

Universität Koblenz-Landau

Institut für Informatik

Bernhard Beckert · www.uni-koblenz.de/~beckert
Vladimir Klebanov · www.uni-koblenz.de/~vladimir
Claudia Obermaier · www.uni-koblenz.de/~obermaie

Übung zur Vorlesung Logik für Informatiker

Aufgabenblatt 1

Aufgabe 1

- (a) Vervollständigen Sie das Sudoku so, daß
 - in jeder der neun Spalten
 - in jeder der neun Reihen
 - $-\,$ und in jeder der neun Regionen alle Zahlen von 1 bis 9 vorkommen.

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

(b) Geben Sie eine aussagenlogische Beschreibung des *allgemeinen* Sudoku-Problems an. D.h. geben Sie eine Formelmenge an, deren Modelle genau alle gültigen Sudoku-Lösungen beschreiben.

Aufgabe 2

Wie viele Schnittpunkte können n verschiedene Geraden höchstens haben? Geben Sie eine rekursive und eine explizite Formel an. Beweisen Sie die Gültigkeit der expliziten Formel mit vollständiger Induktion.

Aufgabe 3

Beweisen Sie: Eine partiell geordnete Menge (A, \leq) ist genau dann noethersch, wenn jede nicht-leere Teilmenge von A ein minimales Element besitzt.

Abgabe bis 8.5.

Schriftliche Lösungen können Sie jederzeit bis zum o.g. Datum in der Vorlesung oder Übung abgeben.

Bernhard Beckert: Zi. B218, Tel. 287-2775, Email: beckert@uni-koblenz.de Vladimir Klebanov: Zi. B224, Tel. 287-2781, Email: vladimir@uni-koblenz.de Claudia Obermaier: Zi. B207, Tel. 287-2768, Email: obermaie@uni-koblenz.de Materialien: http://www.uni-koblenz.de/~beckert/Lehre/Logik/