
KI-Programmierung

Game Playing

Bernhard Beckert

UNIVERSITÄT KOBLENZ -LANDAU

Winter Term 2007/2008

B. Beckert: KI-Programmierung – p.1



Outline

Perfect play

Resource limits

α-β pruning

Games of chance

Games of imperfect information

B. Beckert: KI-Programmierung – p.2



Games vs. Search Problems

Game playing is a search problem

Defined by

– Initial state
– Successor function
– Goal test
– Path cost / utility / payoff function

B. Beckert: KI-Programmierung – p.3



Games vs. Search Problems

Game playing is a search problem

Defined by

– Initial state
– Successor function
– Goal test
– Path cost / utility / payoff function

Characteristics of game playing

“Unpredictable” opponent:
Solution is a strategy specifying a move for every possible opponent reply

Time limits:
Unlikely to find goal, must approximate

B. Beckert: KI-Programmierung – p.3



Game Playing

Plan of attack

Computer considers possible lines of play [Babbage, 1846]

Algorithm for perfect play [Zermelo, 1912; Von Neumann, 1944]

Finite horizon, approximate evaluation
[Zuse, 1945; Wiener, 1948; Shannon, 1950]

First chess program [Turing, 1951]

Machine learning to improve evaluation accuracy [Samuel, 1952–57]

Pruning to allow deeper search [McCarthy, 1956]

B. Beckert: KI-Programmierung – p.4



Types of Games

B. Beckert: KI-Programmierung – p.5



Game Tree: 2-Player / Deterministic / Turns

B. Beckert: KI-Programmierung – p.6



Minimax

Perfect play for deterministic, perfect-information game s

Idea

Choose move to position with highest minimax value ,
i.e., best achievable payoff against best play

B. Beckert: KI-Programmierung – p.7



Minimax: Example

2-ply game

B. Beckert: KI-Programmierung – p.8



Minimax Algorithm

function MINIMAX-DECISION(game) returns an operator

for each op in OPERATORS[game] do

VALUE[op]← MINIMAX-VALUE(APPLY(op, game), game)

end

return the op with the highest VALUE[op]

function MINIMAX-VALUE(state, game) returns a utility value

if TERMINAL-TEST[game](state) then

return UTILITY[game](state)

else if MAX is to move in state then

return the highest MINIMAX-VALUE of SUCCESSORS(state)

else

return the lowest MINIMAX-VALUE of SUCCESSORS(state)

B. Beckert: KI-Programmierung – p.9



Properties of Minimax

Complete

Optimal

Time

Space

B. Beckert: KI-Programmierung – p.10



Properties of Minimax

Complete Yes, if tree is finite (chess has specific rules for this)

Optimal

Time

Space

B. Beckert: KI-Programmierung – p.10



Properties of Minimax

Complete Yes, if tree is finite (chess has specific rules for this)

Optimal Yes, against an optimal opponent. Otherwise??

Time

Space

B. Beckert: KI-Programmierung – p.10



Properties of Minimax

Complete Yes, if tree is finite (chess has specific rules for this)

Optimal Yes, against an optimal opponent. Otherwise??

Time O(bm) (depth-first exploration)

Space

B. Beckert: KI-Programmierung – p.10



Properties of Minimax

Complete Yes, if tree is finite (chess has specific rules for this)

Optimal Yes, against an optimal opponent. Otherwise??

Time O(bm) (depth-first exploration)

Space O(bm) (depth-first exploration)

B. Beckert: KI-Programmierung – p.10



Properties of Minimax

Complete Yes, if tree is finite (chess has specific rules for this)

Optimal Yes, against an optimal opponent. Otherwise??

Time O(bm) (depth-first exploration)

Space O(bm) (depth-first exploration)

Note

Finite strategy can exist even in an infinite tree

B. Beckert: KI-Programmierung – p.10



Resource Limits

Complexity of chess

b≈ 35, m≈ 100 for “reasonable” games
Exact solution completely infeasible

B. Beckert: KI-Programmierung – p.11



Resource Limits

Complexity of chess

b≈ 35, m≈ 100 for “reasonable” games
Exact solution completely infeasible

Standard approach

Cutoff test
e.g., depth limit (perhaps add quiescence search)

Evaluation function
Estimates desirability of position

B. Beckert: KI-Programmierung – p.11



Evaluation Functions

Estimate desirability of position

B. Beckert: KI-Programmierung – p.12



Evaluation Functions

Typical evaluation function for chess

Weighted sum of features

EVAL(s) = w1 f1(s)+w2 f2(s)+ · · ·+wn fn(s)

B. Beckert: KI-Programmierung – p.13



Evaluation Functions

Typical evaluation function for chess

Weighted sum of features

EVAL(s) = w1 f1(s)+w2 f2(s)+ · · ·+wn fn(s)

Example

w1 = 9

f1(s) = (number of white queens) − (number of black queens)

B. Beckert: KI-Programmierung – p.13



Digression: Exact Values Do Not Matter

Behaviour is preserved under any monotonic transformation of E VAL

Only the order matters:
payoff in deterministic games acts as an ordinal utility function

B. Beckert: KI-Programmierung – p.14



Cutting Off Search

Does it work in practice?

bm = 106, b = 35 ⇒ m = 4

B. Beckert: KI-Programmierung – p.15



Cutting Off Search

Does it work in practice?

bm = 106, b = 35 ⇒ m = 4

Not really, because . . .

4-ply ≈ human novice (hopeless chess player)

8-ply ≈ typical PC, human master

12-ply ≈ Deep Blue, Kasparov

B. Beckert: KI-Programmierung – p.15



α-β Pruning Example

B. Beckert: KI-Programmierung – p.16



α-β Pruning Example

B. Beckert: KI-Programmierung – p.16



α-β Pruning Example

B. Beckert: KI-Programmierung – p.16



α-β Pruning Example

B. Beckert: KI-Programmierung – p.16



α-β Pruning Example

B. Beckert: KI-Programmierung – p.16



Properties of α-β

Effects of pruning

Reduces the search space

Does not affect final result

B. Beckert: KI-Programmierung – p.17



Properties of α-β

Effects of pruning

Reduces the search space

Does not affect final result

Effectiveness

Good move ordering improves effectiveness

Time complexity with “perfect ordering”: O(bm/2)

Doubles depth of search

For chess:
Can easily reach depth 8 and play good chess

B. Beckert: KI-Programmierung – p.17



The Idea of α-β

α is the best value (to MAX)
found so far off the current path

If value x of some node below V is
known to be less than α,

then value of V is known to be at most x,
i.e., less than α,

therefore MAX will avoid node V

Consequence

No need to expand further nodes
below V

B. Beckert: KI-Programmierung – p.18



The α-β Algorithm

function MAX-VALUE(state, game, α, β) returns the minimax value of state

inputs : state /* current state in game */

game /* game description */

α /* the best score for MAX along the path to state */

β /* the best score for MIN along the path to state */

if CUTOFF-TEST(state) then return EVAL(state)

for each s in SUCCESSORS(state) do

α← MAX(α, MIN-VALUE(s, game, α, β))

if α ≥ β then return β
end

return α

B. Beckert: KI-Programmierung – p.19



The α-β Algorithm

function MIN-VALUE(state, game, α, β) returns the minimax value of state

inputs : state /* current state in game */

game /* game description */

α /* the best score for MAX along the path to state */

β /* the best score for MIN along the path to state */

if CUTOFF-TEST(state) then return EVAL(state)

for each s in SUCCESSORS(state) do

β← MIN( β, MAX-VALUE(s, game, α, β))

if β ≤ α then return α
end

return β

B. Beckert: KI-Programmierung – p.20



Deterministic Games in Practice

Checkers

Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994.
Used an endgame database defining perfect play for all positi ons
involving 8 or fewer pieces on the board, a total of 443,748,4 01,247 positions.

B. Beckert: KI-Programmierung – p.21



Deterministic Games in Practice

Checkers

Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994.
Used an endgame database defining perfect play for all positi ons
involving 8 or fewer pieces on the board, a total of 443,748,4 01,247 positions.

Chess

Deep Blue defeated human world champion Gary Kasparov in a si x-game match
in 1997. Deep Blue searches 200 million positions per second , uses very
sophisticated evaluation, and undisclosed methods for ext ending some lines
of search up to 40 ply.

B. Beckert: KI-Programmierung – p.21



Deterministic Games in Practice

Checkers

Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994.
Used an endgame database defining perfect play for all positi ons
involving 8 or fewer pieces on the board, a total of 443,748,4 01,247 positions.

Chess

Deep Blue defeated human world champion Gary Kasparov in a si x-game match
in 1997. Deep Blue searches 200 million positions per second , uses very
sophisticated evaluation, and undisclosed methods for ext ending some lines
of search up to 40 ply.

Go

Human champions refuse to compete against computers, who ar e too bad.
In go, b > 300, so most programs use pattern knowledge bases to suggest
plausible moves.

B. Beckert: KI-Programmierung – p.21



Nondeterministic Games: Backgammon

B. Beckert: KI-Programmierung – p.22



Nondeterministic Games in General

Chance introduced by dice, card-shuffling, etc.

Simplified example with coin-flipping

B. Beckert: KI-Programmierung – p.23



Algorithm for Nondeterministic Games

EXPECTMINIMAX gives perfect play

if state is a M AX node then
return the highest E XPECTMINIMAX value of S UCCESSORS(state)

if state is a M IN node then
return the lowest EXPECTI M INIMAX value of S UCCESSORS(state)

if state is a chance node then
return average of E XPECTMINIMAX value of S UCCESSORS(state)

B. Beckert: KI-Programmierung – p.24



Pruning in Nondeterministic Game Trees

A version of α-β pruning is possible

B. Beckert: KI-Programmierung – p.25



Pruning in Nondeterministic Game Trees

A version of α-β pruning is possible

B. Beckert: KI-Programmierung – p.25



Pruning in Nondeterministic Game Trees

A version of α-β pruning is possible

B. Beckert: KI-Programmierung – p.25



Pruning in Nondeterministic Game Trees

A version of α-β pruning is possible

B. Beckert: KI-Programmierung – p.25



Pruning in Nondeterministic Game Trees

A version of α-β pruning is possible

B. Beckert: KI-Programmierung – p.25



Pruning in Nondeterministic Game Trees

A version of α-β pruning is possible

B. Beckert: KI-Programmierung – p.25



Pruning in Nondeterministic Game Trees

A version of α-β pruning is possible

B. Beckert: KI-Programmierung – p.25



Pruning in Nondeterministic Game Trees

A version of α-β pruning is possible

B. Beckert: KI-Programmierung – p.25



Pruning Continued

More pruning occurs if we can bound the leaf values

B. Beckert: KI-Programmierung – p.26



Pruning Continued

More pruning occurs if we can bound the leaf values

B. Beckert: KI-Programmierung – p.26



Pruning Continued

More pruning occurs if we can bound the leaf values

B. Beckert: KI-Programmierung – p.26



Pruning Continued

More pruning occurs if we can bound the leaf values

B. Beckert: KI-Programmierung – p.26



Pruning Continued

More pruning occurs if we can bound the leaf values

B. Beckert: KI-Programmierung – p.26



Pruning Continued

More pruning occurs if we can bound the leaf values

B. Beckert: KI-Programmierung – p.26



Nondeterministic Games in Practice

Problem

α-β pruning is much less effective

Dice rolls increase b

21 possible rolls with 2 dice

Backgammon

≈ 20 legal moves

depth 4 = 204
×213

≈ 1.2×109

TDGAMMON

Uses depth-2 search + very good EVAL ≈ world-champion level

B. Beckert: KI-Programmierung – p.27



Digression: Exact Values DO Matter

Behaviour is preserved only by positive linear transformation of E VAL

Hence E VAL should be proportional to the expected payoff

B. Beckert: KI-Programmierung – p.28



Games of Imperfect Information

Typical examples

Card games: Bridge, poker, skat, etc.

Note

Like having one big dice roll at the beginning of the game

B. Beckert: KI-Programmierung – p.29



Games of Imperfect Information

Idea for computing best action

Compute the minimax value of each action in each deal,
then choose the action with highest expected value over all d eals

Requires information on probability the different deals

Special case

If an action is optimal for all deals, it’s optimal.

B. Beckert: KI-Programmierung – p.30



Games of Imperfect Information

Idea for computing best action

Compute the minimax value of each action in each deal,
then choose the action with highest expected value over all d eals

Requires information on probability the different deals

Special case

If an action is optimal for all deals, it’s optimal.

Bridge

GIB, current best bridge program, approximates this idea by

– generating 100 deals consistent with bidding information
– picking the action that wins most tricks on average

B. Beckert: KI-Programmierung – p.30



Commonsense Example

Day 1

Road A leads to a small heap of gold pieces 10 points

Road B leads to a fork:
– take the left fork and you’ll find a mound of jewels 100 points
– take the right fork and you’ll be run over by a bus −1000 points

Best action: Take road B (100 points)

B. Beckert: KI-Programmierung – p.31



Commonsense Example

Day 1

Road A leads to a small heap of gold pieces 10 points

Road B leads to a fork:
– take the left fork and you’ll find a mound of jewels 100 points
– take the right fork and you’ll be run over by a bus −1000 points

Best action: Take road B (100 points)

Day 2

Road A leads to a small heap of gold pieces 10 points

Road B leads to a fork:
– take the left fork and you’ll be run over by a bus −1000 points
– take the right fork and you’ll find a mound of jewels 100 points

Best action: Take road B (100 points)

B. Beckert: KI-Programmierung – p.31



Commonsense Example

Day 3

Road A leads to a small heap of gold pieces (10 points)

Road B leads to a fork:
– guess correctly and you’ll find a mound of jewels 100 points
– guess incorrectly and you’ll be run over by a bus −1000 points

Best action: Take road A (10 points)

NOT: Take road B ( −1000+100
2 =−450 points)

B. Beckert: KI-Programmierung – p.32



Proper Analysis

Note

Value of an actions is NOT the average of values
for actual states computed with perfect information

With partial observability, value of an action depends on th e
information state the agent is in

B. Beckert: KI-Programmierung – p.33



Proper Analysis

Note

Value of an actions is NOT the average of values
for actual states computed with perfect information

With partial observability, value of an action depends on th e
information state the agent is in

Leads to rational behaviors such as

Acting to obtain information

Signalling to one’s partner

Acting randomly to minimize information disclosure

B. Beckert: KI-Programmierung – p.33



Summary

Games are to AI as grand prix racing is to automobile design

Games are fun to work on (and dangerous)

They illustrate several important points about AI

– perfection is unattainable, must approximate
– it is a good idea to think about what to think about
– uncertainty constrains the assignment of values to states

B. Beckert: KI-Programmierung – p.34


	
	Outline
	Games vs. Search Problems
	Game Playing
	Types of Games
	Game Tree: 2-Player / Deterministic / Turns
	Minimax
	Minimax: Example
	Minimax Algorithm
	Properties of Minimax
	Resource Limits
	Evaluation Functions
	Evaluation Functions
	Digression: Exact Values Do Not Matter
	Cutting Off Search
	$alpha $-$�eta $ Pruning Example
	Properties of $alpha $-$�eta $
	The Idea of $alpha $-$�eta $
	The $alpha $-$�eta $ Algorithm
	The $alpha $-$�eta $ Algorithm
	Deterministic Games in Practice
	Nondeterministic Games: Backgammon
	Nondeterministic Games in General
	Algorithm for Nondeterministic Games
	Pruning in Nondeterministic Game Trees
	Pruning Continued
	Nondeterministic Games in Practice
	Digression: Exact Values DO Matter
	Games of Imperfect Information
	Games of Imperfect Information
	Commonsense Example
	Commonsense Example
	Proper Analysis
	Summary

