Vorlesung

Logik für Informatiker

7. Aussagenlogik

Analytische Tableaus –

Bernhard Beckert

Universität Koblenz-Landau

Wesentliche Eigenschaften

• Widerlegungskalkül: Testet auf Unerfüllbarkeit

Wesentliche Eigenschaften

- Widerlegungskalkül: Testet auf Unerfüllbarkeit
- Beweis durch Fallunterscheidung

Wesentliche Eigenschaften

- Widerlegungskalkül: Testet auf Unerfüllbarkeit
- Beweis durch Fallunterscheidung
- Top-down-Analyse der gegebenen Formeln

Vorteile

Intuitiver als Resolution

Vorteile

- Intuitiver als Resolution
- Formeln müssen nicht in Normalform sein

Vorteile

- Intuitiver als Resolution
- Formeln müssen nicht in Normalform sein
- Falls Formelmenge erfüllbar ist (Test schlägt fehl), wird ein Gegenbeispiel (eine erfüllende Interpretation) konstruiert

Vorteile

- Intuitiver als Resolution
- Formeln müssen nicht in Normalform sein
- Falls Formelmenge erfüllbar ist (Test schlägt fehl),
 wird ein Gegenbeispiel (eine erfüllende Interpretation) konstruiert

Nachteil

Mehr als eine Regel

Kleine Deutsch- und Englischsstunde

Deutsch

das Tableau

des Tableaus (Gen.)

die Tableaus (pl.)

Kleine Deutsch- und Englischsstunde

Deutsch

das Tableau

des Tableaus (Gen.)

die Tableaus (pl.)

der Tableaukalkül (nicht das)

Kleine Deutsch- und Englischsstunde

Deutsch

das Tableau

des Tableaus (Gen.)

die Tableaus (pl.)

der Tableaukalkül (nicht das)

Englisch

the tableau (sing.)

the tableaux (pl.)

the tableau calculus

Konjunktive Formeln: Typ α

- ullet $\neg \neg A$
- \bullet $A \wedge B$
- $\bullet \neg (A \lor B)$
- $\bullet \neg (A \rightarrow B)$

Konjunktive Formeln: Typ α

- ullet $\neg \neg A$
- \bullet $A \wedge B$
- $\bullet \neg (A \lor B)$
- $\bullet \neg (A \rightarrow B)$

Disjunktive Formeln: Typ β

- $\bullet \neg (A \wedge B)$
- \bullet $A \vee B$
- \blacksquare $A \longrightarrow B$

Zuordnungsregeln Formeln / Unterformeln

$lpha_2$	$lpha_1$	α
В	A	$A \wedge B$
$\neg B$	$\neg A$	$\neg (A \lor B)$
$\neg B$	\boldsymbol{A}	$\neg (A \longrightarrow B)$
\boldsymbol{A}	A	$\neg \neg A$

Zuordnungsregeln Formeln / Unterformeln

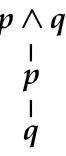
α	$lpha_1$	$lpha_2$
$A \wedge B$	\boldsymbol{A}	В
$\neg (A \lor B)$	$\neg A$	$\neg B$
$\neg (A \longrightarrow B)$	A	$\neg B$
$\neg \neg A$	A	\boldsymbol{A}

$$\begin{array}{c|ccccc}
\beta & \beta_1 & \beta_2 \\
\hline
\neg (A \land B) & \neg A & \neg B \\
A \lor B & A & B \\
A \to B & \neg A & B
\end{array}$$

Regeln des (aussagenlogischen) Tableaukalküls

α	
$lpha_1$	
$lpha_{ exttt{2}}$	

konjunktiv



Regeln des (aussagenlogischen) Tableaukalküls

($\boldsymbol{\chi}$	

 $lpha_1$

 $lpha_{2}$

konjunktiv

$$rac{oldsymbol{eta}}{oldsymbol{eta_1} \hspace{0.1cm} igg|\hspace{0.1cm} oldsymbol{eta_2}}$$

disjunktiv

$$p \lor q$$
 $p \lor q$

Regeln des (aussagenlogischen) Tableaukalküls

α	

 $lpha_1$

 $lpha_{2}$

konjunktiv

$$rac{oldsymbol{eta}}{oldsymbol{eta_1} \mid oldsymbol{eta_2}}$$

disjunktiv

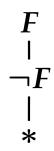
$$p \lor q$$
 $p \lor q$
 $p \lor q$

F

 $\neg F$

*

Widerspruch



Instanzen der α - und β -Regel

Instanzen der α -Regel

$$P \wedge Q$$

$$\neg (P \lor Q)$$

$$\neg (P \rightarrow Q)$$

$$\neg \neg P$$

$$\boldsymbol{P}$$

$$\neg P$$

$$\boldsymbol{P}$$

$$\neg Q$$

$$\neg Q$$

Instanzen der α - und β -Regel

Instanzen der α -Regel

$$P \wedge Q$$

$$\neg (P \lor Q)$$

$$\neg (P \rightarrow Q)$$

$$\neg \neg P$$

$$\boldsymbol{P}$$

$$\neg P$$

$$\neg Q$$

$$\neg Q$$

Instanzen der β -Regel

$$P \vee Q$$

$$P \mid Q$$

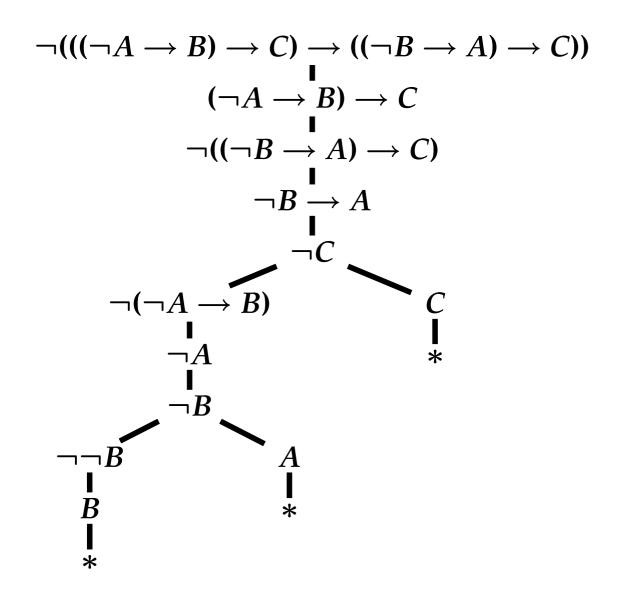
$$\neg (P \wedge Q)$$

$$\frac{\neg (P \land Q)}{\neg P \mid \neg Q}$$

$$P \rightarrow Q$$

$$\neg P \mid Q$$

Beispiel



Determinismus

• Die Regeln sind alle deterministisch

Determinismus

- Die Regeln sind alle deterministisch
- Der Kalkül aber nicht:
 Auswahl der nächsten Formel, auf die Regel angewendet wird

Determinismus

- Die Regeln sind alle deterministisch
- Der Kalkül aber nicht:
 Auswahl der nächsten Formel, auf die Regel angewendet wird

Heuristik

Nicht-verzweigende Regeln zuerst: " α vor β "

Determinismus

- Die Regeln sind alle deterministisch
- Der Kalkül aber nicht:
 Auswahl der nächsten Formel, auf die Regel angewendet wird

Heuristik

Nicht-verzweigende Regeln zuerst: " α vor β "

Nota bene

Selbe Formel kann mehrfach (auf verschiedenen Ästen) verwendet werden

Definition: Tableau

Binärer Baum, dessen Knoten mit Formeln markiert sind

Definition: Tableau

Binärer Baum, dessen Knoten mit Formeln markiert sind

Definition: Tableauast

Maximaler Pfad in Einem Tableau (von Wurzel zu Blatt)

Sei *M* eine Formelmenge

Initialisierung

Das Tableau, das nur aus dem Knoten 1 besteht, ist ein Tableau für M

Sei M eine Formelmenge

Initialisierung

Das Tableau, das nur aus dem Knoten 1 besteht, ist ein Tableau für M

Erweiterung

T ein Tableau für M

Sei M eine Formelmenge

Initialisierung

Das Tableau, das nur aus dem Knoten 1 besteht, ist ein Tableau für M

Erweiterung

- T ein Tableau für M
- B ein Ast von T

Sei M eine Formelmenge

Initialisierung

Das Tableau, das nur aus dem Knoten 1 besteht, ist ein Tableau für M

Erweiterung

- T ein Tableau für M
- B ein Ast von T
- F eine Formel auf B oder in M, die kein Literal ist

Sei M eine Formelmenge

Initialisierung

Das Tableau, das nur aus dem Knoten 1 besteht, ist ein Tableau für M

Erweiterung

- T ein Tableau für M
- B ein Ast von T
- F eine Formel auf B oder in M, die kein Literal ist

T' entstehe durch Erweiterung von B gemäß der auf F anwendbaren Regel (α oder β)

Sei M eine Formelmenge

Initialisierung

Das Tableau, das nur aus dem Knoten 1 besteht, ist ein Tableau für M

Erweiterung

- T ein Tableau für M
- B ein Ast von T
- F eine Formel auf B oder in M, die kein Literal ist

T' entstehe durch Erweiterung von B gemäß der auf F anwendbaren Regel (α oder β)

Dann ist T' ein Tableau für M

Nota bene

Alle Äste in einem Tableau für M enthalten implizit alle Formeln in M

Definition: Geschlossener Ast

Ast B eines Tableaus für M ist geschlossen, wenn

$$F, \neg F \in B \cup M$$

Definition: Geschlossener Ast

Ast B eines Tableaus für M ist geschlossen, wenn

$$F, \neg F \in B \cup M$$

Definition: Geschlossenes Tableau

Ein Tableau ist geschlossen, wenn jeder seiner Äste geschlossen ist

Formale Definition des Kalküls

Definition: Geschlossener Ast

Ast B eines Tableaus für M ist geschlossen, wenn

$$F, \neg F \in B \cup M$$

Definition: Geschlossenes Tableau

Ein Tableau ist geschlossen, wenn jeder seiner Äste geschlossen ist

Definition: Tableaubeweis

Ein Tableau für M, das geschlossen ist, ist ein Tableaubeweis für (die Unerfüllbarkeit von) M

Beispiel: Nun formal richtig

$$M = \neg(((\neg A \to B) \to C) \to ((\neg B \to A) \to C))$$

$$(\neg A \to B) \to C$$

$$\neg((\neg B \to A) \to C)$$

$$\neg B \to A$$

$$\neg C$$

$$\neg A \to B$$

$$\downarrow B$$

$$\downarrow A$$

$$\downarrow B$$

$$\downarrow A$$

$$\downarrow$$

Korrektheit und Vollständigkeit des Tableaukalküls

Theorem

Eine Formelmenge M ist unerfüllbar genau dann, wenn es einen Tableaubeweis für (die Unerfüllbarkeit von) M gibt

Definition: Erfüllbares Tableau

Tableauast ist erfüllbar, wenn die Menge seiner Formeln erfüllbar ist Tableau ist erfüllbar, wenn es (mindestens) einen erfüllbaren Ast hat

Definition: Erfüllbares Tableau

Tableauast ist erfüllbar, wenn die Menge seiner Formeln erfüllbar ist Tableau ist erfüllbar, wenn es (mindestens) einen erfüllbaren Ast hat

Lemma

Jedes Tableau für eine erfüllbare Formelmenge M ist erfüllbar

Definition: Erfüllbares Tableau

Tableauast ist erfüllbar, wenn die Menge seiner Formeln erfüllbar ist Tableau ist erfüllbar, wenn es (mindestens) einen erfüllbaren Ast hat

Lemma

Jedes Tableau für eine erfüllbare Formelmenge M ist erfüllbar

Lemma

Ein geschlossenes Tableau ist nicht erfüllbar

Definition: Erfüllbares Tableau

Tableauast ist erfüllbar, wenn die Menge seiner Formeln erfüllbar ist Tableau ist erfüllbar, wenn es (mindestens) einen erfüllbaren Ast hat

Lemma

Jedes Tableau für eine erfüllbare Formelmenge M ist erfüllbar

Lemma

Ein geschlossenes Tableau ist nicht erfüllbar

Kein geschlossenes Tableau für erfüllbare Formelmenge

Kern des Vollständigkeitsbeweises

Definition: Voll expandiertes Tableau

Ein Tableau heißt voll expandiert, wenn

- jede Regel
- auf jede passende Formel
- auf jedem offenen Ast

angewendet worden ist

Kern des Vollständigkeitsbeweises

Definition: Voll expandiertes Tableau

Ein Tableau heißt voll expandiert, wenn

- jede Regel
- auf jede passende Formel
- auf jedem offenen Ast

angewendet worden ist

Lemma

B offener Ast in voll expandiertem Tableau, dann $B \cup M$ erfüllbar

Voll expandierte Tableau für unerfüllbares M ist geschlossen

M eine Menge von Klauseln

M eine Menge von Klauseln

Änderungen

ullet Keine lpha-Regel

M eine Menge von Klauseln

Änderungen

- Keine α -Regel
- Erweiterungsregel kann Verzweigungsgrad >2 haben

M eine Menge von Klauseln

Änderungen

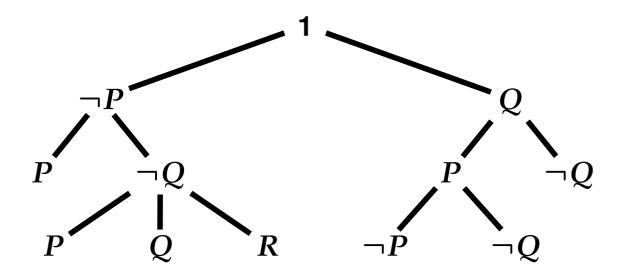
- ullet Keine lpha-Regel
- Erweiterungsregel kann Verzweigungsgrad >2 haben
- Alle Knoten im Tableau enthalten Literale

Klauseltableau: Beispiel

$$M = \{ \{P, Q, R\}, \{\neg R\}, \{\neg P, Q\}, \{P, \neg Q\}, \{\neg P, \neg Q\} \}$$

Klauseltableau: Beispiel

$$M = \{ \{P, Q, R\}, \{\neg R\}, \{\neg P, Q\}, \{P, \neg Q\}, \{\neg P, \neg Q\} \}$$



Regularität

Kein Literal darf auf einem Ast mehr als einmal vorkommen

Regularität

Kein Literal darf auf einem Ast mehr als einmal vorkommen

Schwache Konnektionsbedingung

Bei Erweiterung von Ast B muss mindestens eines der neuen Literale komplementär zu Literal in $B \cup M$ sein

Regularität

Kein Literal darf auf einem Ast mehr als einmal vorkommen

Schwache Konnektionsbedingung

Bei Erweiterung von Ast B muss mindestens eines der neuen Literale komplementär zu Literal in $B \cup M$ sein

Starke Konnektionsbedingung (Modellelimination)

Bei Erweiterung von Ast B muss mindestens eines der neuen Literale komplementär zum Blatt von B sein — außer beim ersten Schritt

Regularität, starke u. schwache Konnektionsbedingung erhalten Vollständigkeit

Regularität, starke u. schwache Konnektionsbedingung erhalten Vollständigkeit

Jedoch

Bei starker Konnektionsbedingung kann ungünstige Erweiterung in Sackgasse führen

Regularität, starke u. schwache Konnektionsbedingung erhalten Vollständigkeit

Jedoch

Bei starker Konnektionsbedingung kann ungünstige Erweiterung in Sackgasse führen

(bei schwacher Konnektionsbedinung nicht)

Regularität, starke u. schwache Konnektionsbedingung erhalten Vollständigkeit

Jedoch

Bei starker Konnektionsbedingung kann ungünstige Erweiterung in Sackgasse führen

(bei schwacher Konnektionsbedinung nicht)

$$M = \{ \{P\}, \{\neg Q\}, \{\neg P, Q\}, \{\neg P, R\} \}$$

Signatur:

F: Flugreise V: Vollpension M: Meer P: Pool

Signatur:

F: Flugreise V: Vollpension M: Meer P: Pool

Falls sie nicht mit dem Flugzeug fliegen, besteht der Vater auf Vollpension am Meer.

$$\neg F \rightarrow (V \land M)$$

Signatur:

F: Flugreise V: Vollpension M: Meer P: Pool

Falls sie nicht mit dem Flugzeug fliegen, besteht der Vater auf Vollpension am Meer.

$$\neg F \rightarrow (V \land M)$$

Die Mutter möchte mindestens einen ihrer drei Wünsche erfüllt sehen: ans Meer fliegen, oder am Meer ohne Pool, oder Vollpension und Pool.

$$(M \wedge F) \vee (M \wedge \neg P) \vee (V \wedge P)$$

Signatur:

F: Flugreise V: Vollpension M: Meer P: Pool

Falls sie nicht mit dem Flugzeug fliegen, besteht der Vater auf Vollpension am Meer.

$$\neg F \rightarrow (V \land M)$$

Die Mutter möchte mindestens einen ihrer drei Wünsche erfüllt sehen: ans Meer fliegen, oder am Meer ohne Pool, oder Vollpension und Pool.

$$(M \wedge F) \vee (M \wedge \neg P) \vee (V \wedge P)$$

Gibt es keinen Pool, so besteht Tochter Lisa auf einer Flugreise und Urlaub am Meer und darauf, dass keine Vollpension gebucht wird.

$$\neg P \rightarrow (F \land M \land \neg V)$$

Signatur:

F: Flugreise V: Vollpension M: Meer P: Pool

Falls sie nicht mit dem Flugzeug fliegen, besteht der Vater auf Vollpension am Meer.

$$\neg F \rightarrow (V \land M)$$

Die Mutter möchte mindestens einen ihrer drei Wünsche erfüllt sehen: ans Meer fliegen, oder am Meer ohne Pool, oder Vollpension und Pool.

$$(M \wedge F) \vee (M \wedge \neg P) \vee (V \wedge P)$$

Gibt es keinen Pool, so besteht Tochter Lisa auf einer Flugreise und Urlaub am Meer und darauf, dass keine Vollpension gebucht wird.

$$\neg P \rightarrow (F \land M \land \neg V)$$

Auch dem Baby soll einer seiner Wünsche erfüllt werden: erstens einen Pool und nicht fliegen oder zweitens Vollpension, dann aber ohne Pool.

$$(P \wedge \neg F) \vee (V \wedge \neg P)$$

Behauptung

Dann müssen sie ans Meer mit Vollpension, mit Pool und ohne Flug.

$$M \wedge V \wedge P \wedge \neg F$$

Behauptung

Dann müssen sie ans Meer mit Vollpension, mit Pool und ohne Flug.

$$M \wedge V \wedge P \wedge \neg F$$

Negation der Behauptung:

$$\neg M \lor \neg V \lor \neg P \lor F$$

$$\neg F \rightarrow (V \land M)$$

$$(M \wedge F) \vee (M \wedge \neg P) \vee (V \wedge P)$$

$$\neg P \rightarrow (F \land M \land \neg V)$$

$$(P \wedge \neg F) \vee (V \wedge \neg P)$$

Negation der Behauptung

(1)
$$F \vee V$$

(2)
$$F \vee M$$

$$(3) \quad M \vee V$$

$$(4) \quad M \vee P$$

$$(5) \quad M \vee \neg P \vee V$$

$$(6) \quad F \vee M \vee V$$

$$(7) \quad F \vee M \vee P$$

(8)
$$F \vee \neg P \vee V$$

(9)
$$P \vee F$$

(10)
$$P \vee M$$

(11)
$$P \lor \neg V$$

(12)
$$P \vee V$$

$$(13) \ \neg F \lor V$$

(14)
$$\neg F \lor \neg P$$

$$(15) \ \neg M \lor \neg V \lor \neg P \lor F$$

Beobachtung

Konstruktion des Konnektionstableaus

- bei Beginn mit Klausel (1)
- mit Regularität
- mit starker Konnektionsbedingung

Dann

Nahezu deterministische Beweiskonstruktion

• Beweis durch Widerspruch und Fallunterscheidung

- Beweis durch Widerspruch und Fallunterscheidung
- Tableauregeln (mit uniformer Notation)

- Beweis durch Widerspruch und Fallunterscheidung
- Tableauregeln (mit uniformer Notation)
- Formale Definition des Kalküls

- Beweis durch Widerspruch und Fallunterscheidung
- Tableauregeln (mit uniformer Notation)
- Formale Definition des Kalküls
- Korrektheit und Vollständigkeit

- Beweis durch Widerspruch und Fallunterscheidung
- Tableauregeln (mit uniformer Notation)
- Formale Definition des Kalküls
- Korrektheit und Vollständigkeit
- Klauseltableau

- Beweis durch Widerspruch und Fallunterscheidung
- Tableauregeln (mit uniformer Notation)
- Formale Definition des Kalküls
- Korrektheit und Vollständigkeit
- Klauseltableau
- Regularität

- Beweis durch Widerspruch und Fallunterscheidung
- Tableauregeln (mit uniformer Notation)
- Formale Definition des Kalküls
- Korrektheit und Vollständigkeit
- Klauseltableau
- Regularität
- Schwache und starke Konnektionsbedingung