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Outline

Why first-order logic?

Syntax and semantics of first-order logic

Fun with sentences

Wumpus world in first-order logic
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Pros and Cons of Propositional Logic

Propositional logic is declarative:
pieces of syntax correspond to facts

Propositional logic allows partial / disjunctive / negated information
(unlike most data structures and databases)

Propositional logic is compositional:
meaning of B1,1 ∧P1,2 is derived from meaning of B1,1 and of P1,2

Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power
(unlike natural language)

Example:
Cannot say “pits cause breezes in adjacent squares”
except by writing one sentence for each square
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First-order Logic

Propositional logic

Assumes that the world contains facts

First-order logic

Assumes that the world contains

Objects
people, houses, numbers, theories, Donald Duck, colors, centuries, . . .

Relations
red, round, prime, multistoried, . . .

brother of, bigger than, part of, has color, occurred after, owns, . . .

Functions
+, middle of, father of, one more than, beginning of, . . .
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Syntax of First-order Logic: Basic Elements

Symbols

Constants KingJohn, 2, Koblenz, C, . . .

Predicates Brother, >, =, . . .

Functions Sqrt, LeftLegOf , . . .

Variables x, y, a, b, . . .

Connectives ∧ ∨ ¬ ⇒ ⇔

Quantifiers ∀ ∃

Note

The equality predicate is always in the vocabulary
It is written in infix notation
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Syntax of First-order Logic: Atomic Sentences

Atomic sentence

predicate ( term1, . . . , termn )

or

term1 = term2

Term

function ( term1, . . . , termn )

or

constant

or

variable

B. Beckert: KI für IM – p.6



Syntax of First-order Logic: Atomic Sentences

Atomic sentence

predicate ( term1, . . . , termn )

or

term1 = term2

Term

function ( term1, . . . , termn )

or

constant

or

variable

B. Beckert: KI für IM – p.6



Syntax of First-order Logic: Atomic Sentences

Example

Brother ( KingJohn, RichardTheLionheart )
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Syntax of First-order Logic: Atomic Sentences

Example

Brother
︸ ︷︷ ︸

predicate

( KingJohn
︸ ︷︷ ︸

constant

, RichardTheLionheart
︸ ︷︷ ︸

constant

)
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Syntax of First-order Logic: Atomic Sentences
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Syntax of First-order Logic: Atomic Sentences

Example

> ( Length(LeftLegOf (Richard)), Length(LeftLegOf (KingJohn)) )
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Syntax of First-order Logic: Complex Sentences

Built from atomic sentences using connectives

¬S S1 ∧S2 S1 ∨S2 S1 ⇒ S2 S1 ⇔ S2

(as in propositional logic)

Example
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Syntax of First-order Logic: Complex Sentences

Built from atomic sentences using connectives

¬S S1 ∧S2 S1 ∨S2 S1 ⇒ S2 S1 ⇔ S2

(as in propositional logic)

Example
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Semantics in First-order Logic

Models of first-order logic

Sentences are true or false with respect to models, which consist of

– a domain (also called universe)
– an interpretation

Domain

A non-empty (finite or infinite) set of arbitrary elements

Interpretation

Assigns to each

– constant symbol: a domain element

– predicate symbol: a relation on the domain (of appropriate arity)

– function symbol: a function on the domain (of appropriate arity)
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Semantics in First-order Logic

Definition

An atomic sentence

predicate ( term1, . . . , termn )

is true in a certain model (that consists of a domain and an interpretation)

iff

the domain elements that are the interpretations of term1, . . . , termn

are in the relation that is the interpretation of predicate

The truth value of a complex sentence in a model
is computed from the truth-values of its atomic sub-sentences
in the same way as in propositional logic
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Models for First-order Logic: Example

Constants: KingJohn, Richard

Predicates: person, king, crown

Functions: brother, on_head, left_leg
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Universal Quantification: Syntax

Syntax

∀ variables sentence

Example

“Everyone studying in Koblenz is smart:

∀ x
︸︷︷︸

variables

(StudiesAt(x,Koblenz) ⇒ Smart(x))
︸ ︷︷ ︸

sentence
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Universal Quantification: Semantics

Semantics

∀xP is true in a model

iff

for all domain elements d in the model:
P is true in the model when x is interpreted by d

Intuition

∀xP is roughly equivalent to the conjunction of all instances of P

Example ∀ x StudiesAt(x,Koblenz) ⇒ Smart(x) equivalent to:

StudiesAt(KingJohn,Koblenz) ⇒ Smart(KingJohn)

∧ StudiesAt(Richard,Koblenz) ⇒ Smart(Richard)

∧ StudiesAt(Koblenz,Koblenz) ⇒ Smart(Koblenz)

∧ . . .
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A Common Mistake to Avoid

Note

⇒ is the main connective with ∀

Common mistake

Using ∧ as the main connective with ∀

Example

Correct: ∀x(StudiesAt(x,Koblenz) ⇒ Smart(x))

“Everyone who studies at Koblenz is smart”

Wrong: ∀x(StudiesAt(x,Koblenz) ∧ Smart(x))

“Everyone studies at Koblenz and is smart”, i.e.,

“Everyone studies at Koblenz and everyone is smart”
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Existential Quantification: Syntax

Syntax

∃ variables sentence

Example

“Someone studying in Landau is smart:

∃ x
︸︷︷︸

variables

(StudiesAt(x,Landau)∧Smart(x))
︸ ︷︷ ︸

sentence
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Existential Quantification: Semantics

Semantics

∃xP is true in a model

iff

there is a domain element d in the model such that:
P is true in the model when x is interpreted by d

Intuition

∃xP is roughly equivalent to the disjunction of all instances of P

Example ∃ x StudiesAt(x,Landau)∧Smart(x) equivalent to:
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∨ . . .
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Another Common Mistake to Avoid

Note

∧ is the main connective with ∃

Common mistake

Using ⇒ as the main connective with ∃

Example

Correct: ∃x(StudiesAt(x,Landau) ∧ Smart(x))

“There is someone who studies at Landau and is smart”

Wrong: ∃x(StudiesAt(x,Landau) ⇒ Smart(x))

“There is someone who, if he/she studies at Landau, is smart”

This is true if there is anyone not studying at Landau
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Properties of Quantifiers

Quantifiers of same type commute

∀x∀y is the same as ∀y∀x

∃x∃y is the same as ∃y∃x
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Properties of Quantifiers

Quantifiers of different type do NOT commute

∃x∀y is not the same as ∀y∃x

Example

∃x∀yLoves(x,y)
“There is a person who loves everyone in the world”

∀y∃xLoves(x,y)
“Everyone in the world is loved by at least one person”

(Both hopefully true but different)
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Properties of Quantifiers

Quantifiers of different type do NOT commute

∃x∀y is not the same as ∀y∃x

Example

∀x∃yMother(x,y)
“Everyone has a mother” (correct)

∃y∀xMother(x,y)
“There is a person who is the mother of everyone” (wrong)
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Properties of Quantifiers

Quantifier duality

∀xLikes(x, IceCream) is the same as ¬∃x¬Likes(x, IceCream)

∃xLikes(x,Broccoli) is the same as ¬∀x¬Likes(x,Broccoli)
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Fun with Sentences

“Brothers are siblings”

∀x,y (Brother(x,y) ⇒ Sibling(x,y))

“Sibling” is symmetric

∀x,y (Sibling(x,y) ⇔ Sibling(y,x))

“One’s mother is one’s female parent”

∀x,y (Mother(x,y) ⇔ (Female(x)∧Parent(x,y)))

“A first cousin is a child of a parent’s sibling”

∀x,y (FirstCousin(x,y)⇔∃p, ps (Parent(p,x)∧Sibling(ps, p)∧Parent(ps,y)))
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“Brothers are siblings”

∀x,y (Brother(x,y) ⇒ Sibling(x,y))

“Sibling” is symmetric

∀x,y (Sibling(x,y) ⇔ Sibling(y,x))

“One’s mother is one’s female parent”

∀x,y (Mother(x,y) ⇔ (Female(x)∧Parent(x,y)))

“A first cousin is a child of a parent’s sibling”

∀x,y (FirstCousin(x,y) ⇔∃p, ps (Parent(p,x)∧Sibling(ps, p)∧Parent(ps,y)))
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Equality

Semantics

term1 = term2 is true under a given interpretation

if and only if

term1 and term2 have the same interpretation

Examples

1 = 2 and ∀x×(Sqrt(x),Sqrt(x)) = x are satisfiable

2 = 2 is valid
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Equality

Example

Definition of (full) sibling in terms of Parent

∀x,y Sibling(x,y) ⇔ (¬(x = y)∧

∃m, f (¬(m = f )∧

Parent(m,x)∧Parent( f ,x)∧

Parent(m,y)∧Parent( f ,y)))
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Properties of First-order Logic

Important notions

– validity
– satisfiability
– unsatisfiablity
– entailment

are defined for first-order logic in the same way as for propositional logic

Calculi

There are sound and complete calculi for first-order logic (e.g. resolution)

Whenever KB ` α, it is also true that KB |= α

Whenever KB |= α, it is also true that KB ` α

But these calculi CANNOT decide validity, entailment, etc.
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Properties of First-order Logic

In propositional logic

Validity, satisfiability, unsatisfiablity are decidable

In first-order logic

The set of valid, and the set of unsatisfiable formulas are enumerable

The set of satisfiable formulas is NOT EVEN enumerable
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