Kl Programmierung

A First Look at Prolog

Bernhard Beckert

Winter Term 2007/2008

Universitat Koblenz-Landau

This set of slides is based on the slides by Adam Brooks Webber
provided on his web site at

to accompany Chapter 19 of his book
Modern Programming Languages: A Practical Introduction

Terms

Terms

Everything in Prolog is built from
terms:

Prolog programs
The data manipulated by Prolog programs

Three kinds of terms:

Constants: integers, real numbers, atoms
Variables
Compound terms

Constants

|nteger constants: 123
Real constants: 1.23
Atoms:

A lowercase letter followed by any number

of additional letters, digits or underscores:
fred

A sequence of non-alphanumeric
characters:

*’ °) =’ @#S

Plus a few special atoms: []

Atoms vs. Variables

An atom can look like a Java variable:

1, size, length

But an atom is not a variable
it is not bound to anything
never equal to any other atom
cannot be instantiated
does not have a value (except itself)

Variables

Any name beginning with an uppercase
letter or an underscore, followed by any

number of additional letters, digits or
underscores:
X, Child, Fred, , 123

Most variables start with an uppercase
letter

Those starting with an underscore,
including _, get special treatment

Compound Terms

An atom followed by a parenthesized,
comma-separated list of one or more

terms: x(y,z), +(1,2), .(1,[1),
parent (adam,seth), x(Y,x(Y,Z))

A compound term can look like a
function call: £(x,vy)

Again, this is misleading
Think of them as structured data

Terms

All Prolog programs and data are built
from terms

+(1,2) is usually written as 1+2

But these are not new kinds of terms,
just abbreviations

Unification

Pattern-matching using Prolog terms

Two terms unify if there is some way of
binding their variables that makes them
identical

parent (adam,Child)
parent (adam, seth)

unify by binding the variable child to
the atom seth

More details later

The Prolog Database
A Prolog language system maintains a
collection of facts and rules of inference

It is like an internal database

A Prolog program is just a set of data
for this database

The simplest kind of thing in the

database is a fact: a term followed by a
period

Example

parent (kim,holly) .

parent (margaret,kim) .
parent (margaret,kent).
parent (esther,margaret).
parent (herbert,margaret).
parent (herbert, jean).

A Prolog program of six facts
Defining a predicate parent of arity 2
We would naturally interpret these as

facts about families: Kim is the parent
of Holly and so on

Rules

The Need For Rules

Previous example had a lengthy query
for great—-grandchildren of Esther

It would be nicer to query directly:
greatgrandparent (esther,GGC)

But we do not want to add separate
facts of that form to the database

The relation should follow from the
parent relation already defined

A Rule /few

}
greatgrandparent (GGP,GGC) :-
parent (GGP, GP---)- ------ ’
parent (GP,P) , \
....................... parent (P,GGC) . conditions

A rule says how to prove something: to
prove the head, prove the conditions

To prove greatgrandparent (GGP,GGC), find
some Gp and p for which you can prove
parent (GGP,GP), then parent (GP,P) and
then finaIIy parent (P,GGC)

Program with a Rule

parent (kim,holly) .
parent (margaret,kim).
parent (margaret,kent).
parent (esther,margaret).
parent (herbert,margaret).
parent (herbert, jean).
greatgrandparent (GGP,GGC) :-
parent (GGP,GP), parent (GP,P), parent (P,GGC).

A program consists of a list of clauses

A clause is either a fact or a rule, and
ends with a period

Example

?- greatgrandparent (esther,GreatGrandchild).

GreatGrandchild = holly

Yes

Shows initial query and final result

Also, there are intermediate goals:
The first goal is the initial query

The next is what remains to be proved after
transforming the first goal using one of the
rules

And so on, until nothing remains to be
proved

parent (kim,holly).
parent (margaret,kim) .
parent (margaret, kent).
parent (esther,margaret).
parent (herbert,margaret).
parent (herbert, jean).
greatgrandparent (GGP,GGC) :-
parent (GGP,GP), parent (GP,P), parent (P,GGC).

No kW=

greatgrandparent (esther,GreatGrandchild)
il(Hmme7QMnmngGGPtoestherandGGCtoGreatGrandChild

parent (esther,GP), parent (GP,P), parent (P,GreatGrandchild).
il(Hmme4@ﬁnmngGPtomargaret

parent (margaret,P), parent (P,GreatGrandchild)
il(ﬂmmeZQMn&ngPtokim

parent (kim,GreatGrandchild)
il(Hmme1;MnmngGreatGrandchildtoholly

Rules Using Rules

grandparent (GP,GC) :-
parent (GP,P), parent (P,GC).

greatgrandparent (GGP,GGC) :-
grandparent (GGP,P), parent (P,GGC).

Same relation, c
Note that both c
The scope of the

efined indirectly
auses use a variable p

definition of a variable

is the clause that contains it

Recursive Rules

ancestor (X,Y) :- parent (X,Y).
ancestor (X,Y) :-

parent (Z2,Y),

ancestor (X,Z) .

X is an ancestor of y if:

Base case:
X is a parent of Y

Recursive case:
there is some Z such that z is a parent of Y,

and X is an ancestor of z

Prolog tries rules in their syntactic order,
so put base-case rules and facts first

?—- ancestor (jean, jean).

No
?—- ancestor (kim,holly).

Yes
?—- ancestor (A,holly).

A = kim ;

A

margaret ;

A = esther ;

A = herbert ;

No

Core Syntax Of Prolog

You have seen the complete core
syntax:

<clause> ::= <fact> | <rule>

<fact> ::= <term> .

<rule> ::= <term> :- <termlist> .
<termlist> ::= <term> | <term> , <termlist>

There is not much more syntax for
Prolog than this:
it is a very simple language

Syntactically, that is!

Operators

Operators

Prolog has some predefined operators
(and the ability to define new ones)

An operator is just a predicate for
which a special abbreviated syntax is

supported

The = Predicate

The goal =(X,Y) succeeds if and only if
X and Y can be unified:

?- =(parent (adam,seth),parent (adam, X)) .

X = seth

Yes

Since = is an operator, it can be and
usually is written like this:

?- parent (adam,seth)=parent (adam,X) .

X = seth

Yes

Arithmetic Operators

Predicates +, -, * and 7 are operators
too, with the usual precedence and
associativity

?_

X =

Yes
?_

X

Yes

X

X

= +(1,*%(2,3)).

1+2*3

= 1+2*3.

1+2*3

Prolog lets you use operator
notation, and prints it out
that way, but the underlying
term is still + (1, *(2,3))

Not Evaluated

?- +(X,Y) = 1+2*3.

X
Y

1
2%*3

Yes
7= 7 = 142%*3.

No

The term is still +(1,*(2,3))
It is not evaluated

There is a way to make Prolog evaluate
such terms, but we won’t need it yet

Lists

Lists in Prolog

The atom [] represents the empty list

The predicate . is the list constructor

List Notation

List notation Term denoted
[] []
[1] -(1,[1)
[1,2,3] -(1,.(2,.(3,[1)))
[1,parent (X,Y)] . (1, . (parent (X,Y),[1))

[a,b,c] and [a]|[b,c]] notations for lists

These are just abbreviations for the
underlying term using the . Predicate

Prolog usually displays lists in this
hotation

Example

- X = .(1,.(2,.(3,[1))).
X = [1, 2, 3]

Yes
- . (X,Y) = [1,2,3].

1
[2, 3]

Yes

List Notation With Tail

List notation Term denoted
[1]|X] - (1,X)
[1,2]X] -(1,.(2,X)))
[1,2]|[3,4]] sameas [1,2,3,4]

Last in a list can be symbol | followed by
a term for the tail of the list

Useful in patterns:
[1,2]X] unifies with any list that starts

with 1,2 and binds X to the tail

?- [1,2]|X] = [1,2,3,4,5].

X = [3, 4, 5]

Yes

