Lösungen zu den Aufgaben der Lösungsblätter 1-4.

Lösung zur Aufgabe 1

a)

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

b)

Wir führen für jede Tellenposition (i, j)des Sudoku und jede Zahl k zwischen 1 und 9 eine boolsche Variable $D_{i,j}^k$ ein, mit der Vorstellung, dass $D_{i,j}^k$ den Wert wahr hat, wenn auf dem Feld (i, j) die Zahl k steht. Wir benutzen kartesische Koordinaten zur Notation von Positionen.

Beispiel: $D_{9,1}^9$ wahr, wenn in der rechten unteren Ecke die Zahl 9 steht.

$$\begin{split} \neg (D_{1,1}^1 \wedge D_{1,1}^2), \neg (D_{1,1}^1 \wedge D_{1,1}^3), \neg (D_{1,1}^1 \wedge D_{1,1}^4), \neg (D_{1,1}^1 \wedge D_{1,1}^5), \\ \neg (D_{1,1}^1 \wedge D_{1,1}^6), \neg (D_{1,1}^1 \wedge D_{1,1}^7), \neg (D_{1,1}^1 \wedge D_{1,1}^8), \neg (D_{1,1}^1 \wedge D_{1,1}^9), \\ \neg (D_{1,1}^2 \wedge D_{1,1}^3), \neg (D_{1,1}^2 \wedge D_{1,1}^4), \neg (D_{1,1}^2 \wedge D_{1,1}^5), \neg (D_{1,1}^2 \wedge D_{1,1}^6), \\ \neg (D_{1,1}^2 \wedge D_{1,1}^7), \neg (D_{1,1}^2 \wedge D_{1,1}^8), \neg (D_{1,1}^2 \wedge D_{1,1}^9), \neg (D_{1,1}^3 \wedge D_{1,1}^4), \end{split}$$

usw...

Allgemein:

$$\neg (D_{i,j}^s \wedge D_{i,j}^t)$$

für alle $1 \le i, j, s, t \le 9$ mit s < t. Das ergibt 81 * 36 = 2916 Formeln.

Lösung zur Aufgabe 2

- 1 Gerade hat höchstens 0 Schnittpunkte,
- 2 Geraden haben höchstens 1 Schnittpunkte,
- 3 Geraden haben höchstens 3 Schnittpunkte,
- 4 Geraden haben höchstens 6 Schnittpunkte,
- 5 Geraden haben höchstens 10 Schnittpunkte,

Ist A(n) die maximale Anzahl der Schnittpunkte von n Geraden, so

n	1	2	3	4	5	
A(n)	0	0+1=1	1 + 2 = 3	3 + 3 = 6	6 + 4	

Rekursive Formel also:

$$A(n+1) = A(n) + n$$

oder

$$A(n) = A(n-1) + n - 1$$

D.h. die (n+1)te Gerade bringt höchstens n neue Schnittpunkte. Noch anders notiert

Ī	n	1	2	3	4	5	
Ī	A(n)	0	0 + 1	0 + 1 + 2	0+1+2+3	0+1+2+3+4	
Ī			1	3	6	10	

Also

$$A(n) = \sum_{k=0}^{n-1} k \text{ oder } A(n) = \sum_{k=1}^{n-1} k$$

Beweis: n+1 Geraden haben höchstens $\sum_{k=0}^{(n+1)-1} k$ Schnittpunkte

Ind.Anf: Eine Gerade hat keinen Schnittpunkt A(1) = 0 gilt.

Ind.Annahme: $A(n) = \sum_{k=0}^{n-1} k$ gilt

Ind.Schritt: Zu zeigen: A(n + 1) folgt aus der Gültigkeit, dass A(n) die maximale Anzahl der Schnittpunkte für n Geraden liefert.

$$A(n+1) = ?$$

$$= A(n) + n$$

$$= \sum_{k=0}^{n-1} k + n$$

$$= \underbrace{0 + 1 + 2 + \dots + (n-1) + n}_{\sum_{k=0}^{n} k}$$

$$= \sum_{k=0}^{(n+1)-1} k$$

Also folgt $A(n+1) = \sum_{k=0}^{(n+1)-1} k$ aus $A(n) = \sum_{k=0}^{n-1} k$ für alle n was zu zeigen war.

Wer die Formel $\sum_{k=0}^{n-1} k = \frac{n(n-1)}{2}$ angewendet hat, der zeigt nach gleichem Muster:

Ind.Anfang: A(1) = 0 gilt

Ind.Annahme: $A(n) = \frac{n(n-1)}{2}$ gilt

Ind.Schritt: Zu zeigen: A(n + 1) folgt aus der Gültigkeit, dass A(n) die maximale Anzahl der Schnittpunkte für n Geraden liefert.

$$A(n+1) = ?$$

$$= A(n) + n$$

$$= \frac{n(n+1)}{2} + n$$

$$= \frac{n(n+1)}{2} + \frac{2n}{2}$$

$$= \frac{n^2 - n + 2n}{2}$$

$$= \frac{n^2 + 1n}{2}$$

$$= \frac{n(n+1)}{2}$$

Also folgt $A(n+1) = \frac{(n+1) \cdot n}{2}$ aus $A(n) = \frac{n(n-1)}{2}$ was zu zeigen war.

Lösung zur Aufgabe 3

 (A, \leq) ist noethersch gdw. (A, \leq) ist wohlfundiert.

←:

Sei A wohlfundiert und $B \subset A$ eine Teilmenge von A, dann bilden $b_1, b_2 \dots \in B$ eine absteigende abzählbare Kette in A. Jedes B besitzt per Definition also ein minimales Element b_n sodass gilt: $b_1 < \dots < b_n$.

 \Rightarrow :

Sei jetzt A noethersch und B eine nichtleere Teilmente von A. Ist b_1 nicht minimal in B, dann bigt es ein $b_2 \in B$ mit $b_2 < b_1$. Ist b_2 nicht minimal in B, dann findet man ein $b_3 \in B$ mit $b_3 < b_2$ usw. Entweder bricht diese Suche mit einem $b_m \in B$ ab, das minimal in B ist, oder man bekommt in B eine unendliche, absteigende abzählbare Kette: $b_1 > b_2 > b_3 > \dots$, was ein Widerspruch zu A sei noethersch ist. Also gibt es in B ein minimales Element.

Lösung zur Aufgabe 4

a)

Benennen der Aussagen:

b: Es gibt Brot zur Mahlzeit.

d: Es gibt Dessert zur Mahlzeit.

s: Es gibt Suppe zur Mahlzeit.

Die Forderungen lauten damit:

A:
$$\neg d \rightarrow b \equiv \neg (\neg d) \lor b \equiv d \lor b$$

B:
$$(b \land d) \rightarrow \neg s \equiv \neg (b \land d) \lor \neg s$$

C:
$$(s \lor \neg d) \to \neg b \equiv \neg (s \lor \neg d) \lor \neg b$$

Gesamtbedingung also:

$$A \wedge B \wedge C \equiv (d \vee b) \wedge (\neg(b \wedge d) \vee \neg s) \wedge (\neg(s \vee \neg d) \vee \neg b)$$

b)

0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

b	d	s	$A \wedge B \wedge C$	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	$d \wedge \neg b \wedge \neg s$
1	0	0	1	$d \wedge b \wedge \neg s$
1	0	1	1	$d \wedge \neg b \wedge s$
1	1	0	0	
1	1	1	0	

unter den Belegungen im schattierten Bereich ist $A \wedge B \wedge C$ erfüllbar.

c)

Dessert ist zu jeder Mahlzeit zu reichen, Suppe oder Brot können serviert werden, aber nicht gleichzeitig.

Lösung zur Aufgabe 5

- $(P_1 \land \neg P_2 \land \neg P_3) \lor (\neg P_1 \land P_2 \land \neg P_3) \lor (\neg P_1 \land \neg P_2 \land P_3)$
- $(P_1 \wedge P_2 \wedge \neg P_3) \vee (P_1 \wedge \neg P_2 \wedge \neg P_3) \vee (\neg P_1 \wedge P_2 \wedge P_3)$
- $\bullet \quad (P_1 \vee P_2 \vee P_3)$

Lösung zur Aufgabe 6

A	B	C	$B \wedge \neg C$	$A \lor (B \land \neg C)$	$B \to C$	$B \vee \neg A$	M	$A \rightarrow B$
0	0	0	0	0	1	1	0	1
0	0	1	0	0	1	1	0	1
0	1	0	1	1	0	1	0	1
0	1	1	0	0	1	1	0	1
1	0	0	0	1	1	0	0	0
1	0	1	0	1	1	0	0	0
1	1	0	1	1	0	1	0	1
1	1	1	0	1	1	1	1	1

M ist erfüllbar.

 $M \vDash (A \rightarrow B)$ gilt.

Lösung zur Aufgabe 7

- a) $\neg (ME \lor VF) \equiv \neg ME \land \neg VF$
- b) $\neg (Ph \land \neg Ma) \equiv \neg Ph \lor Ma$
- c) $\neg(LSi \land PSt) \equiv \neg LSi \lor \neg PSt$
- d) $\neg(\neg K \lor R) \equiv K \land \neg R$

Lösung zur Aufgabe 8

a)

	b	0	$(a \land (b \land a)) \land b$
a	ט	Ü	$(a \land (b \to c)) \to b$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Disjunktive Form:

$$(\neg a \wedge \neg b \wedge \neg c) \vee (\neg a \wedge \neg b \wedge c) \vee (\neg a \wedge b \wedge \neg c) \vee (\neg a \wedge b \wedge c) \vee (a \wedge b \wedge \neg c) \vee (a \wedge b \wedge c)$$

Konjunktive Form:

$$(\neg a \lor b \lor c) \land (\neg a \lor b \lor \neg c)$$

Klauselmenge:

$$\{\{\neg a, b, c\}, \{\neg a, b, \neg c\}\}$$

b)

$$\begin{split} & ((A \to B) \land (B - C)) \to (\neg A \to C) \\ & \equiv \neg ((\neg A \lor B) \land (\neg B \lor C)) \lor (A \lor C) \\ & \equiv \neg (A \lor B) \lor \neg (\neg (B \lor C) \lor (A \lor C) \\ & \equiv (A \land \neg B) \lor (B \land \neg C) \lor A \lor C \text{ ist DNF} \\ & \equiv ((A \land \neg B) \lor A) \lor (C \lor (B \land \neg C)) \\ & \equiv B \land (A \lor C) \lor A \lor C \\ & \equiv B \land (A \lor C) \text{ ist KNF} \end{split}$$

Lösung zur Aufgabe 9

a)

$$\begin{array}{ll} p \vee \neg (p \wedge q) & \text{DeMorgan} \\ \equiv & p \vee (\neg p \vee \neg q) & \text{Assoziativ} \\ \equiv & p \vee \neg p \vee \neg q & \text{Tertium non datur} \\ \equiv & 1 \vee \neg q \\ \equiv & 1 \end{array}$$

stets wahr, also Tautologie.

$$\begin{array}{l} (p\vee \neg q)\wedge (\neg p\wedge q) \, \text{Assoziativ} \\ \equiv (p\vee \neg q)\wedge \neg p\wedge q \, \text{Kommutativ} \\ \equiv (p\vee \neg q)\wedge q\wedge \neg p \, \text{Assoziativ} \\ \equiv ((p\vee \neg q)\wedge q)\wedge \neg p \, \text{Distributiv} \\ \equiv ((p\wedge q)\vee (\neg q\wedge q))\wedge \neg p \, \text{Unerfüllbarkeitsregel} \\ \equiv ((p\wedge q)\vee 0)\wedge \neg p \\ \equiv (p\wedge q)\wedge \neg p \, \text{Assoziativ} \\ \equiv p\wedge q\wedge \neg p \, \text{Kommutativ} \\ \equiv q\wedge p\wedge \neg p \, \text{Unerfüllbarkeitsregel} \\ \equiv q\wedge 0 \\ \equiv 0 \end{array}$$

stets falsch, also unerfüllbar

Lösung zur Aufgabe 10

a)

				F	G	$F \vee \neg G$	
F		G		0	0	1	
1	erfüllbar	1	erfüllbar	0	1	0	falsifizierbar.
0		0		1	0		
	•		•			••	

 $F \vee \neg G$ ist **nicht immer** eine Tautologie

b)

B ist nicht immer erfüllbar. A könnte manchmal 1 und manchmal 0 sein. Setzen wir $B \equiv 0$, dann ist $A \rightarrow B \equiv 1$ (erfüllbar), wenn $A \equiv 0$.

c

Wenn F eine Tautologie $(F \equiv 1)$ ist, dann gilt $A \models F$, denn wegen dem Deduktionstheorem gilt:

$$M \vDash F \text{ gdw. } \vDash M \to F \text{ gdw. } \vDash M \to 1 \text{ gdw. } \vDash 1$$

d)

G unerfüllbar $(G \equiv 0)$ und $F \models G$. Benutze das Deduktionstheorem:

 $F \models G$ gdw. $F \models 0$ gdw. $\models F \rightarrow 0$ gdw. $\models \neg F \lor 0$ gdw. $\models \neg F$ d.h. $F \equiv 0$ und somit $F \lor G \equiv 0$.

Lösung zur Aufgabe 11

$$A = (q \to r) \land s \equiv (\neg q \lor r) \land s \equiv X \land s$$

$$B = (p \rightarrow q) \rightarrow (p \rightarrow r) \equiv (p \land \neg q) \lor (\neg p \lor r) \equiv (p \lor \neg p \lor r) \land (\neg q \lor \neg p \lor r) \equiv \neg q \lor r \lor \neg p \equiv X \lor \neg p \lor r \lor \neg p \Rightarrow X \lor \neg p \lor x \lor \neg p \Rightarrow X \lor \neg p \lor x \lor \neg p \Rightarrow X \lor \neg p \lor x \lor \neg p \Rightarrow X \lor \neg p \lor x \lor \neg p \Rightarrow X \lor \neg p \lor x \lor \neg p \Rightarrow X \lor \neg p \lor x \lor \neg p \Rightarrow X \lor \neg p \lor x \lor \neg p \Rightarrow X \lor \neg p \lor x \lor \neg p \Rightarrow X \lor \neg p \lor x \lor \neg p \Rightarrow X \lor \neg$$

Wobei X eine Abkürzung für $\neg q \lor r$ ist.

Χ	S	p	$X \wedge s$	$X \vee \neg p$
0	0	0	0	1
0	0	1	0	0
0	1	0	0	1
0	1	1	0	0
1	0	0	0	1
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

Es gilt $A \models B$

Suche eine Formel Y, sodass (1) $X \land s \vDash Y$ und $Y \vDash X \lor \neg p$ und (2) Y enthält Atom die in $X \land s$ und $X \lor \neg p$ enthalten sind. Eine Methode, mit der die erste Bedingung erfüllt werden kann, ist durch Benutzung einer Wahrheitstabelle.

Χ	\mathbf{s}	р	$X \wedge s$	Y	$X \vee \neg p$
0	0	0	0	0	1
0	0	1	0	0	0
0	1	0	0	0	1
0	1	1	0	0	0
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	1	1	1
1	1	1	1	1	1

Daraus folgt $Y \equiv X \equiv \neg q \lor r$, womit auch die zweite Bedingung (zufälliger Weise) erfüllt ist.

Um jedoch auch die zweite Bedingung allgemein zu garantieren gehe wie folgt vor:

- 1. Sammle alle atomare Formeln, welche in A aber nicht in B vorkommen in der Menge G. Hier also $G = \{s\}$
- 2. Bilde neue Formeln aus A, indem alle Vorkommen der atomaren Formeln $s \in G$ in A durch alle möglichen Kombinationen aus $\{1,0\}$ ersetzt werden. Hier also $((\neg p \lor r) \land 0)$ und $((\neg p \lor r) \land 1)$

3. Die Craig-Interpolante entsteht durch die disjunktive Verknüpfung der resultierenden Formeln. Hier: $((\neg p \lor r) \land 0) \lor ((\neg p \lor r) \land 1)$

Durch Vereinfachung erhält man $Y \equiv \neg \, q \vee r$

Lösung zur Aufgabe 12

Hornformel: höchstens eine atomare Formel als Conclusio der Implikationen.

Im folgenden werden alle Implikation implizit konjunktiv verknüpft.

a) keine Hornformel

$$\begin{array}{ccc} 1 & \rightarrow & A \vee B \vee C \\ C & \rightarrow & A \\ A & \rightarrow & B \\ B & \rightarrow & 0 \end{array}$$

b) keine Hornformel

$$\begin{array}{ccc} P & \to & S \lor Q \\ P \land R & \to & S \end{array}$$

c) Hornformel

$$A \rightarrow A$$

d) Hornformel

$$\begin{array}{ccc} 1 & \rightarrow & A \\ A & \rightarrow & B \\ B \wedge C & \rightarrow & D \\ E & \rightarrow & 0 \\ A \wedge C & \rightarrow & 0 \\ 1 & \rightarrow & D \end{array}$$

Lösung zur Aufgabe 13

Im folgenden werden alle Implikation implizit konjunktiv verknüpft. Die Nummern geben die Reihenfolge der Markierungen an.

$$\begin{array}{cccc} 1 & \to & A^{(1)} \\ B & \to & 0 \\ & 1 & \to & C^{(1)} \\ & 1 & \to & D^{(1)} \\ A^{(1)} & \to & E^{(2)} \\ E^{(2)} \wedge F^{(3)} & \to & D^{(4)} \\ & E^{(2)} & \to & F^{(3)} \end{array}$$

 \boldsymbol{B} und damit 0 wurde nicht markiert also ist die Formel G erfüllbar.

Lösung zur Aufgabe 14

```
\mathrm{Res}^0:
                                 \operatorname{Res}^2 = \operatorname{Res}^1 \cup:
1: [] \{A\}
                                 13: [3,8] \{ \neg A, \neg D \}
2: [] \{B\}
                                 14: [4,7] {B, \neg D}
                                15: [4,10] \{B,\neg C,\neg A\}
3: [] \{\neg A, C\}
4: [] \{B, \neg C, \neg D\}
                             16: [5,7] {D}
5: [] \{\neg C, D\}
                                 17: [5,8] \{ \neg C \}
6: [] \{\neg D\}
                                 18: [6,10] \{ \neg A \}
\mathrm{Res}^1 = \mathrm{Res}^0 \cup :
                                 19: [7,8] \{ \neg D \}
7: [1,3] {C}
                                 20: [7,12] {}
8: [2,4] \{ \neg C, \neg D \}
                                 usw...
9: [3,4] \{ \neg A, B, \neg D \}
10{:}[3{,}5]\ \{\neg A,D\}
11:[4,5] \{B, \neg C, \}
12:[5,6] \{\neg C\}
```

Leere Klausel hergeleitet: M ist unerfüllbar.

Lösung zur Aufgabe 15

a)

 $\vDash F$ gdw. $\neg F \vDash 0$ also wenn $\neg F$ unerfüllbar.

$$\neg F \equiv \neg (X \lor (\neg X \land \neg Y \land Z) \lor ((X \lor Z) \to (Y \land Z))
\equiv \neg X \land \neg (\neg X \land \neg Y \land Z) \land \neg (\neg (X \lor Z) \lor (Y \land Z))
\equiv \neg X \land (X \lor Y \lor \neg Z) \land (\neg \neg (X \lor Z) \land \neg (Y \land Z))
\equiv \neg X \land (X \lor Y \lor \neg Z) \land (X \lor Z) \land (\neg Y \lor \neg Z)$$

$$\begin{array}{l} 1: [] \; \{\neg X\} \\ 2: [] \; \{X,Y,\neg Z\} \\ 3: [] \; \{X,Z\} \\ 4: [] \; \{\neg Y,\neg Z\} \\ 5: [1,2] \; \{Y,\neg Z\} \\ 6: [1,3] \; \{Z\} \\ 7: [4,5] \; \{\neg Z\} \\ 8: [6,7] \; \{\} \end{array}$$

Leere Klausel: $\neg F$ unerfüllbar: F Tautologie

b)

 $\Phi \models \Psi \text{ gdw}. \ \Phi \cup \neg \Psi \models 0$

wobei $\neg \Psi$ die negation aller Formeln in Ψ ist