thus, if
¢ is a tableau formula withy (¢) < wpax in (7;7);>1, then there is a variant ef in T';

we assume that the representativeB are chosen in such a way that no two formulae
in I have a rigid variable in common.
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The definition of weight orderings implies immediately thia¢ setl’ must be finite.
Thus, Lemma 5.2.11 applies and the initial sub-sequen¢&;of;~ in which no for-
mula of weight bigger tham,,,, occurs is finite.

Part 4: By assumption there is a (possibly irregular) tableau pidof. ., 7, for §.
We prove by induction on that there are substitutions, . .., o,, € Subst(X*) and
weightswy, ..., w,, € N such that

/ +

whereT, is the last tableau in the initial sub-sequencédBf )~ that contains no
formula with a weight bigger tham; (which exists according to Part 3).

j = 1: Let o0y = id and w; = 0 such thatn; = 1. The tableauxI] and T;" are
both initial tableaux for§ and do not contain rigid variables; thus, we have trivially

j —> j + 1: LetIl’ be the premiss an@’, p) the conclusion used in the construction of
T}, fromT7; let B} be the branch iffj that has been expanded; and-ete the vari-
able renamlng that exists beca(F§e; T*j o, according the the definition af.. Now,

let the tablead” be constructed by expandiral branches ofl;fo;m thatk-contain
the branchB’ (they contain a variant of the premiEls) using the conclusiofC’, p).

Obviously, the tableaill k-contains the table&li ag;, ;.

Let w;,; be the maximal weight of the formulae ifi. The tableaul} v 05T k-
contains. Otherwise, the expansion of’ ., using the conclusiofC’, p o o ;) is
regular. That leads to a contradiction, because all forethat are added by such an
expansion rule application are variants of formulad’irthey thus all have a weight
that is less than or equal to;; but since the tableali’  is by definition the last
tableau in the sequenc#;);~; not containing a formula of weight bigger than_,,

all expansion rule applications fljjj+1 that do not add a formula of weight bigger

thanw,, must be forbidden by the regularity condition.
Therefore, we have X
T;H cC,TC, T;;Haﬂr
and thus
TJ’+1 =k TT?;HU?'H
whereo; = o;m.

Part 5: Now we can conclude the proof of the theorem as, in particule ta-
bleauT,’ o, k-contains the tableail;,. SinceT}, is closed, every branch &f’,
containsL. Therefore, every branch @t ,, and, thus, every branch @f; con-
tains_L, i.e., T, is closed. O

A proof procedure satisfying the conditions of Theorem4.4/hich constructs a reg-
ular sequenc&,", T, ... of tableaux such thak;” C, 7%, for all i > 1, simulates—
in a certain sense—a depth first iterative deepening seaeshection 5.1.2). The
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weight of the formulae that can occur in the tableaux in@sasepwise. If some (pos-
sibly irregular) tableau proof exists that does not contarmulae of weight bigger
thanw.,.x, then there is a closed tabledfi that is the last in the constructed sequence
not containing formulae of weight bigger than soafg,, € N. It contains all tableaux
that can be constructed from formulaef weightw(¢) < wya.x. The big advantage
of this simulated DFID over classical DFID search based arktoacking is that the
tableauT, is a very compact representation of the search space. Aihfbemation
that is contained in tableaux whose formulae are of weigdd thanw,,., IS present

in the single structurd,"; and all the tableaux in the search space that are identical
or in some way symmetrical to each other are represented lyyooie sub-tableau
of ;. Since no backtracking occurs, no information that has bleerned is ever lost.
There may be parts of the tabled@ji that represent redundant information and are
therefore useless (i.e., non-closed subtableaux thatdhotihave been created); but
these are not harmful as they can be removed usingrtir@ngtechnique described in
Section 4.6.

The method for designing a deterministic proof procedusedeed in this section can
only be applied if the number of formulae in minimal premsselimited by some

k € N. It can, however, easily be extended to arbitrary idealutedeith a ground in-
stance (such as, for example, the calculus for modal logissribed in Section 3.7.4)

by iteratively increasing the limik during the construction of the regular sequence
(T;");>1 of tableaux—such that, for all paiK&, wm.x), at leastk variants of all for-
mulae of weight less tham,,,., are sooner or later added to each tableau branch. One
could, for example, define that= k., (wmax) Wherek,, is a monotonically increasing

function andw,,. is the maximal weight of the formulae in the current tableau.

5.5 Search Space Restrictions that Preserve Idealness

The method of constructing deterministic proof proceddoegigid variable calculi
described in the previous section is compatible with alfdeapace restrictions that
preserve idealness of the calculus. These restrictionssarally based on semantical
properties of the particular logic, such that they are diffitco formulate in a uniform
way. Important examples for such restrictions are the ¥ahg.

Connectedness For many calculi (and logics), it is possible to defineannect-
ednesgelation between tableau formulae (or between tableaudl@enand sets of
tableau formulae) such that, if a tableau form¢le not connected to any other for-
mula (or set of formulae) on the tableau branch on which iuagcthen it is known
to be redundant, i.e., neithemor any formula derivable frorm can ever be used in a
branch closure. That is, (1) no minimal premiss that costaiallows the deduction
of L and, iteratively, (2) no conclusion that can be derived flominimal premiss
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containingy contains a formula that is connected to another formulagr af formu-
lae). Of course, to be useful for restricting the searchepae connectedness relation
must be easy to check.

For example, if the calculus for PL1 from Section 3.6 is useddnstruct tableaux,
then a connectedness relation can be used where two forrardasonsidered to be
connected if and only if they contain occurrences of the satoen with different
polarity (see, for example, (Beckert & Hahnle, 1998)).

A notion of connectedness based on checking the occurrdribe gsame atom with
different polarity can be used for most logics in the sensgttie occurrence of such
atoms issufficientfor connectedness. Often, however, formulae are connectater
ways as well (for example if they contain equalities that rbay‘applied” to other
formulae).

If an ideal calculus is restricted in such a way that a minipraimiss containing a
formula must never be used for expansion, then idealneseafaiculus is preserved.
However, idealness and proof confluence are lostifrangconnectedness condition
is used, where a minimal premiss may only be used for exparfsioe of its formulae
is connected to the leave of the branch that is expanded.

Selection Functions Another important method for restricting the search space
that preserves idealness of a calculus are selection fursdiased in literal orderings,
which are well-known from calculi for clausal predicateilmfHahnle & Klingenbeck,
1996; Hahnle & Pape, 1997).

Note that literal orderings are a completely different agpte¢han the weight orderings
defined in Section 5.3; literal orderings are (in generalved-orderings as there may
be infinitely many formulae that are incomparable.
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6.1 Overview

The methodology ofibring is a successful framework for combining logical systems
based on combining their semantics (Gabbay, 1996c; Gathbaga; Gabbay, 1998),
see Section 6.2. The basic idea is to combine the modelsmigtime semantics of two
logics L, e andL, such that the result can be used to define semantics for exmnes
(formulae) from the combined languagesigfandL,. The general pre-condition for
fibring is that these models have components like, for exantpe worlds in Kripke
structures, which is in full accordance with the assumptie have made regarding
the form of models.

To build fibred modelsfjbring functions?, 5 are defined that assign to each warld

of anL;-modelm; an Ly-modelms. When anLsy-formula is to be evaluated im,
where its value is undefined at first, it is evaluatedhin = F(; 5 (w) instead. The

full power of the fibring method is revealed when this prode$terated to define a
semantics for the logik; 5;, where the operators of the component logics can occur
arbitrarily nested in formulae. Fibring has been succdlgsfised in many areas of
logic to combine systems and define their semantics; for anvaaw see (Gabbay,
1996¢; Gabbay, 1998).

In this chapter, we extend the fibring approactiableau calculi We describe how
to uniformly construct a sound and complete tableau casciduthe combined logic
from tableau calculi for the component logics. Since tablealculi are readily avail-
able for most “basic” logics (including classical logicspdal logics, intuitionistic
logics, temporal logics, and many more), calculi can be iobtafor all “complex”
logics that can be constructed by fibring basic logics, sischhadal predicate logic,
intuitionistic temporal logic, etc.

The main advantage of a uniform framework for fibring tablealeuli is that to con-
struct a calculus for the combinatidy, 5, of two particular logics, no knowledge is
needed about their interaction. Thus, a calculus for thebtoationL; 5 can be ob-
tained quickly and easily. Soundness and completenes® dibited calculus do not
have to be proven but follow from soundness and completgesgerties of the com-
ponent calculi (Theorem 6.4.3).

It is also possible to fibre a calcul@s for a logicL; with a calculusC, for a “sub-
logic” Ly of L; (for example, propositional logic is a sub-logic of predé#ogic);

157
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althoughC; can handle the whole logit;, the calculug’; may be more efficient for
formulae fromL, such that the fibred calculd, ») is more efficient thag, .

One cannot fibre just any tableau calculi in a uniform way.adthing is known about
the calculi, then it is not clear where to “plug in” the calgsiffor L, into that forL;.
Therefore, in this chapter, we only consider tableau calbat are (syntactically)

— ideal,
and (semantically)

— have the strong soundness properties from Definition 3apgropriateness of the
set of tableau interpretations and soundness of expansion)

— have Strong Completeness Property 1 from Definition 3.@fpropriateness of the
set of tableau interpretations), and

— are strongly semantically analytic (Def. 3.5.16).

Calculi with these properties can be shown to be sufficiemigll-behaved”, such
that fibring is possible. Idealness of the component calsisufficient to define the
fibred calculus (i.e., its syntax and semantics) in a uniferay. If, moreover, the
component calculi have the semantical properties listesi@lihen the resulting fibred
calculus is automatically sound and complete for the logsulting from fibring the
component logics. Moreover, it can be shown to have itseg¢lsemantical properties,
which makes it possible to iterate the fibring of tableau waknd, thus, to construct
a calculus for the fully fibred logi&; 5.

As an example, in Section 6.5, a calculus for PL1 and a caddoluthe modal Iogicf{
are fibred resulting in a calculus for modal predicate logic.

It may be only possible to use a fibred calculus for semi-degidatisfiability of for-
mulae in the fibred logik, i.e., a proof procedure based onfithred calculus may
only terminate for unsatisfiable input formulae—even if teenponent calculi can be
used to decide satisfiability in the component logics. Thatyever, is not surprising
because a fibred logic may be undecidable even if its compsaea decidable.

Related work includes (D’Agostino & Gabbay, 1996), where ethod for fibring
tableau calculi for substructural implication logics hagb presented. Ir?), a method
is described for fibring tableau calculi for modal logics tmstruct calculi for multi-
modal logics; it can be seen as an instance of the generaé¥vark presented in the
following. In (Giunchiglia & Sebastiani, 1996), a deductisystem for a modal logic
is described that uses separate procedures for handlimggsscal propositional part
and the modal part of formulae, respectively.

In (Pfalzgraf, 1991; Pfalzgraf & Stokkermans, 1994) theaduction oflogical fib-
rings has been strongly motivated by the classical notion of filbredbes and sheaves.
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Concrete applications aim at modelling logical control obperating agents. Baader
and Schulz (1995a; 1995b) use another variant of fibring donlwning solution do-
mains and constraint solvers for symbolic constraints.

The advantages of combining different logics are discusséie Rijke, 1997).

6.2 Fibring Logical Systems

In this section, the method of fibring logical systems is dégd in general and syn-
tax and semantics of fibred logics are defined, based on san@dsemantics of its
component logics.

Intuitively, to fibre two logicd.; andL, means to consider a logic whose formulae are
constructed from symbols and operators from both logicht@g, 1996c; Gabbay,
1998). In a first step we consider a lodig, »y whereL,-formulae can occur inside
L,-formulae but not vice versa.

The logicL; o) = Ly 4y that is the full combination oL, andL,, where expressions
from the two logics can be nested arbitrarily, can be hanbiethductively repeating
the construction described in the following. Similarlyistpossible to combine three
or more logics.

As we have defined logical systems in a very general way, tisen® information
on how formulae are constructed from signatures. We modelagsumption that
L, »)-formulae are (somehow) constructed uslngformulae as subformulae &f,-
formulae by considering the logib; ) to be a special version di; that contains
the formulae ofL., as (additional) atoms. And, in each worldof the L(; 5)-models
(which are enriched.,;-models), the truth value of the additional atoms (whichlare
formulae) is the same as that in the initial world oflaytmodel assigned te@. Thus,
an L, »-model consists of ail.,-modelm; and afibring functionF that assigns to
each worldw in m; anLy-model (as illustrated in Figure 6.1). Intuitively, when an
L,-formula is to be evaluated i, where its value is undefined, it is evaluated in
m, = F(w) instead.

Definition 6.2.1 Let L, andL;, be logics; let a signaturg, ) € Sig, be assigned to
each paifX, ¥y) € Sig, x Sig, of signatures such that

Formy(Xs) C Atomy(X(1,9)) -

The fibred logical systenlL, 5 that is the result of fibring the logick, andL; is
defined by:

e The setSig(m) of signatures oL, »y consists of all the signaturég, », € Sig,
assigned to a pai®;, Xy) € Sig, x Sig,.
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f [ ]
% ¢ m% = f(l’Q) (w%)
[ ]
w} o
F(1,2) o
wfe—o 1Y
! o |mj = Fpo(wi)
w? e .
m;, 7:(1,2)
[ ]
o |mj = Fp(w})
[ ]

Figure 6.1: A fibred model.

o Forall X5 € Sig o), the setFormy 2 (X(1,2)) of L 9)-formulae overy; o
is identical to the sefForm, (X)) of Li-formulae overX, 5, and the set
Atom,9)(3(1,2)) of L1 2)-atoms oved; 5 is identical to the setitom; (1 2))
of L;-atoms oved; 5.

e For all X 5 € Sig(; 5, the setM; 2)(¥(12)) of L 2-models consists of all
pairs(m;, F) wherem; € M, is anL;-model andF is a fibring function that
assigns to each world of m; anL,-modelm, € M, (%,) such that a formula
G € Forms(X,) is true inw iff itis true in F(w), i.e.,

wE G iff Flw) = G

where|=; and=, denote the truth relations between worlds and formulde, in
andL,, respectively.

The setiV(, ) of worlds of (m;, F) consists of all worlds im; and all worlds
in the Ly-models assigned to worlds in; by F. The initial world of (m;, F)
is the initial world ofm,;.

The truth relation=; 5) of L 5 is defined byw |=( ) G iff w = G for all
worldsw in W, o) = W, and formulagx in Form, 5)(X(1,2)) = Form(3(1,2)).
O

Example 6.2.2 To be able to fibre first-order predicate logic PL1 and a moaigicl
we assume that for every PL1-signatdiig ; there is a signaturg,,,q € Sig,,,q SUch
that the atoms oveXpr, are the primitive propositions if,,,oq. Then,Epri moq) IS @
PL1-signature in which the predicate symbols are of the form-o, p (n > 0) where
o; € {0,<, —} andp is a predicate symbol iRpy ;.

If p andq are predicate symbols ¥ipr; anda is a constant, thep(a) is a primitive
proposition inX,,,q4, Op is a predicate symbol il py1,moq), andOp(a) is an element
of both Atomle(Z(leimod)) andFormmOd(Emod).
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Examples for formulae iFormpr,; (X pr1,moa)) are

Op(a),

(Vz)(p(x)),

(Vz)(Bp(x)),

(Vz)(Bp(2)) = (F2)(Cq(2));

but O(Vx)(p(x)) is not a formula in Formpr; (Xpr.1,med)) @S Modalities are only al-
lowed to occur on the atomic level; anth(x) is neither a formula oL,,,q nor an

atom of PL1 because free object variables are, by definitiohallowed to occur in
formulae of PL1.

The fibred logicLpr,1,meq) iS @ modal predicate logic, where the modal operators can
only occur on the atomic level. If, however, the fibring preés iterated, then the
result is a full modal predicate logic, because then theckdgionnectives and A of

PL1 can be used inside modal formulae. a

6.3 Fibring Tableau Calculi

In this section, we describe how to construct in a uniform wasbleau calculus for a
fibred logicL, ») from two tableau calculf’; andC, for L resp.L,.}

If we take the view point that the search for a tableau proahiattempt to construct a
model for the formulae on the initial tableau, then the deé&oc a tableau proof in the
fibred calculus corresponds to a construction of a fibred mddeas therefore to be
possible to represent knowledge about fibred models byaalitgmulae of the fibred
calculus. For that purpose, we use labels that are eitheedbtmo, € Lab, denoting

a world in theL;-model or of the form(oy;0,) (Whereo; € Lab; andoy € Labs)
denoting a world in th&,-model that is assigned by the fibring function to the world
in the L;-model represented by,. A tableau formulaTl:o,:G expresses that is
true in 7; (0, ); the meaning of a tableau formula(o;; 03):G is thatG is true in the
world 75 (o9) of the model assigned t§ (o) by the fibring function.

The combined calculus does not construct separate tabfeailx andL, formulae,
but there is only one unified structure with one unified tablegoansion rule.

The tableau expansion rule of the fibred calcudlys, constructed fron€; andC, has
three components:

1. the expansion rule @f;; it can be applied td.; -tableau formulae on a branch;

1 Only ground calculi are considered in this chapter. To qoiesa rigid or universal variables calculus
for a fibred logicL, »), a ground calculu§(gld2) has to be constructed first (using fibring), which
then allows to construct a free variable calculuskgy ») using the lifting techniques described in
Chapter 4.
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2. the expansion rule @k; it can be applied td.,-tableau formulae with a label of
the form(oy; 09);

3. Afibring rule schema that allows to derig€o;; 09):G, from S:o:Gy if G, is
anL,-formula and, thus, has to be handled bydheule. This schema expresses
the fact that, if arlL,-formulaGs is true in anL;-world w = I;(0y), then it is
true in the initial world of thdL;-model assigned tw.

The only additional assumption we have to make to be ablefinalsyntax and se-
mantics of the fibred calculu; »)—besides idealness of the calaiiiandC; for the
component logics—is that the extensions of signaturesatteatised irC; and(C, are
compatible.

Definition 6.3.1 Letthe logicL, 5 be the result of fibring logick; andL,; and letC,
andC, be calculi forL, resp.L, such that, for all signatures, € Sig, and%, € Sig,,

there is an extension!” of ¥, with

— Formy(2Y) € Atom(X, ,)), and
- 55 = (3)~.

Then, the fibred calculug; o for L, 9 is, for all ¥, € Sig,, %, € Sig,, defined by:

Labels: The set of labels of(; 5 is
Lab(m) = La61 U {(0'1;0'2) | oy € Labl,O'Q € LabQ} )
the initial Iabelo—?m) of C(1,2) is identical to the initial labet? of C;.

Expansion rule:The expansion rulé, 5 of C(; 5 assigns the following possible con-
clusions to premissds$ C TabForm(w(Zz‘m)) (where&; andé&, are the expan-
sion rules ofC; and(,, respectively):

1. the conclusions iff; (IT;) wherell; consists of all tableau formulaein I1
of the form¢ = S:04:G (expansion rule of;),
2. forallo, € Lab,, the conclusions that can be constructed from the conclu-
sions in&, (11, 4, ) replacingo, by (o4; 09) where
[y, = {S:09:G | S:(0y;09):G € 1T}

(expansion rule of,),

3. the conclusiod {S:(ay; 09):G'}} for all tableau formulae in IT of the form
¢ = S:01:G Whith G € Formsy(X3) (fibring rule schema)
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Tableau interpretationsThe setTablInterp , ,) of tableau interpretations 6f; ») con-
sists of all pairgmy; 2), I(1,9)), Wherem 5y = (m;, F) is anL; »)-model, such
that

1. there is a tableau interpretatiam, I1) in Tablnterp,(3(1,2)),

2. for allLy,-modelsm, ,, = F(w) that are assigned to worldsof m,, there
is a tableau interpretatiofns ,,, I5 ,,) in TabInterp,(Xs),

3. [(172) (0'1) = ]1(0'1) and[(172)((0'1; 0'2)) = 127]1(01)(0'2) for all o1 € Labl and
oy € Labs. O

6.4 Semantical Properties of Fibred Calculi

As already mentioned in Section 6.1, we demand that a cal¢bht is to be used for
fiboring—besides being ideal—has the soundness and compisteroperties from
Definitions 3.5.8 and 3.5.10, and is strongly semanticaiic.

Definition 6.4.1 A calculusC is suitable for fibringif

— itisideal,

— it has the strong soundness properties from Definitior83d&ppropriateness of the
set of tableau interpretations and soundness of expansion)

— it has Strong Completeness Property 1 from Definition 8.%appropriateness of
the set of tableau interpretations), and

— itis strongly semantically analytic (Def. 3.5.16). O

Idealness of the component calafjiandCs is sufficient for syntactically defining the
fibred calculug’(; o). ButC 5 is only thenby constructiorsound and complete (and
suitable for fibring) ifC; andC, have the semantical properties making them suitable
for fibring (as defined above).

It is not sufficient for fibring if the component calculi onlyave the weak soundness
and completeness properties (Def. 3.5.3 and 3.5.6). Fongbea if only satisfiability
by sometableau interpretation is preserved when the expansi@enafud component
calculus is applied, then the fibred calculus is not necégsaund. Intuitively, the
reason for this is the following: Suppo%g ») is a tableau for formulae of the fibred
logic L, 2, the L;-tableau interpretatiofm,, I;) satisfies theL,-part of 7{, »), and

a world w in m, is assigned afL;-modelm,. Now, if the expansion rule of the
component calculus fds; only preserved satisfiability bgometableau interpretation,
i.e., theL-part of a successor tableﬁpg) of T(; ») was only satisfied by some tableau
interpretation'm/, I7) different from(m,, I,), then a problem would arise in case
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and the worldw' in (m/, I]) corresponding ta are not compatible, i.e., in case some
L,-formula that is true in the initial world afn, (and inw) is nottrue inw’.

The following example shows that a calculus has to be senalytianalytic to be
indeed suitable for fibring, as otherwise the fibred calcatay not be complete.

Example 6.4.2 Completeness of a calculds for PL1 is preserved if a formula of
the formT:(p V ¢) is not used for expansion of a branéhin case the atom does
not occur anywhere else ds (i.e., in case the atomis pure). A calculus using this
search space restriction is, howevet semantically analytic.

When(; is fibred with a calculug, for a modal logic, then an PL1-atom may be an
unsatisfiable modal formula. Thus, the expansion of foreglantaining pure atoms
may not be redundant; and a calculus for PL1 that is to beldaitar fibring must al-
low to expand a branch containing, for examgles:[C(r A =) V ¢] by sub-branches
containingT:0:(r A —r) and T:o:q, respectively, such thak:o:O(r A —r) can be
passed on to the modal component of the fibred calculus, and$atisfiability can be
detected. O

The following is the main theorem of this chapter.

Theorem 6.4.3 Let the logicL ») be the result of fibring logic$.; and L,; let C;
and(C, be calculi forL; resp.L, that are suitable for fibring (Def. 6.4.1), and let the
calculusC, 5 for L, 5) be the result of fibring; andC, according to Definition 6.3.1.

Then, the calculu§, ) is suitable for fibring.

Proof: Idealness: By construction,C(, ) is a calculus with expansion rule, and it
is easy to check that its expansion rule is monotonic andstamctural. Therefore,
C(Lg) is ideal.

Strong Soundness Propertyllet a set§ C Form; 2)(31,2)) of formulae be satisfied
by a modekm, F) € M (Z.9).

Since the calculug; has Strong Soundness Property 1, there is a tableau interpre
tation (my, 1) € TabForm: (X, ,)) that satisfies the initial tableau f@ such that

mj iS an extension ofn;. Now, for all worldsw of mj, let §, be the set of all for-
mulae inFormq(X3) that are true inv; §,, is satisfied by the modeh, , = F(w).
Because the calculds has Strong Soundness Property 1, there is a tableau irterpre
tion (mj ,, Ir,,) € TabFormy (X, ,)) that satisfies the initial tableau f§, such that

) _ (1,2)
m; , is an extension ofny .

The tableau interpretatioffmy, 7*). I(12)) € TabInterp 5)(Xf, ,)) Where

— F(w) = mj,,
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- [(172)(0'1) = [1(0'1) and[(172)((0'1;0'2)) = [2’]1(01)(0'2) for all Iabe|SO'1 € La1)1 and
oy € Labsy,

satisfies the initial tableau f@, and it is an extension din, F).

Strong Soundness Property &s the calculug’, ») is ideal, we can use Lemma 3.5.9.
Let IT C TabForm( (X, ,)) be a minimal premiss of a conclusi@ry and assume
thatll is satisfied by a tableau interpretatigim,, ), [12)) € TabInterp 5)(X, ,))-
We show that(m,, F), I(; »)) satisfies one of the extensionsGhby cases according
to the form ofIl.

If IT only contains formulae of the foro:G, i.e.,C has been derived frofi using
the expansion rule @f;, then one of the extensions(anis satisfied by (m,, F), I(; 2))
becaus€; has Strong Soundness Property 2.

If IT only contains formulae of the for$(oy; 0,):G, i.e.,C has been derived frofi
using the expansion rule @k, then one of the extensions i is satisfied by the
tableau interpretatiom;, F), I(; »)) becaus€, has Strong Soundness Property 2.

If T1 = {S:0,:G} whereG € Formy(3%) and C' = {{S:(01;09):G}}, then the truth
value ofG is the same in the world, = I, 5)(cy) and the worldl; 5)(c1; 03), which
is the initial world of 7 (w; ), and thereforé(m,, F), I, »)) satisfiesS:(oy; 09):G.

Strong Completeness Propertyllet ((m7, F*), I; »)) be a tableau interpretation sat-
isfying an initial tableadl; for a set§ C Form 5)(Xq 2)) of formulae.

TheC;-tableau interpretatiofin?, I;) satisfiesT; as well, wherel; is the restriction
of I ») to labels inLab,. Since the calculu§, has Strong Completeness Property 1,
there is a modan, € Ml(E(LQ)) that is a restriction ofn} and satisfieg.

Now, for all worldsw of m3, letF,, be the set of all tableau formulag: T:G such that
G ¢ Foer(Zz‘m)) is true inw; and leto; be a label inLab, such that/, (o) = w.
The(,-tableau interpretatioqF*(w), I,) wherely(os) = I1,2)((01; 02)) satisfiesg,,.
Since the calculug; has Strong Completeness Property 1, there is a mogel
in M (%,) that is a restriction ofF*(w) and satisfieg,,. By construction, the model
m, ,, satisfies all formulaé; that are true inv.

Therefore, the modelm,, F) of L, ) satisfies§ and is a restriction of(mj, 7*),
whereF(w) = my s, for all worldsw in m, (here f(w) is the world inmj corre-
sponding taw).

The calculus is strongly semantically analytleet B be a fully expanded branch that
is not closed; and leb(, 5y C TabForm(; 5)(X*) be a set of atomic tableau formulae
such that, fono ¢ in ®(; 5, both¢ and¢ are inForm(B) U ®(1 2. We show that there
is a tableau interpretation ifiabInterp , 5)(X(1,2)) satisfyingB and®; ).

For all o, € Lab,, let By ,, be the sub-branch dB that consists of formulae of the
form S:(o; 02):G. SinceB,,, is a fully expanded non-closey-branch and the cal-
culusC, is strongly semantically analytic, there is a tableau pretatiorm, ,, , 5 »,)
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in TabInterp; 5)(X(1,2)) satisfying bothB, ;, and the set
{S:02:G | S:(01;02):G € P19}

of atomic tableau formulae.

Let B; be the sub-branch aB that consists of formulae of the for$.o,:G where
o1 € Lab,. SinceB, is a fully expanded non-closagi-branch and’; is strongly
semantically analytic, there is a tableau interpretation, I;) € TabInterp, (¥ 2))
satisfying bothB, and the set of atomic tableau formulae of the f&ra, :G in @, 5.

Let the setb, C TubForm, (X1 2)) of atomic tableau formulae be defined by:
¢, = {S:01:G | G € Formy(X}), andS:o,:G is satisfied bym, ,,, Ir )} -

By construction, the seb, cannot contain an atom and its complemeng; and the
complement oty = S:0,:G € ® cannot occur inform (B, ) because otherwisB, ,,
would contain the complement 6fo,:G (sinceB is fully expanded), which however
is not possible aém, ,,, I» ,,) satisfies bott$:0,:G and B, ,, .

Therefore, since the calculds is strongly semantically analytic, there is a tableau
interpretationmy, I7) € TubInterp, (X, ,)) that satisfies bottB; and®;.

Now, we have that the tableau interpretatidm’, 7), /12)) € Tablnterp 5)(3(; )

with

— for all worldsw’ of m/, theL,-model assigned te' is F(v') = m,,, whereo, is
an arbitrary label in.ab, such that/; (o) = /',

— [(172)(0'1) = [{(0'1) andl(ljg)((Ul; 0'2)) = [2’01 (0'2) for all 0] € La61 and0'2 € La,bQ,

satisfiesB. O

A calculus that is suitable for fibring has by definition prdjess that ensure its sound-
ness and completeness (Theorems 3.5.4 and 3.5.7). Theréfmorem 6.4.3 implies
the following corollary.

Corollary 6.4.4 The calculug’(; oy is sound and complete.

6.5 Example: Fibring Calculi for PL1 and a Modal Logic

As an example, we fibre the calculds;,; for first-oArder predicate logic PL1 intro-
duced in Section 3.6 and a calcultis for the logicK of modalities (without binary
connectives) defined in Section ZFhe resultis a calculu ) for first-order modal
logic where the modal operators can only occur on the atoewiel (Example 6.2.2).

2 To distinguish negations in PL1 andi the symbol- is used in modal formulae instead -6f
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The tableau expansion rule of the fibred calculus can easilyonstructed by instan-
tiating the calculC; andC, in Definition 6.3.1 withCpr,; andCy, respectively. As an
example we use a tableau proof for the validity of the formula

G = (V2)(Op(z)) = [=(Fy)(O=p(y)) A =(32)(O—p(2))]

in the logicL(; ) = L p, ), using the calculug, ») = C .y, , to construct a closed
tableau for-G. The tableau is shown in Figure 6.2; it is constructed ag¥t The
tableau formula 1 is put on the tableau initially; then fotaa2—7 are added using the
rule schemata ofpr,; for a- and g-formulae. The schema @y, for /-formulae is
applied to derive 8 from 7, introducing the Skolem constant sko((Jy)(<C—p(y))).
Now, since 8 contains aK-formula, the fibring rule schema is applied to add 9 to
the branch, which then allows to apply tg-expansion rule to derive 10 from 9 (we
assume that®—p(c;)] = 1) and to derive 11 from 10. At this point, the rule schema
of Cp1,; for y-formulae is applied to 3 to derive 12, replacing the uniatygjuantified
object variabler with the ground terna; (which shows thaf’;- andC,-rule schemata
can be applied in an arbitrary order). Finally, the fibrinterechema is applied to 12
to derive 13, and the rule schemadf for v-formulae is applied to derive 14. At this
point, the left branch of the tableau is closed by the exmensile schema for closing
branches ot’;;, because it contains the complementary atoms 11 and 14. idttte r
branch is expanded and closed in the same way.

The full power of the fibring method is revealed when the figrprocess is iterated
to construct fromCpy; andCy a calculusCy, , ¢ for the full modal predicate logic
Lpp, ) this is possible because the calatilis), Ci,2,1), - - - are all suitable for fib-
ring. As an example, we us{l?Ple to prove the validity of the formul&’ =

(V2)(O(r(z) A s(2))) =[2G (S(=r(y) V =s(y))) A =(F2)(O(=r(2) V —s(2)))]

in L, ) itis constructed fron replacing the atom(z) by r(x) A s(z) and replac-
ing —p(y) and—p(z) by —r(y) vV —s(y) resp.—r(z) V —s(z). The construction of the
tableau starts as above fGr(Figure 6.2). We only consider the left branch (the right
branch can be closed in the same way). Instead of the atomd1athe branch now
containsl0’ = T:(x; 1.1):(—r(c1) V —s(c1)) andld’ = T:(x; 1.1):(r(c1) A s(c1)). The
expansion of the branch continues as shown in Figure 6.3rftpli§y notation, we
write (x; 1; %) instead of(x; (1;x)), etc.). The tableau formuldd’ contains an PL1-
formula. Therefore, the fibring rule schema is applied, aBds2derived from14’;
this is the fibring rule schema of the calculli ;) that, during the iteration pro-
cess, has been fibred with,, to constructCp;,  pr,)- The rule schema dfpr,
for a-formulae is used to derive 24 and 25 from 23; then, 26 is ddrivom 10’ by
again applying the fibring rule schema, and the rule schema-formulae is applied
to derive 27 and 31 from 26. The atoAp(c;) in 27 contains the modal and not the
first-oder negation sign. Thus, the fibring rule schema hdsetapplied again to de-
rive 28, which then allows to derive 29 by applying the schdaranodal negation.
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1 Toem((Vz)(Op(z)) — [ﬂ(ﬂy)l(O—p(y)) A =(32)(O=p(2))])
2 Fux:(Va)(Op(x)) — [_‘(H?J)(l<>—p(y)) A =(32)(O—p(2))]
3 T:*:(V:r')(Dp(:r))

4 Fixm(3y)(O—p(y)) A =(32)(O—p(2))

( s 27
5 F:x:—(3y) (O—p(y)) 6 Fox:=(Iy)(C—p(y))

) ) )
7 T:*:(Ely):(O—p Y)) 15 T:*:(Ey):(o—p(y))

(

8 T:#:0—p(eq) 16 T:x:O—p(cq)
9 T:(x; 1)::<>—p(cl) 17 T:(x; 1)::<>—p(01)
10 T:(x; 1.1):—p(cy) 18 T:(x; 1.1):—p(cy)
11 F:(*;l.ll):p(cl) 19 F:(x; 1.|1):p(01)

12 T:*:D|p(cl) 20 T:*:D|p(01)
13 T:(x; 1)|:Dp(cl) 21 T:(x; 1)|:Dp(cl)
14 T:(x; 1.|1):p(cl) 22 T:(x; 1.|1):p(01)

I I

Figure 6.2: A tableau proof for the validity of the formul&.
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10 T:(x;1.1):=r(c1) V —s(cq)
14 T:(x; 1.1):7“|(01) A s(cr)
23 T:(x;1.1; *):lr(cl) A s(eqp)

24 T:(x; 1.1|; *):1(cy)
25 T:(x; 1.1|; x):5(cq)
26 T:(x;1.1; *):—lr(cl) V —s(ep)

27 T:(#;1.1;%):—7(cy) 31 ml.l;*):—s(cl)
28 T:(x;1.1; >|1; 1):=r(ey) 32 T:(x; 1.1; >|1; 1):—s(eq)
29 F:(x; 1.1;|>i<; 1):r(eq) 33 F:(x; 1.1;|>i<; 1):s(cq)
30 T:(x; 1.1;|>i<; 1):r(eq) 34 T:(x; 1.1;|>i<; 1):s(cq)

L L

Figure 6.3: The continuation of the tableau f6¥'.

The atomic tableau formulae 24 and 29 cannot be used to dleskeranch, because
their labels are different. Thus, the fibring rule schemajdiad a last time to derive

30 from 24. Then, the branch is closed applying the schemadsmg branches to 29
and 30.
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7 Theory Reasoning

7.1 Overview

Theory reasoning is an important technique for increagiegefficiency of automated
deduction systems, that is well-known from theorem provimgrst-order predicate
logic. The specific knowledge from a given domain (or theasyinade use of by
applying efficient methods for reasoning in that domain.

Theory reasoning is very important for automated deduatioreal world domains.
Equality theory, for example, is frequently used, but mpsicHications of real world
problems use other theories as well: algebraic theoriesaith@matical problems and
specifications of abstract data types in software verificeto name a few.

Following the pioneering work of Stickel (1985), theory $eaing methods have been
described for various types of calculi for first-order poade logic; e.g. resolution
(Stickel, 1985; Policriti & Schwartz, 1995), path resotuti(Murray & Rosenthal,
1987b), the connection method (Petermann, 1992; Peterm808), model elimina-
tion (Baumgartner, 1992), connection tableaux (Baumgashal, 1992; Furbach,
1994), the matrix method (Murray & Rosenthal, 1987a).

The abstract model usually used to characterise an autdrdatiiction system that
employs theory reasoning techniques is that the generpbpaforeground reasoner
calls a special purpodeackground reasoneto handle problems from a certain the-
ory. In the case of tableau-based theorem proving, the foueg reasoner is (an
implementation of) a tableau calculus, whereas the backgtoeasoner is an arbi-
trary algorithm that, when provided with a premi$scomputes a conclusion or a set
of conclusions of1.

This model fits perfectly within our framework. There is hcedeto introduce new
notions for theory reasoning or to define conditions thattheclusions computed by
a background reasoner must satisfy to establish soundndssompleteness of the
resulting calculus for a theory and a logicL (as is usually done in the literature
on tableau-based theory reasoning, see (Beckert, 1998a)¢ad, we take the view-
point that a theory/” defines a new logical systeln-. This logicL+ has the same
syntax as the original logik; but the models oL+ are only those models df that
satisfy7. Then, all the notions and methods from the previous chapter be applied
without the need to define special theory reasoning versidnsackground reasoner
is assumed to be a procedure or algorithm for computing asrarts such that the

171
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resulting calculus is sound and complete for the Idgjc No special soundness and
completeness criteria have to be defined for theory reagpbint the techniques for
proving soundness and completeness described in Chaptar Becused. In addi-
tion, all methods for improving the efficiency of a tableaasbd proof procedure from
Chapters 4 and 5 can be applied, including the rigid and vseV&ariable techniques.

Background reasoners have been designed for variouséseoriparticular for equal-
ity reasoning; an overview can be found in (Baumgarate., 1992; Furbach, 1994);
for set theory in (Cantonet al., 1989). Reasoning in single models, e.g. natural num-
bers, is discussed in (Burckert, 1990).

7.2 Theories

We define any satisfiable set of formulae to be a theory.

Definition 7.2.1 Let L be a logic; and leE € Sig be a signature. Then, a satisfiable
set7 () C Form(X) of formulae is aheory.

The logical systenl. is identical toL except that, for all signatures € Sig, its
setM+(X) of models only contains those modelsIgf) that satisfy7 (). O

In the literature, often the additional condition (besidasisfiability) is imposed on
theories that they are closed under the logical consequetatton. Without that re-
striction we do not have to distinguish between a theory endeafining set of axioms.

Definition 7.2.2 A theory 7 (X) is (finitely) axiomatisabléf there is a (finite) decid-

able setl C Form(X) of formulae (the axioms) such thag:€ Form(X) is satisfied

by all models ofl.-(X) if and only if ¢ is satisfied by all models df(X) that satisfyl.
O

Most theories that are of practical interest are axiombalesaAn example for a theory
that is not axiomatisable is the sgtof all satisfiable formulae in PL1. If a theofy

is axiomatisable, then the set of unsatisfiable formulde,otan be enumerated using
a tableau calculus fd.

Example 7.2.3 The most important PL1-theory in practice is the equalisotly 7.
It consists of the following axioms:

(1) (Vx)(z =~ x) (reflexivity),
(2) for all function symbolg € F(X):

(Vq) - (Vo) (Vyr) - - (Vyn) (e Ryt A e Ay R y) —
fxe, oo zn) =~ f(yr, s yn))

wheren = ax(f) (monotonicity for function symbols),
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| Premiss | Conclusions |

{F:(a=a)} ({{L}} , id)

{F:(X ~a)} ({L}} X = a})

{F:(z~a)} ({L}} , id)

{T:p(a), F:p(b) } ({{F:(a=b)}} ,id)

{Tip(f(a), f(0), T:(f(X) = X)} | ({{T:p(a, f(b))}}, {X = a})
({T:p(f(a),0)}}, {X — b})

{p(f(a), f(b), f(x) =~ x} (H{T:pla,b)}} , id)

Table 7.1: Examples for premisses and their conclusions using eguhg&ory.

(3) for all predicate symbols € P(%):

(Vaq) - (V) (Vyr) - (V) (1 Ryt Ao Ay R yy,) —
(p(x1, .. 20) = (Wi, -, Yn)))

wheren = ayx(p) (monotonicity for predicate symbols),

Symmetry and transitivity ofz are implied by reflexivity (1) and monotonicity for
predicate symbols (3) (observe thatc P(Y)). O

Example 7.2.4 The PL1-theory/_ of partial orderings consists of the axioms

(1) (Vz)—(z < x) (anti-reflexivity),

(2) (Vz)(Vy)(V2)((z < y) A (y < z) = (x < 2)) (transitivity).

The theoryT_ is finite; contrary to the equality theory, it does not contaionotonicity
axioms. O

7.3 Examples for Background Reasoners

Table 7.1 shows some examples for conclusions a sound arquletebackground rea-
soner for the equality theor§.. may compute; the premisses and conclusions contain
both rigid and universal variables.

Using the universal variable technique is of great impantaior theory reasoning as
the following example illustrates:

Example 7.3.1 Suppose a tableau branch contains the equality(x) ~ x) and the
atomsT:p(f(a), f(b)) andF:p(a,b). In that case, the conclusidg{_L}}, id) can be
derived, and the branch can be closed immediately.
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th <t L
=
t<t forallt € TermOPLl(E*)

forallt,',t" € Termd, (%)

Table 7.2: Additional expansion rule schemata for the theory of photiderings
(Example 7.3.2).

In a rigid variable tableau where a similar branch contdiesstqualityT:(f(X) ~ X)
instead ofT:(f(x) ~ ), which allows only to derive the possible conclusions

({T:(f(0) # 0)}}.{X = a}) and ({{T:(f(a) = a)}}, {X = b}) ,

the branch cannot be closed (immediately). O

Example 7.3.2A sound and complete (ground) calculus for the loBicl . , i.e.,

for the logical system that results from adding the theorpantial orderings (Exam-
ple 7.2.4) to first-order predicate logic, can be constaibieextending the expansion
rule of the ground calculu€p;,; from Section 3.6 by the two expansion rule sche-
mata shown in Table 7.2. That is, for all premis$es TabFormpr,(X*), the set
Er. ()(II) of possible conclusions is the smallest set containing

— all conclusions ir€pr; (X)(II),

— the conclusiod {T:(t < t")}} for all termst, t" € Term$; ,(X*) such that there are
formulaeT:(t < ¢') andT:(¢' < ") in T1 for somet’ € Termd; (X%,

— the conclusiof{ L }} if T:(t < t) € TI for some termt € Term2, ,(X*). O
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2*

<

il

w <

... but we need notions,
not notation.

— A. TARSKI, 1943

Bijection from the set of modal formulae 1§ S. 51

set of labels, S. 49

premiss (finite set of tableau formulae), S. 30

extension of a signaturB that introduces free variables, Def. 4.2.3, S. 84

extension of a signaturB that is ground, i.e., does not introduce free
variables, Def. 4.2.3, S. 84
extension of a signaturg, S. 25

signature, S. 9

a-formula, S. 42

p-formula, S. 42

o-formula, S. 42

~-formula, S. 42

v-formula, S. 51

complement of the tableau formuta Def. 3.2.1, S. 25

tableau formula, S. 25

w-formula, S. 51

restriction of a substitution to a setV of variables, Def. 2.2.4, S. 12
composition of substitutions andr, Def. 2.2.4, S. 12

equivalence class of labels identicaldtap to parentheses, Def. 3.7.1, S. 48
substitution, S. 12

box operator in modal logics, S. 17

diamond operator in modal logics, S. 17

conjunction, S. 15

implication, S. 15

negation, S. 15

disjunction, S. 15

existential quantification, S. 15
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N universal quantification, S. 15

lo] length of a labeb, Def. 3.7.1, S. 48

<. weight ordering, Def. 5.3.1, S. 142

> accessibility relation on the set of labels, Def. 3.7.3,%. 4
< subsumption relation on rigid variable conclusions, De2. #41, S. 87
<" subsumption relation on substitutions, Def. 2.2.6, S. 14
= relation between worlds and formulae, Def. 2.1.1, S. 9
C, k-contains relation, Def. 5.2.4, S. 138

N meta level set intersection, S. 21

M object level set intersection, S. 21

U meta level set union, S. 21

L object level set union, S. 21

\ set difference, S. 21

= meta level equality, S. 21
object level equality, S. 21
€ meta level membership, S. 21
E object level membership, S. 21
{}n object level set constructor, S. 21
C object level set inclusion, S. 21
- meta level set inclusion, S. 21
0 meta level empty set, S. 21
0 object level empty set, S. 21
Atom set of all atomic formulae (atoms) of a logic, Def. 2.1.1, S. 9
B tableau branch, S. 25
CondLab(N) the set of conditional labels consisting of natural numbee§. 3.7.1, S. 48
C conclusion, S. 28

C tableau calculus, S. 25

dom /(o) the domain of the substitution, Def. 2.2.4, S. 12

E extension (finite set of tableau formulae), S. 28

& expansion rule, S. 28

F.G formula, S. 9

5,6 set of formulae, S. 9

Form(B) formulae on a tableau brandh, Def. 3.2.1, S. 25

Form set of all formulae of a logic, Def. 2.1.1, S. 9

FormY; , set of all (ground) closed PL1-formulae (sentences), D8f12S. 15
Form™¢ set of all (ground) PL1-formulae possibly containing objeariables not

bound by a quantifier, Def. 2.3.1, S. 15
F sign (falsehood), Def. 3.2.1, S. 25
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F fibring function, Def. 6.2.1, S. 157

g the set of all set terms ovérin a setll of MLSS-tableau formulae over*,
Def. 3.8.8, S. 68

Lab(N) the set of labels consisting of natural numbers, Def. 35.48

L formal language, S. 11

L logical system (logic), S. 9

L modal logicL without binary connectives, S. 19

MLSSF the logical system MLSSF, S. 21

MLSS the logical system MLSS, S. 21

M set of all models of a logic, Def. 2.1.1, S. 9

N the set of natural numbers, S. 48

Ord the class of all ordinals, Def. 2.6.4, S. 22

PL1 first-order predicate logic, S. 15

ran(o) the range of the substitution Def. 2.2.4, S. 12

R reachability relation in Kripke frames, Def. 2.4.1, S. 17

R realisation of a set of MLSS tableau formulae, S. 69

R tableau rule, S. 25

Sig set of all signatures of a logic, Def. 2.1.1, S. 9

Subst set of all idempotent substitutions of a logic, Def. 2.2.415

S set of sorts, S. 11

TabInterp set of tableau interpretations of a logic, Def. 3.4.2, S. 33

TabTerm set of terms in a tableau formula, Def. 4.2.3, S. 84

TabForm set of tableau formulae of a logic, Def. 3.2.1, S. 25

Term'™ set of all (hon-ground) terms of a language, Def. 2.2.2, S. 11

TermY; set of all (ground) PL1-terms not containing object vaiabDef. 2.3.1, S. 15

Termps 4 set of all (ground) PL1-terms possibly containing objecatalgles, Def. 2.3.1,

Term Sétlc?f all (ground) terms of a language, Def. 2.2.1, S. 11

Term set of all (ground) terms of a logic, Def. 2.2.3, S. 12

T sign (truth), Def. 3.2.1, S. 25

T certain set of constants, Def. 3.8.8, S. 68

T tableau, S. 25

T theory, S. 168

T< theory of partial orderings, S. 169

T~ equality theory, S. 168

V,W set of free variables, S. 12

Var set of all free variables, Def. 2.2.2, S. 11

% certain set of set terms, Def. 3.8.8, S. 68
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Pl von Neumann hierarchy of sets, Def. 2.6.4, S. 22
w set of all worlds in a model, Def. 2.1.1, S. 9
XY, Z free (rigid) variable, S. 12
fv indicates the free variable version of a calculus, a fremlibe signature, etc.,
id tSh'eSSmpty substitution, Def. 2.2.4, S. 12
ipr set of initial prefixes of a label, Def. 3.7.1, S. 48
mv indicates the mixed variable version of a calculus, an esiparrule, etc.,
S.84
model, S. 9
n,m natural number, S. 48
[n] conditional or unconditional position in label, S. 49
(n) conditional position in a label, S. 48
v indicates the rigid variable version of a calculus, an exanrule, etc., S. 84
skog, function assigning Skolem terms to free variable formulef, 4.2.28, S. 96
sko function assigning Skolem terms to formulae, Def. 3.6.2425.
sort function assigning sorts to terms, Def. 2.2.1, S. 11
uv indicates the universal variable version of a calculus,graesion rule, etc.,
val \?élﬁgtion function of first-order predicate logic, Def. 23S. 17
w? initial world, Def. 2.1.1, S. 9
w weight function, S. 142
T,Y, 2z free (universal) variable, S. 12

object variable, S. 12
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A

analytic,29
semantically40, 40-41

answer, the, 184

atomic formula (atom)9
non-groundl1

B

branch,25
closed,26
extension28
satisfied 33

breadth first search, 133

C
calculus,25
for K, 56-61
mixed variable118-121
rigid variable,97-99
for modal logics, 48-61
for modal predicate logid 64—-166
for PL1,41-47
mixed variable]116-118
rigid variable,95-97
ground,84
property
completeness ensurin@6, 36—
37
semantical34-41
soundness ensuring5, 35-36
strong completenes39
strong soundnes8y, 37-39
strong soundness ensurirgg,

187

syntactical27-32
property of being
analytic,29, 29
complete 34, 34
continuous32, 32
ideal, 30, 30—-32 86, 86—87
monotonic,29, 29
non-destructive27, 27
non-structural30, 30
proof confluent27, 27
semantically analytic40, 40-41
sound 34, 34
rigid variable, 86
suitable for fibring, 161
syntax,24-27
universal variable100
with expansion rule28, 85—-86
with free variables84—-85
with mixed variables112-116
with rigid variables 83—99
closed
branch,26
tableau26
closure rule, 28
completeness34, 34
ensuring propertie6, 36—37
completion mode, 133
conclusion, 28
rigid variable, 86
connectedness, 154
constraint, 93
continuity,32
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Index

D
depth first search, 133
DFID, 134,seedepth first search
domain
of a PL1 structurel?
of a substitution, 12

E

E-unification, rigid,74

expansion rule?28, 28
invertible,39, 39
rigid variable,86, 85—86
schemata, 31, 87

F
fibring, 155-166
first-order predicate logiceePL1
formula,9

a-, 42,51

(-, 42,51

v-, 42

)-, 42

v-, 51

7-, 51

modal, 17

PL1,15
forty-two, seeanswer, the
free

function symbol, 21

variable,84-85
fully expanded36

G
ground version88, 103

H
Herbrand structure, 45
Hintikka set
modal,54
with conditional labels59
PL1,45

I
ideal,30-32 86-87

invertible,39, 39
iterative deepening, 134

K
Kripke frame,17, 50

L
L-interpretation53
label
accessible49
conditional 48
consisting of natural number43
dead-end49
for modal logics 48-50
justified,58
position in,48
strongly generated, 49
language with termd,1
lemma, local124-129
lifting, 91-93
logical system (logic)9, 9—22
MLSS, 20-22
MLSSF,20-22
modal,17-20
semantics9
syntax,9
with terms,12
with terms and free variabled0—
12

M
MGU, seeunifier, most general
MLS (multi-level syllogistic), 20
MLSS (MLS with singletons), 20
formula,21
MLSSF (MLSS with free functions), 20
formula, 21
modal
axioms, 18
formula, 17
Hintikka set,54
with conditional labels59
logic, 17-20
model,9
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monotonic,29 Skolem
multi-level syllogistic,seeMLS constantb4
symbol, 10
N term,42, 96
non-destructive27 sort, 11
non-structural30 soundness34, 34

ensuring propertieg5, 35—-36
strong, of expansiorg37-39
substitution12, 12—-14

O
object variable, 12, 15

P compositition of, 12
permutability, 29 empty, 12
PL1,15-17 ground,12
formula, 15 idempotent]12
Hintikka set 45 restriction of a12
sentencel5 subsumption, 87
structure 17 of rigid variable conclusions, 87
term, 15 of substitutions, 14
premiss, 30 subterm11, 12
minimal, 31 T
proof confluence?7, 27 tableau25
property,seecalculus, property
pruning,129-131 branch,25
calculus,seecalculus
R closed,26
range of a substitution, 12 for a formula set, 26
reachability relation]7 formula,25
realisation69 initial, 26
regular,140 interpretation33
regularity,136—142 proof, 26
E-unification,74 satisfiable
rigid variable,83-99 mixed variable 116
version.88 rigid variable,94
’ universal variable]11
S satisfied 33
satisfiability, 10 semantics33
schemata, 31, 87 tableau formula
selection function, 154 used, 130
semantical intersection, 124 term,10-12
semantically analytic}0, 40-41 non-ground11
set PL1,15
structure22 theory,168
term,21 equality, 168

signature9 of partial orderings, 169
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Index

reasoningl67-170

U

unifiable,14

unification,14-15

unifier, 14
complete set of15
most general (MGU), 14
uv-, 115

universal variable100-121
unifier (uv-unifier),115
version,103

uv-unifier, 115

Y
valuation function,L7
variable
assignment].7
free,11
object, 12, 15
renaming, 12
universal,100-121
variant,12
von Neumann hierarch?2

w
weight
function,142
ordering,142, 142-144
world, 9
idealisable17
initial, 9



