Negation and Failure



The not Predicate

?— member(1,[1,2,3]).

Yes
?— not (member (4,[1,2,3])).

Yes

For simple applications, it often works
quite a bit like logical negation

But it has an important procedural
side...



Negation As Failure

To prove not (X),
Prolog attempts to prove X
not (X) succeeds if X fails

The two faces again:
Declarative: not (X) = =X
Procedural:
not (X) succeeds if x fails,
not (X) fails if X succeeds
not (X) runs forever if X runs forever



Example

sibling(X,Y) :-
not (X=Y),
parent (P,X) ,
parent (P,Y) .

sibling (X,Y)
parent (P, X),
parent (P,Y),
not (X=Y) .

?- sibling(kim,kent).

Yes
?- sibling(kim,kim) .

No
?- sibling (X,Y).

No

?- sibling (X,Y).

X = kim
Y = kent ;
X = kent
Y = kim ;

X = margaret
Y = jean ;

X = jean
Y = margaret ;

No




Example:
A Classic Riddle



A Classic Riddle

A man travels with wolf, goat and
cabbage

Wants to cross a river from west to
east

A rowboat is available, but only large
enough for the man plus one
possession

Wolf eats goat if left alone together
Goat eats cabbage if left alone together
How can the man cross without loss?



Configurations

Represent a configuration of this
system as a list showing which bank
each thing is on in this order: man,
wolf, goat, cabbage

Initial configuration: [w,w,w,w]

If man crosses with wolf, new state is
[e,e,w,w] - but then goat eats
cabbage, so we can’t go through that
state

Desired final state: [e,e,e,e]



Moves

Iln each move, man crosses with at
most one of his possessions

We will represent these four moves
with four atoms: wolf, goat, cabbage,
nothing

(Here, nothing indicates that the man
crosses alone in the boat)



Moves Transform
Configurations

Each move transforms one
configuration to another

In Prolog, we will write this as a
predicate:
move (Config,Move,NextConfigqg)

Config is a configuration (like [w,w,w,w])
Move is a move (like wolf)

NextConfig is the resulting configuration (in
this case, [e,e,w,w])



The move Predicate

change (e,w) .
change (w,e) .

move ([X,X,Goat,Cabbage] ,wolf,[Y,Y,Goat,Cabbage]) :-
change (X,Y) .

move ([X,Wolf,X,Cabbage],goat,[Y,Wolf,Y,Cabbage]) :-
change (X,Y) .

move ([X,Wolf,Goat,X],cabbage, [Y,Wolf,Goat,Y]) :-
change (X,Y) .

move ([X,Wolf,Goat,C],nothing, [Y,Wolf,6 Goat,C]) :-
change (X,Y) .



Safe Configurations

A configuration is safe if

At least one of the goat or the wolf is on the
same side as the man, and

At least one of the goat or the cabbage is on
the same side as the man

oneEq(X,X, ).
oneEq (X, ,X).

safe ([Man,Wolf,Goat,Cabbage]) :-
oneEq (Man,Goat ,Wolf),
oneEq (Man,Goat,Cabbage) .



Solutions

A solution is a starting configuration
and a list of moves that takes you to
[e,e,e,e]l, Where all the intermediate
configurations are safe

solution([e,e,e,e],[]).
solution(Config, [Move|Rest]) :-
move (Config,Move,NextConfiqg),
safe (NextConfigqg),
solution (NextConfig,Rest).



Prolog Finds A Solution

?- length(X,7), solution([w,w,w,w],X).

X = [goat, nothing, wolf, goat, cabbage, nothing,
goat]

Yes

Note: without the 1length(X,7)
restriction, Prolog would not find a
solution

|t gets lost looking at possible solutions
like [goat,goat,goat,goat,goat... ]

More about this in Chapter 20



