Ist A eine \mathcal{L}_3 -Formel, in der \sim nicht vorkommt, dann ist A keine Tautologie.

Ist A eine \mathcal{L}_3 -Formel, in der \sim nicht vorkommt, dann ist A keine Tautologie.

Lösung: Belege alle Variablen mit u

Zeige, daß

$$\forall x q(x) \supset q(t/x)$$

für jeden Term t eine \mathcal{L}_3 -Tautologie ist.

Zeige, daß

$$\forall x q(x) \supset q(t/x)$$

für jeden Term t eine \mathcal{L}_3 -Tautologie ist.

Lösung:

Folgt aus Definition der Operatoren

Finden Sie ein Gegenbeispiel, das zeigt, daß

$$\forall x q(x) \rightarrow q(t/x)$$

keine Tautologie ist.

Finden Sie ein Gegenbeispiel, das zeigt, daß

$$\forall x q(x) \rightarrow q(t/x)$$

keine Tautologie ist.

Lösung:

 $q \rightarrow q$ ist keine Tautologie

(s. erste Aufgabe)

Welche der folgenden Aussagen sind richtig?

4. Wenn $A \equiv B$ eine Tautologie ist und A eine Tautologie ist, dann ist auch B eine Tautologie.

5. Wenn $A \equiv B$ eine Tautologie ist und A erfüllbar ist, dann ist auch B erfüllbar.

Welche der folgenden Aussagen sind richtig?

4. Wenn $A \equiv B$ eine Tautologie ist und A eine Tautologie ist, dann ist auch B eine Tautologie.

Lösung: richtig

5. Wenn $A \equiv B$ eine Tautologie ist und A erfüllbar ist, dann ist auch B erfüllbar.

Lösung: richtig

Welche der folgenden Aussagen sind richtig?

6. Wenn $A \equiv B$ eine Tautologie ist und A eine Nichttautologie, dann ist auch B eine Nichttautologie.

7. Wenn $A \equiv B$ eine Tautologie ist und A zweiwertig ist, dann ist auch B zweiwertig.

A heißt eine Nichttautologie, wenn für jede dreiwertige Struktur $\mathcal{M} = \langle \mathcal{M}_0, v_{\mathcal{M}} \rangle$ gilt $v_{\mathcal{M}}(A) \neq 1$.

A heißt zweiwertig, wenn für jede dreiwertige Struktur $\mathcal{M} = \langle \mathcal{M}_0, v_{\mathcal{M}} \rangle$ gilt $v_{\mathcal{M}}(A) \in \{1, 0\}$.

Welche der folgenden Aussagen sind richtig?

6. Wenn $A \equiv B$ eine Tautologie ist und A eine Nichttautologie, dann ist auch B eine Nichttautologie.

Lösung: richtig

7. Wenn $A \equiv B$ eine Tautologie ist und A zweiwertig ist, dann ist auch B zweiwertig.

Lösung: falsch

A heißt eine Nichttautologie, wenn für jede dreiwertige Struktur $\mathcal{M} = \langle \mathcal{M}_0, v_{\mathcal{M}} \rangle$ gilt $v_{\mathcal{M}}(A) \neq 1$.

A heißt zweiwertig, wenn für jede dreiwertige Struktur $\mathcal{M} = \langle \mathcal{M}_0, v_{\mathcal{M}} \rangle$ gilt $v_{\mathcal{M}}(A) \in \{1, 0\}$.

Definition: Standardfortsetzung

Sei $f: \{0,1\}^n \to \{0,1\}$ gegeben.

Die Standardfortsetzung

$$f^*: \{0, u, 1\}^n \to \{0, u, 1\}$$

von f wird wie folgt bestimmt:

Sei $\langle w_1, \dots, w_n \rangle$ ein Argumenttupel aus $\{0, u, 1\}^n$. Die Menge $U(w_1, \dots, w_n) \subseteq \{0, 1\}^n$ entsteht, indem auf alle möglichen Arten die w_i mit $w_i = u$ durch 0 und 1 ersetzt werden.

$$f^*(\vec{w}) = \begin{cases} 0 & \text{für alle } \vec{v} \in U(\vec{w}) \text{ gilt } f(\vec{v}) = 0 \\ 1 & \text{für alle } \vec{v} \in U(\vec{w}) \text{ gilt } f(\vec{v}) = 1 \\ u & \text{sonst} \end{cases}$$

Beispiel: $U(u,1,u) = \{\langle 0,1,0 \rangle, \langle 0,1,1 \rangle, \langle 1,1,0 \rangle, \langle 1,1,1 \rangle\}$

1. Zeige, daß die dreiwertigen Operatoren $\land, \lor, \neg, \rightarrow, \leftrightarrow$ Standardfortsetzungen ihrer jeweiligen zweiwertigen Gegenstücke sind.

Lösung: Hausaufgabe

1. Zeige, daß die dreiwertigen Operatoren $\land, \lor, \neg, \rightarrow, \leftrightarrow$ Standardfortsetzungen ihrer jeweiligen zweiwertigen Gegenstücke sind.

Lösung: Hausaufgabe

2. Zeigen, daß das nicht auf \supset und \equiv zutrifft.

1. Zeige, daß die dreiwertigen Operatoren $\land, \lor, \neg, \rightarrow, \leftrightarrow$ Standardfortsetzungen ihrer jeweiligen zweiwertigen Gegenstücke sind.

Lösung: Hausaufgabe

2. Zeigen, daß das nicht auf \supset und \equiv zutrifft.

Lösung:

$$v(A \rightarrow B) = 0$$
 für $v(A) = 1$ und $v(B) = 0$ und $v(A \rightarrow B) = 1$ für $v(A) = 0$ und $v(B) = 0$, und daher $v(A \rightarrow^* B) = u$ für $v(A) = u$ und $v(B) = 0$, aber $v(A \supset B) = 1$ für $v(A) = u$ und $v(B) = 0$

Für ≡: Hausaufgabe