Introduction to Artificial Intelligence

First-order Logic

(Logic, Deduction, Knowledge Representation)

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

Winter Term 2004/2005

Outline

- Why first-order logic?
- Syntax and semantics of first-order logic
- Fun with sentences
- Wumpus world in first-order logic

Propositional logic is declarative: pieces of syntax correspond to facts

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial / disjunctive / negated information (unlike most data structures and databases)

Pros and Cons of Propositional Logic

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial / disjunctive / negated information (unlike most data structures and databases)
- Solution Propositional logic is compositional: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$

Pros and Cons of Propositional Logic

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial / disjunctive / negated information (unlike most data structures and databases)
- Solution Propositional logic is compositional: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)

Pros and Cons of Propositional Logic

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial / disjunctive / negated information (unlike most data structures and databases)
- Solution Propositional logic is compositional: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power (unlike natural language)

Example:

Cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

First-order Logic

Propositional logic

Assumes that the world contains facts

First-order Logic

Propositional logic

Assumes that the world contains facts

First-order logic

Assumes that the world contains

Objects

people, houses, numbers, theories, Donald Duck, colors, centuries, ...

Propositional logic

Assumes that the world contains facts

First-order logic

Assumes that the world contains

Objects

people, houses, numbers, theories, Donald Duck, colors, centuries,

Relations

red, round, prime, multistoried, ... brother of, bigger than, part of, has color, occurred after, owns, ...

Propositional logic

Assumes that the world contains facts

First-order logic

Assumes that the world contains

Objects

people, houses, numbers, theories, Donald Duck, colors, centuries,

Selations

red, round, prime, multistoried, ... brother of, bigger than, part of, has color, occurred after, owns, ...

Functions

+, middle of, father of, one more than, beginning of, \ldots

Symbols

Constants	KingJohn, 2, Koblenz, C,
Predicates	Brother, $>$, $=$,
Functions	Sqrt, LeftLegOf,
Variables	x, y, a, b, \ldots
Connectives	$\land \lor \neg \Rightarrow \Leftrightarrow $
Quantifiers	$\forall \exists$

Symbols

Constants	KingJohn, 2, Koblenz, C, \ldots
Predicates	Brother, $>$, $=$,
Functions	Sqrt, LeftLegOf,
Variables	x, y, a, b, \ldots
Connectives	$\land \lor \neg \Rightarrow \qquad \Leftrightarrow \qquad \qquad$
Quantifiers	ΕV
Note	

The equality predicate is always in the vocabulary It is written in infix notation

Atomic sentence

predicate (term₁, ..., term_n)

or

 $term_1 = term_2$

Atomic sentence

```
predicate (term<sub>1</sub>, ..., term<sub>n</sub>)
```

or

 $term_1 = term_2$

Term

```
function (term<sub>1</sub>, ..., term<sub>n</sub>)
```

or

constant

or

variable

Brother (KingJohn, RichardTheLionheart)

> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

$$\neg S \qquad S_1 \wedge S_2 \qquad S_1 \vee S_2 \qquad S_1 \Rightarrow S_2 \qquad S_1 \Leftrightarrow S_2$$

(as in propositional logic)

 $\neg S \qquad S_1 \wedge S_2 \qquad S_1 \vee S_2 \qquad S_1 \Rightarrow S_2 \qquad S_1 \Leftrightarrow S_2$

(as in propositional logic)

Example

Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)

 $\neg S \qquad S_1 \land S_2 \qquad S_1 \lor S_2 \qquad S_1 \Rightarrow S_2 \qquad S_1 \Leftrightarrow S_2$

(as in propositional logic)

 $\neg S \qquad S_1 \land S_2 \qquad S_1 \lor S_2 \qquad S_1 \Rightarrow S_2 \qquad S_1 \Leftrightarrow S_2$

(as in propositional logic)

 $\neg S \qquad S_1 \land S_2 \qquad S_1 \lor S_2 \qquad S_1 \Rightarrow S_2 \qquad S_1 \Leftrightarrow S_2$

(as in propositional logic)

Models of first-order logic

Sentences are true or false with respect to models, which consist of

- a **domain** (also called universe)
- an interpretation

Models of first-order logic

Sentences are true or false with respect to models, which consist of

- a domain (also called universe)
- an interpretation

Domain

A non-empty (finite or infinite) set of arbitrary elements

Models of first-order logic

Sentences are true or false with respect to models, which consist of

- a domain (also called universe)
- an interpretation

Domain

A non-empty (finite or infinite) set of arbitrary elements

Interpretation

Assigns to each

- constant symbol: a domain element
- predicate symbol: a relation on the domain (of appropriate arity)
- function symbol: a function on the domain (of appropriate arity)

Definition

An atomic sentence

```
predicate (term<sub>1</sub>, ..., term<sub>n</sub>)
```

is true in a certain model (that consists of a domain and an interpretation) iff

the domain elements that are the interpretations of $term_1, \ldots, term_n$ are in the relation that is the interpretation of *predicate* **Definition**

An atomic sentence

```
predicate (term<sub>1</sub>, ..., term<sub>n</sub>)
```

is true in a certain model (that consists of a domain and an interpretation) iff

the domain elements that are the interpretations of $term_1, \ldots, term_n$ are in the relation that is the interpretation of *predicate*

The truth value of a **complex sentence** in a model is computed from the truth-values of its atomic sub-sentences in the same way as in propositional logic

Syntax

 \forall variables sentence

Syntax

 \forall variables sentence

Example

"Everyone studying in Koblenz is smart:

 $\forall xP$ is true in a model

iff

for all domain elements d in the model:

P is true in the model when x is interpreted by d

 $\forall xP$ is true in a model

iff

for all domain elements *d* in the model: *P* is true in the model when *x* is interpreted by *d*

Intuition

 $\forall x P$ is roughly equivalent to the conjunction of all instances of P

 $\forall xP$ is true in a model

iff

for all domain elements *d* in the model: *P* is true in the model when *x* is interpreted by *d*

Intuition

 $\forall x P$ is roughly equivalent to the conjunction of all instances of P

Example $\forall x \, StudiesAt(x, Koblenz) \Rightarrow Smart(x)$ equivalent to:

 $StudiesAt(KingJohn, Koblenz) \Rightarrow Smart(KingJohn)$

 \land StudiesAt(Richard, Koblenz) \Rightarrow Smart(Richard)

- \land StudiesAt(Koblenz, Koblenz) \Rightarrow Smart(Koblenz)
- $\wedge \dots$

 \Rightarrow is the main connective with \forall

Common mistake

Using \land as the main connective with \forall

 \Rightarrow is the main connective with \forall

Common mistake

Using \land as the main connective with \forall

Example

Correct: $\forall x (StudiesAt(x, Koblenz) \Rightarrow Smart(x))$

"Everyone who studies at Koblenz is smart"

 \Rightarrow is the main connective with \forall

Common mistake

Using \land as the main connective with \forall

- **Correct:** $\forall x (StudiesAt(x, Koblenz) \Rightarrow Smart(x))$ "Everyone who studies at Koblenz is smart"
- Wrong: $\forall x (StudiesAt(x, Koblenz) \land Smart(x))$ "Everyone studies at Koblenz and is smart", i.e.,"Everyone studies at Koblenz and everyone is smart"

Syntax

∃ variables sentence

Syntax

∃ variables sentence

Example

"Someone studying in Landau is smart:

 $\exists x P$ is true in a model

iff

there is a domain element d in the model such that: *P* is true in the model when *x* is interpreted by d

 $\exists x P$ is true in a model

iff

there is a domain element d in the model such that: *P* is true in the model when x is interpreted by d

Intuition

 $\exists x P$ is roughly equivalent to the disjunction of all instances of P

 $\exists x P$ is true in a model

iff

there is a domain element d in the model such that: *P* is true in the model when *x* is interpreted by d

Intuition

 $\exists x P$ is roughly equivalent to the disjunction of all instances of P

Example $\exists x StudiesAt(x, Landau) \land Smart(x)$ equivalent to:

 $StudiesAt(KingJohn, Landau) \land Smart(KingJohn)$

- \lor StudiesAt(Richard, Landau) \land Smart(Richard)
- \lor StudiesAt(Landau, Landau) \land Smart(Landau)
- \vee ...

Another Common Mistake to Avoid

Note

 \wedge is the main connective with \exists

Common mistake

Using \Rightarrow as the main connective with \exists

Another Common Mistake to Avoid

Note

 \wedge is the main connective with \exists

Common mistake

Using \Rightarrow as the main connective with \exists

Example

Correct: $\exists x (StudiesAt(x, Landau) \land Smart(x))$

"There is someone who studies at Landau and is smart"

 \wedge $\,$ is the main connective with $\,$ \exists

Common mistake

Using \Rightarrow as the main connective with \exists

Example

Correct: $\exists x (StudiesAt(x, Landau) \land Smart(x))$ "There is someone who studies at Landau and is smart"

Wrong: $\exists x (StudiesAt(x, Landau) \Rightarrow Smart(x))$ "There is someone who, if he/she studies at Landau, is smart"This is true if there is anyone not studying at Landau

Quantifiers of same type commute

 $\forall x \forall y$ is the same as $\forall y \forall x$ $\exists x \exists y$ is the same as $\exists y \exists x$

Quantifiers of different type do NOT commute

 $\exists x \forall y$ is not the same as $\forall y \exists x$

Example

 $\exists x \forall y Loves(x, y)$

"There is a person who loves everyone in the world"

 $\forall y \exists x Loves(x, y)$

"Everyone in the world is loved by at least one person"

(Both hopefully true but different)

Quantifiers of different type do NOT commute

 $\exists x \forall y$ is not the same as $\forall y \exists x$

Example

 $\forall x \exists y Mother(x, y)$ "Everyone has a mother" (correct)

$\exists y \forall x Mother(x, y)$

"There is a person who is the mother of everyone" (wrong)

Quantifier duality

 $\forall xLikes(x, IceCream)$ $\exists xLikes(x, Broccoli)$

is the same as

 $\neg \exists x \neg Likes(x, IceCream)$

is the same as

 $\neg \forall x \neg Likes(x, Broccoli)$

 $\forall x, y (Brother(x, y) \Rightarrow Sibling(x, y))$

 $\forall x, y (Brother(x, y) \Rightarrow Sibling(x, y))$

"Sibling" is symmetric

 $\forall x, y (Sibling(x, y) \Leftrightarrow Sibling(y, x))$

 $\forall x, y (Brother(x, y) \Rightarrow Sibling(x, y))$

"Sibling" is symmetric

 $\forall x, y (Sibling(x, y) \Leftrightarrow Sibling(y, x))$

"One's mother is one's female parent"

 $\forall x, y (Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)))$

 $\forall x, y (Brother(x, y) \Rightarrow Sibling(x, y))$

"Sibling" is symmetric

 $\forall x, y (Sibling(x, y) \Leftrightarrow Sibling(y, x))$

"One's mother is one's female parent"

 $\forall x, y (Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)))$

"A first cousin is a child of a parent's sibling"

 $\forall x, y (FirstCousin(x, y) \Leftrightarrow \exists p, ps (Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y)))$

 $term_1 = term_2$ is true under a given interpretation

if and only if

 $term_1$ and $term_2$ have the same interpretation

Definition of (full) sibling in terms of *Parent*

$$\forall x, y \ Sibling(x, y) \Leftrightarrow (\neg(x = y) \land \\ \exists m, f \ (\neg(m = f) \land \\ Parent(m, x) \land Parent(f, x) \land \\ Parent(m, y) \land Parent(f, y)))$$

Important notions

- validity
- satisfiability
- unsatisfiablity
- entailment

are defined for first-order logic in the same way as for propositional logic

Important notions

- validity
- satisfiability
- unsatisfiablity
- entailment

are defined for first-order logic in the same way as for propositional logic

Calculi

There are sound and complete calculi for first-order logic (e.g. resolution)

- Solution Whenever $KB \vdash \alpha$, it is also true that $KB \models \alpha$
- Solution Whenever $KB \models \alpha$, it is also true that $KB \vdash \alpha$

But these calculi CANNOT decide validity, entailment, etc.

In propositional logic

Validity, satisfiability, unsatisfiablity are decidable

In first-order logic

The set of valid, and the set of unsatisfiable formulas are enumerable

The set of satisfiable formulas is **NOT EVEN enumerable**