Using select

?—- select(2,[1,2,3],2).
Z = [1, 3] ;

No
?—- select(2,Y,[1,3]).

Yy = [2, 1, 3] ;
Yy = [1, 2, 3] ;
Yy = [1, 3, 2] ;

No

The reverse Predicate

?- reverse([1,2,3,4],Y).

Y = [4, 3’ 29 1] ’

No

Predefined reverse (X,Y) unifies Y with
the reverse of the list x

An Il mplementation

reverse([1,[]) .

reverse ([Head|Tail] ,X) :-
reverse (Tail,Y),
append (Y, [Head] ,X) .

Not an efficient way to reverse!

Later we’ll see why, and a more
efficient solution

W hen Queries Go Bad

?- reverse(X,[1,2,3,4]).
X = [4, 3’ 29 1] ’

Action (h for help) ? a
% Execution Aborted
?_

Asking for another solution caused an
infinite loop

Hit control-C to stop it, then a for abort

reverse cannot be used as flexibly as
append

Flexible and I nflexible

|deally, predicates should all be flexible
like append

They are more declarative, with fewer
procedural quirks to consider

But inflexible implementations are
sometimes used, for efficiency or
simplicity

Another example is sort...

Example

?- sort([2,3,1,4],X).
X =11, 2, 3, 41 ;

No
?- sort(X,[1,2,3,4]).
ERROR: Arguments are not sufficiently instantiated

A fully flexible sort would also be able
to unsort—find all permutations

But it would not be as efficient for the
more common task

The Anonymous
Variable

The variable _is an anonymous
variable

Every occurrence is bound
independently of every other
occurrence

Example

tailof(.(,A),A).

This tailof (X,Y) succeeds when X is a
non-empty list and Y is the tail of that
list

Don’t use this, even though it works:

tailof (. (Head,A) ,A).

Dire Warning

append([], B, B).
append ([Head |TailA], B, [Head|TailC]) :-
append (TailA, B, Tailc).

Don’t ignore warning message about
singleton variables

If you misspell a variable name, this is
the only warning you will see

