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Why first-order logic?
Syntax and semantics of first-order logic
Fun with sentences

Wumpus world in first-order logic
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Pros and Cons of Propositional Logic

Propositional logic is declarative:
pieces of syntax correspond to facts
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Pros and Cons of Propositional Logic

Propositional logic is declarative:
pieces of syntax correspond to facts

Propositional logic allows partial / disjunctive / negated information
(unlike most data structures and databases)

Propositional logic is compositional:
meaning of B | A P; ; is derived from meaning of B; | and of P ,

Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power
(unlike natural language)

Example:
Cannot say “pits cause breezes in adjacent squares”
except by writing one sentence for each square
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First-order Logic

Propositional logic

Assumes that the world contains facts
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First-order Logic

Propositional logic

Assumes that the world contains facts

First-order logic

Assumes that the world contains

& Objects
people, houses, numbers, theories, Donald Duck, colors, centuries, ...

& Relations
red, round, prime, multistoried, ...
brother of, bigger than, part of, has color, occurred after, owns, ...

& Functions
+, middle of, father of, one more than, beginning of, ...
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Syntax of First-order Logic: Basic Elements

Symbols

Constants KingJohn, 2, Koblenz, C, ...
Predicates Brother, >, =, ...
Functions Sqrt, LeftLegOf, ...
Variables X, y,a,b, ...

Connectives A V - = &

Quantifiers A
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Syntax of First-order Logic: Basic Elements

Symbols

Constants KingJohn, 2, Koblenz, C,...

Predicates Brother, >, =, ...

Functions Sqrt, LeftLegOf ...
Variables X, y,a,b, ...
Connectives A V - =

Quantifiers A

Note

The equality predicate is always in the vocabulary
It is written in infix notation
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Syntax of First-order Logic: Atomic Sentences

Atomic sentence
predicate ( termy, ..., term, )
or

term = termy
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Syntax of First-order Logic: Atomic Sentences

Atomic sentence
predicate ( termy, ..., term, )
or

term = termy

Term

function ( termy, ..., term, )
or

constant
or

variable
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Syntax of First-order Logic: Atomic Sentences

Example

Brother ( KingJohn, RichardTheLionheart )
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Syntax of First-order Logic: Atomic Sentences

Example

Brother ( KingJohn, RichardTheLionheart )

7 \ - A
~/” /" ~”

predicate constant constant
A\ 4 A\ 4
VO VO
term term

G 7
~"

atomic sentence
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Syntax of First-order Logic: Atomic Sentences

Example

> ( Length(LeftLegOf (Richard)), Length(LeftLegOf (KingJohn)) )
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Syntax of First-order Logic: Atomic Sentences

Example

> ( Length(LeftLegOf (Richard)), Length(LeftLegOf (KingJohn)) )

N~~~ 7\
VO Vv VvV VO VO VvV
predicate function function constant function function constant
\ P O\ ~ 7/
term term
A\ _J/

~"~

atomic sentence
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Syntax of First-order Logic: Complex Sentences

Built from atomic sentences using connectives

-5 \YARY) S1 VS S1 =5 S1 < 5

(as in propositional logic)
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Syntax of First-order Logic: Complex Sentences

Built from atomic sentences using connectives
-5 \YARY) S1 VS S1 =5 S1 < 5

(as in propositional logic)

Example

Sibling ( KingJohn,Richard ) =-  Sibling( Richard, KingJohn )

A 7 A 7 7
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Syntax of First-order Logic: Complex Sentences

Built from atomic sentences using connectives
-5 \YARY) S1 VS S1 =5 S1 < 5

(as in propositional logic)

Example

Sibling ( KingJohn,Richard ) =-  Sibling( Richard, KingJohn )

A G A
Ve Ve ~/” Ve ~” ~”

predicate term term predicate term term

7
"~ "~

7

atomic sentence atomic sentence

\ 7
Ve

complex sentence
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Semantics in First-order Logic

Models of first-order logic
Sentences are true or false with respect to models, which consist of

— a domain (also called universe)
— an interpretation
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Semantics in First-order Logic

Models of first-order logic

Sentences are true or false with respect to models, which consist of

— a domain (also called universe)
— an interpretation

Domain

A non-empty (finite or infinite) set of arbitrary elements

Interpretation

Assigns to each

— constant symbol: a domain element
— predicate symbol: a relation on the domain (of appropriate arity)

— function symbol: a function on the domain (of appropriate arity)
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Semantics in First-order Logic

Definition
An atomic sentence

predicate ( termy, ..., term, )
Is true in a certain model (that consists of a domain and an interpretation)
iff

the domain elements that are the interpretations of rerm,..., term,
are in the relation that is the interpretation of predicate
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Semantics in First-order Logic

Definition
An atomic sentence

predicate ( termy, ..., term, )

Is true in a certain model (that consists of a domain and an interpretation)
iff

the domain elements that are the interpretations of rerm,..., term,
are in the relation that is the interpretation of predicate

The truth value of a complex sentence in a model
is computed from the truth-values of its atomic sub-sentences
in the same way as in propositional logic
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Models for First-order Logic: Example

Constants: KingJohn, Richard
Predicates: person, king, crown

Functions:  brother, on_head, left_leg

person

person
King

left leg

N
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Universal Quantification: Syntax

Syntax

Y variables sentence
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Universal Quantification: Syntax

Syntax

Y variables sentence

Example
“Everyone studying in Koblenz is smart:
V  x  (StudiesAt(x,Koblenz) = Smart(x))

\/ ~ "~ -
variables sentence

B. Beckert: Kl fir IM — p.13



Universal Quantification: Semantics

Semantics
VxP is true in a model
iff

for all domain elements d in the model:
P is true in the model when x is interpreted by d
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Universal Quantification: Semantics

Semantics
VxP is true in a model
iff

for all domain elements d in the model:
P is true in the model when x is interpreted by d

Intuition

Vx P is roughly equivalent to the conjunction of all instances of P

Example V x StudiesAt(x, Koblenz) = Smart(x) equivalent to:

StudiesAt(KingJohn,Koblenz) = Smart(KingJohn)
A StudiesAt(Richard,Koblenz) = Smart(Richard)
A StudiesAt(Koblenz, Koblenz) = Smart(Koblenz)
A
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A Common Mistake to Avoid

Note

= is the main connective with V

Common mistake

Using /A as the main connective with V

B. Beckert: Kl fir IM — p.15



A Common Mistake to Avoid

Note

= is the main connective with V

Common mistake

Using /A as the main connective with V

Example

Correct:  Vx(StudiesAt(x,Koblenz) = Smart(x))

“Everyone who studies at Koblenz is smart”
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A Common Mistake to Avoid

Note

= is the main connective with V

Common mistake

Using /A as the main connective with V

Example

Correct:  Vx(StudiesAt(x,Koblenz) = Smart(x))

“Everyone who studies at Koblenz is smart”

Wrong:  Vx(StudiesAt(x,Koblenz) N\ Smart(x))
“Everyone studies at Koblenz and is smart”, i.e.,

“Everyone studies at Koblenz and everyone is smart”
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Existential Quantification: Syntax

Syntax

- variables sentence
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Existential Quantification: Syntax

Syntax

- variables sentence

Example
“Someone studying in Landau is smart:
1 x  (StudiesAt(x,Landau) N\ Smart(x))

\/ ~ N~ -
variables sentence
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Existential Quantification: Semantics

Semantics
dxP is true in a model
iff

there is a domain element d in the model such that:
P is true in the model when x is interpreted by d
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Existential Quantification: Semantics

Semantics
dxP is true in a model
iff

there is a domain element d in the model such that:
P is true in the model when x is interpreted by d

Intuition

dx P is roughly equivalent to the disjunction of all instances of P

Example 1 x StudiesAt(x, Landau) N\ Smart(x) equivalent to:

StudiesAt (KingJohn, Landau) N\ Smart(KingJohn)
vV StudiesAt(Richard,Landau) N\ Smart(Richard)
vV StudiesAt(Landau, Landau) N\ Smart(Landau)
V
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Common mistake
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Another Common Mistake to Avoid

Note

A is the main connective with -

Common mistake

Using = as the main connective with

Example

Correct:  dx(StudiesAt(x,Landau) N\ Smart(x))

“There is someone who studies at Landau and is smart”
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Another Common Mistake to Avoid

Note

A is the main connective with -

Common mistake

Using = as the main connective with

Example

Correct:

Wrong:

x (StudiesAt (x, Landau) /\ Smart(x))

“There is someone who studies at Landau and is smart”

dx (StudiesAt (x, Landau) = Smart(x))

“There is someone who, if he/she studies at Landau, is smart

This is true if there is anyone not studying at Landau
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Properties of Quantifiers

Quantifiers of same type commute
VxVy is the same as VyVx

dxdy is the same as dydx
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Properties of Quantifiers

Quantifiers of different type do NOT commute

dxVy is not the same as Vydx

Example

AxVyLoves(x,y)
“There is a person who loves everyone in the world”

VydxLoves(x,y)
“Everyone in the world is loved by at least one person”

(Both hopefully true but different)
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Properties of Quantifiers

Quantifiers of different type do NOT commute

dxVy is not the same as Vydx

Example

VxdyMother(x,y)
“Everyone has a mother” (correct)

AyVxMother(x,y)
“There is a person who is the mother of everyone”  (wrong)
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Properties of Quantifiers

Quantifier duality
VxLikes(x,IceCream) is the sameas  —dx—Likes(x,IceCream)

AxLikes(x, Broccoli) is the sameas  —Vx—Likes(x, Broccoli)
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Fun with Sentences

& “Brothers are siblings”™

Vx,y (Brother(x,y) = Sibling(x,y))
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Fun with Sentences

& “Brothers are siblings”™

Vx,y (Brother(x,y) = Sibling(x,y))

& “Sibling” is symmetric

Vx,y (Sibling(x,y) < Sibling(y,x))

& “One’s mother is one’s female parent”

Vx,y (Mother(x,y) < (Female(x) N\ Parent(x,y)))

& “Afirst cousin is a child of a parent’s sibling”

Vx,y (FirstCousin(x,y) < dp, ps (Parent(p,x) A\ Sibling(ps, p) \ Parent(ps,y)))

B. Beckert: Kl fir IM — p.23



Equality

Semantics
term; = termy is true under a given interpretation
if and only if

term; and term; have the same interpretation
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Equality

Example

Definition of (full) sibling in terms of Parent

Vx,y Sibling(x,y) < (-(x=y)A

Im, f (=(m = f) A
Parent(m,x) A\ Parent (f,x) A
Parent(m,y) A\ Parent(f,y)))
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Properties of First-order Logic

Important notions

— validity

— satisfiability
— unsatisfiablity
— entailment

are defined for first-order logic in the same way as for propositional logic
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Properties of First-order Logic

Important notions

— validity

— satisfiability
— unsatisfiablity
— entailment

are defined for first-order logic in the same way as for propositional logic

Calculi

There are sound and complete calculi for first-order logic (e.g. resolution)

& Whenever KB |- @, it is also true that KB = o

o Whenever KB |= @, it is also true that KB - «

But these calculi CANNOT decide validity, entailment, etc.
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Properties of First-order Logic

In propositional logic

Validity, satisfiability, unsatisfiablity are decidable

In first-order logic

The set of valid, and the set of unsatisfiable formulas are enumerable

The set of satisfiable formulas is NOT EVEN enumerable
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