Kalküle

Ein 1. Axiomatisierungsresultat

Satz: [M. Wajsberg 1931]

Sei $\mathcal{L}^3_{\text{Łukas}}$ die Aussagenlogik mit den Konnektoren

- ¬ (starke Negation) und
- → (Łukasiewicz Implikation).

Mit der Modus-ponens-Regel bilden folgenden Axiome eine vollständige und korrekte Axiomatisierung für \mathcal{L}_{tukas}^3 :

1.
$$(A \Rightarrow (B \Rightarrow A))$$

2.
$$(A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$$

3.
$$(\neg A \Rightarrow \neg B) \Rightarrow (B \Rightarrow A)$$

4.
$$((A \Rightarrow \neg A) \Rightarrow A) \Rightarrow A$$

Łukasiewicz Implikation ⇒

$A \Rightarrow B$					
$\boxed{B\downarrowA\rightarrow}$	1	u	0		
1	1	1	1		
u	u	1	1		
0	0	\overline{u}	1		

Zum Vergleich die schwache (\supset) und die starke (\rightarrow) Implikation.

\supset	1	u	0
1	1	1	1
u	u	1	1
0	0	1	1

$\boxed{\ \ }$	1	u	0
1	1	1	1
u	u	\overline{u}	1
0	0	\overline{u}	1

Vorzeichenformeln

Definition

Ist $\mathcal L$ eine beliebige mehrwertige Logik mit M als Menge der Wahrheitswerte, so ist eine Vorzeichenformel für $\mathcal L$ von der Form

wobei A eine Formel in $\mathcal L$ ist und S eine nichtleere Teilmenge von M.

Eine Vorzeichenformel ohne freie Variablen S A ist in einer \mathcal{L}_3 -Struktur (\mathcal{M},v) gültig, wenn der Wahrheitswert von A in S liegt.

In Zeichen:

 $(\mathcal{M}, v) \models S A$, genau dann, wenn $v(A) \in S$.

Allgemeine Form einer Tableaurege

Zu jedem Vorzeichen $\emptyset \neq S \subseteq M$ und jedem aussagenlogischen Operator \circ gibt es eine Tableauregel.

Sei nun \circ ein n-stelliger Operator, für ein beliebiges $n \in \mathbb{N}$.

Die zugehörige Tableauregel hat dann die Form

$$\frac{S \circ (A_1, \dots, A_n)}{T(A_1, \dots, A_n)}$$

wobei $T(A_1, \ldots, A_n)$ ein endliches erweitertes Tableau ist, in dem nur Vorzeichenformeln der Form S'_iA_i auftreten.

Die Zweige des Tableaus $T(A_1, \ldots, A_n)$ nennt man die Extensionen der Regel.

Beispiel einer Tableauregel

Eine Tableauregel aus der 5-wertigen Łukasiewicz Logik mit der Wahrheitswertemenge $\{0, 1, 2, 3, 4\}$:

Kalkül: Vorzeichen

Sei

$$V \subseteq 2^M$$

die Menge der Verzeichen, die in einem Kalkül für die Logik \mathcal{L} mit der Menge M von Wahrheitswerten verwendet werden.

Im allgemeinen werden nicht alle möglichen Vorzeichen im Kalkül verwendet, d.h.

$$V \neq 2^M$$

Daß initiale Vorzeichen muß immer enthalten sein:

$$(M \setminus D) \in V$$

Kalkül: Korrektheit

Korrektheit erfordert (1):

Für jede Regel mit Prämisse $S(A \circ B)$ und Extensionen E_1, \ldots, E_k , wobei

$$E_i = \{S_{ij}C_{ij} \mid C_{ij} \in \{A, B\}, \ 1 \le i \le k, j \le 2\}$$

gilt für jede Belegung v:

wenn $v(A \circ B) \in S$ dann gibt es ein i, so daß für alle j gilt $v(C_{ij}) \in S_{ij}$.

Es genügt dabei A und B als aussagenlogische Variablen zu betrachten.

Kalkül: Korrektheit

Korrektheit erfordert (2):

Für jedes Vorzeichen $S \in V$ und jeden Operator \circ der Logik \mathcal{L} : Wenn es keine Regel mit Prämisse $S(A \circ B)$ gibt, dann ist $S(A \circ B)$ unerfüllbar, d.h. für alle Belegungen v gilt

$$v(A \circ B) \not\in S$$

Kalkül: Vollständigkeit

Vollständigkeit erfordert:

Für jedes Vorzeichen $S \in V$ und jeden Operator \circ der Logik \mathcal{L} :

Falls $S(A \circ B)$ erfüllbar ist, d.h., falls es eine Belegung v gibt mit

$$v(A \circ B) \in S$$

dann gibt es eine Regel mit Prämisse $S(A \circ B)$ und Extensionen E_1, \ldots, E_k , wobei

$$E_i = \{S_{ij}C_{ij} \mid C_{ij} \in \{A, B\}, \ 1 \le i \le k, j \le 2\}$$

so daß für jede Belegung v gilt:

wenn es ein i gibt, so daß für alle j gilt $v(C_{ij}) \in S_{ij}$ dann $v(A \circ B) \in S$.

$$\frac{\{T\}A \wedge B}{\{T\}A}$$
$$\{T\}B$$

$$\frac{\{T\}A \wedge B}{\{T\}A}$$
$$\{T\}B$$

$$\begin{array}{c|c} \{U\}A \wedge B \\ \hline \{U\}A & \{U\}B & \{U\}A \\ \{T\}B & \{T\}A & \{U\}B \end{array}$$

$$\frac{\{T\}A \wedge B}{\{T\}A}$$
$$\{T\}B$$

$$\begin{array}{c|c}
\{U\}A \land B \\
\hline
\{U\}A & \{U\}B & \{U\}A \\
\{T\}B & \{T\}A & \{U\}B
\end{array}$$

$$\frac{\{F\}A \wedge B}{\{F\}A \mid \{F\}B}$$

$$\frac{\{T\}A \wedge B}{\{T\}A}$$
$$\{T\}B$$

$$\begin{array}{c|c} \{U\}A \wedge B \\ \hline \{U\}A & \{U\}B & \{U\}A \\ \{T\}B & \{T\}A & \{U\}B \end{array}$$

$$\frac{\{F\}A \wedge B}{\{F\}A \mid \{F\}B}$$

$$\frac{\{U,F\}A \land B}{\{U,F\}A \mid \{U,F\}B}$$

$$\frac{\{T\}A \vee B}{\{T\}A \mid \{T\}B}$$

$$\frac{\{T\}A \vee B}{\{T\}A \mid \{T\}B}$$

$$\frac{\{U\}A \vee B}{\{U,F\}A \mid \{U\}A}$$

$$\{U\}B \mid \{U,F\}B$$

$$\begin{array}{c|c}
 & \{T\}A \lor B \\
\hline
 & \{T\}A \mid \{T\}B \\
\hline
 & \{U\}A \lor B \\
\hline
 & \{U,F\}A \mid \{U\}A \\
 & \{U\}B \mid \{U,F\}B \\
\hline
 & \{F\}A \lor B \\
 & \{F\}B
\end{array}$$

$$\frac{\{T\}A \vee B}{\{T\}A \mid \{T\}B}$$

$$\begin{array}{c|c} \{U\}A \lor B \\ \hline \{U,F\}A & \{U\}A \\ \{U\}B & \{U,F\}B \end{array}$$

$$\frac{\{F\}A \vee B}{\{F\}A}$$
$$\{F\}B$$

$$\frac{\{U,F\}A \vee B}{\{U,F\}A}$$
$$\{U,F\}B$$

\mathcal{L}_3 -Tableauregeln für \sim und \neg

$$\frac{\{T\} \sim A}{\{U, F\}A}$$

$$\frac{\{T\} \sim A}{\{U, F\}A} \qquad \frac{\{F\} \sim A}{\{T\}A}$$

$$\frac{\{U\} \sim A}{\{T\}A}$$

$$\frac{\{U,F\} \sim A}{\{T\}A}$$

\mathcal{L}_3 -Tableauregeln für \sim und \neg

$$\frac{\{T\} \sim A}{\{U, F\}A}$$

$$\frac{\{F\} \sim A}{\{T\}A}$$

$$\frac{\{U\} \sim A}{\{T\}A}$$

$$\frac{\{U,F\} \sim A}{\{T\}A}$$

$$\frac{\{T\}\neg A}{\{F\}A}$$

$$\frac{\{F\}\neg A}{\{T\}A}$$

$$\frac{\{U\}\neg A}{\{U\}A}$$

$$\frac{\{U,F\}\neg A}{\{T\}A \mid \{U\}A}$$

$$\frac{\{T\}A\supset B}{\{U,F\}A\mid \{T\}B}$$

$$\begin{array}{c|c} \{T\}A\supset B\\ \hline \{U,F\}A \mid \{T\}B\\ \\ \hline \{F\}A\supset B\\ \hline \{T\}A\\ \{F\}B \end{array}$$

$$\frac{\{T\}A\supset B}{\{U,F\}A\mid \{T\}B}$$

$$\frac{\{F\}A\supset B}{\{T\}A}$$
$$\{F\}B$$

$$\frac{\{U\}A \supset B}{\{T\}A}$$
$$\{U\}B$$

$$\frac{\{T\}A\supset B}{\{U,F\}A\mid \{T\}B}$$

$$\frac{\{F\}A\supset B}{\{T\}A}$$
$$\{F\}B$$

$$\frac{\{U\}A\supset B}{\{T\}A}$$
$$\{U\}B$$

$$\frac{\{U, F\}A \supset B}{\{T\}A}$$
$$\{U, F\}B$$

$$\frac{\{T\}\exists x A(x)}{\{T\}A(f(y_1,\ldots,y_k))} \qquad \frac{\{F\}\exists x A(x)}{\{F\}A(z)}$$

$$\frac{\{U\}\exists x A(x)}{\{U\}A(f(y_1,\ldots,y_k))} \qquad \frac{\{U,F\}\exists x A(x)}{\{U,F\}A(z)}$$

- z eine neue Variable
- y_1, \ldots, y_k die freien Variablen $\exists x A(x)$
- f ein neues k-stelliges Funktionszeichen.

\mathcal{L}_3 -Tableauregeln für \forall

$$\frac{\{T\}\forall x A(x)}{\{T\}A(z)} \qquad \frac{\{F\}\forall x A(x)}{\{F\}A(f(y_1, \dots, y_k))}$$

$$\frac{\{U\}\forall x A(x)}{\{U\}A(f(y_1, \dots, y_k))} \qquad \frac{\{U, F\}\forall x A(x)}{\{U, F\}A(f(y_1, \dots, y_k))}$$

- z eine neue Variable
- y_1, \ldots, y_k die freien Variablen in $\forall x A(x)$
- f ein neues k-stelliges Funktionszeichen.

Tableaus

Definition

Ein Tableau für eine endliche Menge Σ signierter Formeln wird folgendermaßen konstruiert:

- 1. Ein linearer Baum, in dem jede Formel aus Σ genau einmal vorkommt, ist ein Tableau für Σ .
- 2. Sei T ein Tableau für Σ und B ein Zweig in T, der eine signierte Formel SA enthält. Weiterhin gebe es eine Tableauregel R mit Prämisse SA. Sind E_1, \ldots, E_n die Extensionen von R (unter Berücksichtigung der genannten Einschränkungen, falls R eine Quantorenregel ist), so wird T am Ende von B um n lineare Unterbäume erweitert, die jeweils die signierten Formeln aus den E_i in beliebiger Reihenfolge enthalten. Der so entstehende Baum ist wieder ein Tableau für Σ .

Definition

Ein Zweig B eines Tableau ist geschlossen, falls gilt:

• B enthält komplementäre Formeln, d.h. es gibt eine Substitution σ und signierte Formeln S_1A_1, \ldots, S_kA_k auf B, so daß $S_1 \cap \ldots \cap S_k = \emptyset$ und $\sigma(A_1) = \ldots = \sigma(A_k)$ oder

Definition

Ein Zweig B eines Tableau ist geschlossen, falls gilt:

- B enthält komplementäre Formeln, d.h. es gibt eine Substitution σ und signierte Formeln S_1A_1, \ldots, S_kA_k auf B, so daß $S_1 \cap \ldots \cap S_k = \emptyset$ und $\sigma(A_1) = \ldots = \sigma(A_k)$ oder
- B enthält eine signierte Formel SA, auf die keine Regel anwendbar ist und A ist nicht atomar.

Definition

Ein Zweig B eines Tableau ist geschlossen, falls gilt:

- B enthält komplementäre Formeln, d.h. es gibt eine Substitution σ und signierte Formeln S_1A_1, \ldots, S_kA_k auf B, so daß $S_1 \cap \ldots \cap S_k = \emptyset$ und $\sigma(A_1) = \ldots = \sigma(A_k)$ oder
- B enthält eine signierte Formel SA, auf die keine Regel anwendbar ist und A ist nicht atomar.

Ein Zweig, der nicht geschlossen ist, heißt offen.

Definition

Ein Zweig B eines Tableau ist geschlossen, falls gilt:

- B enthält komplementäre Formeln, d.h. es gibt eine Substitution σ und signierte Formeln S_1A_1, \ldots, S_kA_k auf B, so daß $S_1 \cap \ldots \cap S_k = \emptyset$ und $\sigma(A_1) = \ldots = \sigma(A_k)$ oder
- B enthält eine signierte Formel SA, auf die keine Regel anwendbar ist und A ist nicht atomar.

Ein Zweig, der nicht geschlossen ist, heißt offen.

Ein Tableau heißt geschlossen, falls jeder Zweig darin mit derselben Substitution geschlossen ist, sonst heißt es offen.

Erfüllbarkeit von Tableaus

Definition

Sei T ein Tableau für die Logik \mathcal{L} , in dem die freien Variablen

$$\bar{y} = \langle y_1, \dots, y_k \rangle$$

auftreten.

T heißt erfüllbar, wenn es eine \mathcal{L} -Struktur (\mathcal{M}, v) gibt, so daß für jedes k-Tupel

$$\bar{a} = \langle a_1, \dots, a_k \rangle$$

von Elementen aus \mathcal{M} mindestens ein Pfad P in T existiert, so daß für alle signierten Formeln B auf P

$$(\mathcal{M}, v), (\bar{a}/\bar{y}) \models B$$

gilt.

Korrektheit Tableaukalküls

Lemma

Ein erfüllbares Tableau ist nicht geschlossen.

Korrektheit Tableaukalküls

Lemma

Ein erfüllbares Tableau ist nicht geschlossen.

Lemma

Sei T ein endliches erfüllbares Tableau und T_1 entstehe aus T durch eine Regelanwendung, dann ist auch T_1 erfüllbar.

Korrektheit Tableaukalküls

Lemma

Ein erfüllbares Tableau ist nicht geschlossen.

Lemma

Sei T ein endliches erfüllbares Tableau und T_1 entstehe aus T durch eine Regelanwendung, dann ist auch T_1 erfüllbar.

Satz

Ein Tableau für eine erfüllbare Menge signierter Formeln ist nicht geschlossen.

Korrektheit des Tableaukalküls

Korrektheitssatz für \mathcal{L}_3

Sei A eine \mathcal{L}_3 -Formel ohne freie Variablen. Falls es ein geschlossenes Tableau T für $\{U, F\}A$ gibt, dann ist A eine \mathcal{L} -Tautologie.

Korollar

Sei Σ eine Menge von \mathcal{L}_3 -Formeln ohne freie Variablen und A eine weitere Formel dieser Art.

Falls es ein geschlossenes Tableau über

$$\{\{T\}B \mid B \in \Sigma\} \cup \{\{U, F\}A\}$$

gibt, dann gilt

$$\Sigma \vdash_3 A$$
.

Vollständigkeit des Tableaukalküls

Definition

Eine Folge von Regelanwendungen heißt systematisch, wenn auf jedem offenen Zweig B des entstehenden Tableaus T

- 1. für jede signierte Formel SC auf B, die nicht atomar ist, die entsprechende Tableauregel angewandt wird
- 2. für jede Formel der Form

$$\{T\} \forall x A, \{U\} \forall x A, \{F\} \exists x A, \{U\} \exists x A, \{U, F\} \exists x A\}$$

die auf B vorkommt, unendlich oft die zugehörige Regel anwendet wird.

Vollständigkeit des Tableaukalküls

Vollständigkeitssatz für \mathcal{L}_3

Sei A eine \mathcal{L}_3 -Tautologie. Dann enthält jede Folge von systematisch konstruierten Tableaus mit Wurzel $\{U, F\}A$ ein geschlossenes Tableau.

Beweis des Vollständigkeitssatzes

Angenommen die Aussage des Satzes sei falsch.

Dann gibt es ein durch eine systematische Folge von Regelanwendungen approximiertes unendliches bzw. erschöpftes Tableau T mit Wurzel $\{U, F\}A$, das einen offenen Zweig P enthält.

Sei H_0 die Menge aller signierten Formeln, die auf P vorkommen. Insbesondere $\{U, F\}A \in H_0$.

Beweis des Vollständigkeitssatzes

Da T systematisch konstruiert ist, kommt für jede Formel B(z) in H_0 , die Formel $B(z_i)$ für unendlich viele verschiedene Variablen z_i ebenfalls in H_0 vor.

Die Formelmenge H entstehe aus H_0 , indem jede freie Variable in H_0 durch einen variablenfreien Term ersetzt wird. Da es nur abzählbar unendlich viele Terme gibt, kann der Ersetzungsprozeß so eingerichtet werden, daß für jede Formel $B(z^1, \ldots, z^k)$ in H_0 , für jedes k-Tupel variablenfreier Terme t^1, \ldots, t^k die Formel $B(t^1, \ldots, t^k)$ in H liegt.

Eigenschaften von H (allgemein)

Für jede allgemeine Tableauregel

$$\frac{S \circ (A_1, \dots, A_n)}{T_i \mid \dots \mid T_k}$$

gilt:

Falls

$$S \circ (A_1, \ldots, A_n) \in H$$

dann gibt es ein i ($1 \le i \le k$) und einen Pfad P_i in T_i , so daß für alle Formeln $B \in P_i$ gilt

$$B \in H$$

Eigenschaften von H (konkret)

Für ∧:

```
Falls \{T\}(A \wedge B) \in H, dann \{T\}A \in H und \{T\}B \in H.
Falls \{F\}(A \wedge B) \in H, dann \{F\}A \in H oder \{F\}B \in H.
Falls \{U\}(A \wedge B) \in H, dann
                               (\{U\}A \in H \text{ und } \{T\}B \in H) \text{ oder }
                               (\{U\}B \in H \text{ und } \{T\}A \in H) \text{ oder }
                               (\{U\}A \in H \text{ und } \{U\}B \in H).
Falls \{U, F\}(A \wedge B) \in H, dann
                               \{U,F\}A \in H \text{ oder }
                               \{U, F\}B \in H
```

Eigenschaften von H (konkret)

Für ∀:

```
Falls \{U, F\} \forall x A(x) \in H, dann \{U, F\} A(t) \in H
                              für einen Grundterm t
Falls \{T\} \forall x A(x) \in H,
                             dann \{T\}A(t) \in H
                              für jeden Grundterm t
                              dann \{F\}A(t) \in H für ein t.
Falls \{F\} \forall x A(x) \in H,
Falls \{U\} \forall x A(x) \in H,
                              dann \{U\}A(t) \in H für ein t
                              und für jeden Grundterm s
                                    \{T\}A(s) \in H \text{ oder }
                                    {U}A(s) \in H
```

Modellkonstruktion

Aus dem offenen Pfad P des erschöpften, systematisch konstruieren Tableau T gewinnen wir nun eine \mathcal{L}_3 -Struktur (\mathcal{M}, v) :

Das Universum von \mathcal{M} bestehe aus allen Grundtermen, die Interpretation der Funktions- und Konstantenzeichen sei wie in Herbrand-Strukturen.

Für jede variablenfreie, atomare Formel p wird v(p) definiert durch:

```
falls \{T\}p \in H, dann v(p) = 1
falls \{F\}p \in H, dann v(p) = 0
falls \{U\}p \in H, dann v(p) = u
falls \{F,U\}p \in H, dann v(p) = 0
sonst (willkürlich) v(p) = 0
```

Schluß des Beweises

Durch Induktion über den Formelaufbau zeigt man für jede signierte Formel $B \in H$, daß

$$(\mathcal{M}, v) \models H$$

Insbesondere gilt dann

$$(\mathcal{M}, v) \models \{U, F\}A$$

Damit ist gezeigt: Falls es kein geschlossenes Tableau für $\{U, F\}A$ gibt, dann ist $\{U, F\}A$ erfüllbar.

Und also: Ist A eine \mathcal{L}_3 -Tautologie (und also $\{U, F\}A$ unerfüllbar), dann gibt es ein geschlossenes Tableau für $\{U, F\}A$.

Sei t ein Term, dessen einzige Variable y ist. Dann ist

$$C = (\forall x Q(x)) \supset \forall y Q(t(y))$$

eine Tautologie.

• 1
$$\{U,F\}C$$
 (Start)

Sei t ein Term, dessen einzige Variable y ist. Dann ist

$$C = (\forall x Q(x)) \supset \forall y Q(t(y))$$

eine Tautologie.

- 1 $\{U, F\}C$
- 2 $\{T\} \forall x Q(x)$

(Start) (aus 1)

Sei t ein Term, dessen einzige Variable y ist. Dann ist

$$C = (\forall x Q(x)) \supset \forall y Q(t(y))$$

eine Tautologie.

- 1 {*U*, *F*}*C*
- 2 $\{T\} \forall x Q(x)$
- 3 $\{U,F\}\forall yQ(t(y))$

(Start) (aus 1) (aus 1)

Sei t ein Term, dessen einzige Variable y ist. Dann ist

$$C = (\forall x Q(x)) \supset \forall y Q(t(y))$$

eine Tautologie.

• 1 $\{U, F\}C$ • 2 $\{T\} \forall x Q(x)$ • 3 $\{U, F\} \forall y Q(t(y))$ • 4 $\{T\} Q(z_1)$ (Start) (aus 1)

Sei t ein Term, dessen einzige Variable y ist. Dann ist

$$C = (\forall x Q(x)) \supset \forall y Q(t(y))$$

eine Tautologie.

• 1 $\{U, F\}C$	(Start)
• 2 $\{T\} \forall x Q(x)$	(aus 1)
• 3 $\{U,F\} \forall y Q(t(y))$	(aus 1)
• 4 $\{T\}Q(z_1)$	(aus 2)
• 5 $\{U, F\}Q(t(c))$	(aus 3)

Sei t ein Term, dessen einzige Variable y ist. Dann ist

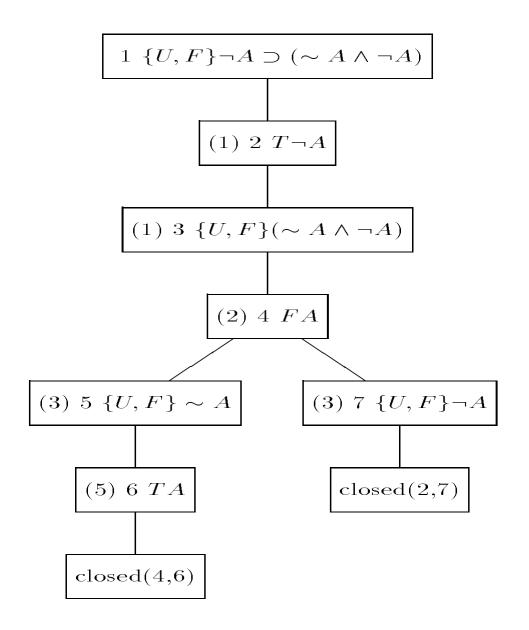
$$C = (\forall x Q(x)) \supset \forall y Q(t(y))$$

eine Tautologie.

• 1 $\{U,F\}C$	(Start)
• 2 $\{T\} \forall x Q(x)$	(aus 1)
• 3 $\{U,F\} \forall y Q(t(y))$	(aus 1)
• 4 $\{T\}Q(z_1)$	(aus 2)
• 5 $\{U, F\}Q(t(c))$	(aus 3)

Der einzige Zweig dieses Tableaus kann mit der Substitution $\{z_1 \rightarrow t(c)\}$ geschlossen werden (mit 4 und 5)

Ein verzweigendes Tableau



Die Junktoren cand und cor

A cand B			
$\boxed{B\downarrowA\rightarrow}$	1	u	0
1	1	u	0
u	u	u	0
0	0	u	0

A cor B			
$\boxed{B\downarrowA\rightarrow}$	1	u	0
1	1	u	1
u	1	u	u
0	1	u	0

Diese Junktoren werden in dem Buch von D. Gries *The Science of Programming* (S. 69) definiert und sind dort Bestandteil einer dreiwertigen Logik zur Programmverifikation.

Bewerkenswert ist die Asymmetrie der beiden Konnektoren, die eine dreiwertige Version der Konjunktion bzw. Disjunktion sein sollen.

Übungsaufgabe

Welche Tableauregeln müßte man für cand, cor hinzunehmen, um einen korrekten und vollständigen Tableaukalkül zu erhalten?

$$\frac{\{T\}A\ cand\ B}{\{T\}A}$$
$$\{T\}B$$

$$\begin{array}{c|c}
\{T\}A \ cand \ B \\
\hline
\{T\}A \\
\{T\}B
\end{array}$$

$$\begin{array}{c|c}
\{F\}A \ cand \ B \\
\hline
\{F\}A \ \{F\}B \\
\{T\}A
\end{array}$$

$$\frac{\{T\}A \ cand \ B}{\{T\}A}$$
$$\{T\}B$$

$$\begin{array}{c|c} \{F\}A \ cand \ B \\ \hline \{F\}A \ | \ \{F\}B \\ \hline \{T\}A \end{array}$$

$$\begin{array}{c|c} \{U\}A \ cand \ B \\ \hline \{U\}A \ | \ \{T\}A \\ \hline \{U\}B \end{array}$$

$$\frac{\{T\}A\ cand\ B}{\{T\}A}$$
$$\{T\}B$$

$$\begin{array}{c|c} \{F\}A \ cand \ B \\ \hline \{F\}A \ | \ \{F\}B \\ \hline \ \{T\}A \end{array}$$

$$\begin{array}{c|c} \{U\}A \ cand \ B \\ \hline \{U\}A \ | \ \{T\}A \\ \hline \{U\}B \end{array}$$

$$\frac{\{F,U\}A\ cand\ B}{\{F,U\}A\ |\ \{F,U\}B}$$

$$\begin{array}{c|c}
\{T\}A & cor B \\
\hline
\{T\}A & \{T\}B \\
& \{F\}A
\end{array}$$

$$\begin{array}{c|c} \{T\}A \ cor \ B \\ \hline \{T\}A \ \{T\}B \\ \{F\}A \end{array}$$

$$\frac{\{F\}A\ cor\ B}{\{F\}A}$$
$$\{F\}B$$

$$\begin{array}{c|c} \{T\}A \ cor \ B \\ \hline \{T\}A \ \ \{T\}B \\ \hline \{F\}A \end{array}$$

$$\frac{\{F\}A\ cor\ B}{\{F\}A}$$
$$\{F\}B$$

$$\begin{array}{c|c} \{U\}A \ cor \ B \\ \hline \{U\}A \ \ \{F\}A \\ \ \ \{U\}B \end{array}$$

$$\begin{array}{c|c} \{T\}A \ cor \ B \\ \hline \{T\}A \ \{T\}B \\ \{F\}A \end{array}$$

$$\frac{\{F\}A\ cor\ B}{\{F\}A}$$
$$\{F\}B$$

$$\begin{array}{c|c} \{U\}A \ cor \ B \\ \hline \{U\}A \ | \ \{F\}A \\ \hline \{U\}B \end{array}$$

$$\begin{array}{c|c} \{F,U\}A \ cor \ B \\ \hline \{U\}A \ | \ \{F\}A \\ \hline \{U,F\}B \end{array}$$

Übungsaufgabe

Die ∘ sei definiert durch:

$A \circ B$			
$B\downarrowA\to$	1	u	0
1	1	1	1
u	1	1	0
0	1	1	1

Diese Wahrheitstafel ist interessant, da die Tautologien, die ausschließlich mit o aufgebaut sind, nicht durch ein endliches Hilbertsystem axiomatisiert werden können.

[A. Urquhart 1986, Seite 85]

Geben Sie die Tableauregeln für \circ und die Vorzeichen $\{T\}, \{F\}, \{U\}, \{U, F\}$ an.

$$\begin{array}{c|c} & \{T\}A \circ B \\ \hline \{T\}A & \{U\}A & \{F\}A & \{F\}A \\ & \{T\}B & \{F\}B \end{array}$$

Für $\{U\}A \circ B$ gibt es keine Regel

$$\begin{array}{c|c} & \{T\}A \circ B \\ \hline \{T\}A & \{U\}A & \{F\}A & \{F\}A \\ & \{T\}B & \{F\}B \end{array}$$

Für $\{U\}A \circ B$ gibt es keine Regel

$$\frac{\{F\}A \circ B}{\{F\}A}$$
$$\{U\}B$$

$$\begin{array}{c|c} & \{T\}A \circ B \\ \hline \{T\}A & \{U\}A & \{F\}A & \{F\}A \\ & \{T\}B & \{F\}B \end{array}$$

Für $\{U\}A \circ B$ gibt es keine Regel

$$\frac{\{F\}A \circ B}{\{F\}A}$$
$$\{U\}B$$

$$\frac{\{U, F\}A \circ B}{\{F\}A}$$
$$\{U\}B$$