
Certification of Software and Hardware

Kiptoo A. Kiprop
kiprop@uni-koblenz.de

04.08.2005

Seminar: Formal Methods for Fun and Profit
Lecturer: Prof. Beckert

Institute of Computer Science
University of Koblenz

Summer Semester 2005

1

Abstract

This term paper, was written during the seminar - Formal Methods
for Fun and Profit - in the summer semester of 2005. It deals with
the certification of software and hardware issues in general and the
application of formal methods therein in particular. In the beginning,
a general introduction to the issues, definitions and correlations will
be discussed. Three examples of system verification methods shall
also me mentioned.

Contents

1 Introduction 3
1.1 Certification . 4
1.2 Common Criteria . 5

1.2.1 Protection Profiles 8
1.2.2 Security Target 8
1.2.3 Evaluation Assurance Levels (EALs) 8

2 Examples of certified products 12
2.1 Example 1 . 13
2.2 Example 2 . 16
2.3 Example 3 . 17

3 Conclusion 20

2

1 Introduction

Common abbreviations
The following abbreviations will be often used in this paper:

Abbrev. Meaning
CC Common Criteria
EAL Evaluation Assurance Level
PP Protection Profile
SFP Security Function Policy
ST Security Target
TOE Target of Evaluation
TSF TOE Security Functions
TSP TOE Security Policy

High security if not totally guaranteed security is an ultimate hu-
man desire. Irrespective of which life circumstance, security play a
central role: be it driving, choosing a residential area, using the inter-
net or even just eating. Having the feeling of being secure (even if the
danger is just around the corner), is a bonus to the living standard and
the general mood. Being at ease with one’s environment is a worthy
course and this applies to security too.
In this paper, an effort is thus made to discuss about the security
issues concerning hardware and software in the information and com-
munication technology (ICT). ICT sector is one of the fastest growing
sectors worldwide, be in the economy, education, health, name them.
ICT is creeping slowly into day to day life and the question of its in-
fluence is not being asked anymore, rather; is the technology secure?
Can one fully trust matters of life and death to it? What’s at stake
if something goes wrong? These doubts are even reinforced by some
cases of software malfuction, be they real or imagined - think of the
pentium-bug of 1994, hacked databanks, numerous stolen PINs. We
shudder to imagine a situation where the new Airbus 380 software fails
to work over the Atlantic - fully boarded (though a possible failure of
the software for example through a runtime error has been categori-
cally excluded. See the current article [10]). Now, these are the kind
of scenarios that would rather stay in the world of dreams. On the
other hand, the reality calls for measures that spare us all the trou-
ble.But is absolute security possible? What has been undertaken so
far? What is still viable? and these are big issues.
Let’s stick to the ICT sector. Various checks and balances have been
invented and implemented to guarantee security, even if with aver-
age results, for absolute security may still remain elusive. One of the

3

procedures is the certification:

1.1 Certification

Certification is the act of conferring legality, sanction, formal war-
rant or the act of granting credit or recognition (here with respect to
institution that maintains suitable standards). Other synonyms are
accreditation, enfranchisement, empowerment and authorization.
That was the common definition. To drive the certification definition
home, let’s use an example. The computer display monitor: Someone
or some people e.g. a government, a society or a consumer foundation,
come up with certain requirements in form of technical rules and stan-
dards (with some defined scale) that a monitor manufacturer has to
fulfil in order to be allowed to sell his products. The monitor shall for
example not be smaller than 14 inches, shall not emit certain rays or
shall not be brighter than a certain value. If the manufacturer fulfils
all these and many other given rules, then he can make money, else
he will have to pack and go begging. A software or hardware product
(from here henceforth only referred as product) is therefore certified
if some requirements or criteria are fulfilled.
But why certify at all?
One of the reasons is to preserve the human health or even life. The
monitor example above emitting dangerous rays could be an health
risk for the user even in short term. Another important reason is to
ensure the quality and reliability of the product. This applies most
especially where product flaw, however small it may be, could easily
become a disaster. Such an high risk could be a car control system
based on software: if somewhere in the code a division by zero (or an
overflow) is undertaken, further secure control over the car is not guar-
anteed anymore - this on a full highway in full speed. Other reasons
may of course be disguised for example financial or status interests
(if the poor guy might become a business rival). This could be for
example in order to be admitted to a certain expert club or to get
some prestigious accreditation.
Certification for IT systems especially has not been around for long.
Just like many IT system products, certification has its roots in the
military sector, to be exact, the USA military. The US Department of
Defence first published a catalogue known as Trusted Computer Sys-
tem Evaluation Criteria in 1983. Its purpose was to provide technical
hardware, firmware and software security criteria and associated tech-
nical methodologies to support the automatic data processing system
security policy as well as evaluation and certification.
Certification of IT systems is the duty of government departments

4

which were founded especially for this. In Germany for example is
for example the Federal Department for Security in the Information
Technology (BSI). In the USA the National Institute of Standards
and Technology and the National Security Agency. Certification of
IT systems will follow the fulfilment of certain requirements: But how
are these requirements defined? Who stipulates them? This leads us
directly to the Common Criteria.

1.2 Common Criteria

The purpose of Common Criteria (CC) is to develop standard col-
lection of the necessary requirements. These requirements are on the
other hand called the Protection Profiles (PP)(1.2.1). The CC is a con-
glomeration of other existing standards. These criteria are: the Euro-
pean (ITSec - Information Technology Security Evaluation), Canadian
(CTCPec - Canadian Trusted Computer System Evaluation Criteria)
and U.S. American (TCSec - Trusted Computer System Evaluation
Criteria). TCSec is otherwise known as the ”Orange Book”. TCSec
specifies the criteria the Department Of Defense uses in evaluating the
security of a product. The assessed features include the security pol-
icy, marking, identification, accountability, assurance, and continuous
protection of the system. Based on the assessment, the security of the
system is classified into one of four hierarchies, with A providing the
most security and D providing minimal or non-existent security. Each
hierarchy has a number of levels as well. The ”Red Book” was pub-
lished to provide subsidiary information to enable the Orange Book
principles to be applied in a network environment. The Red Book was
initially published as the Trusted Network Interpretation (TNI) of the
Trusted Computer System Evaluation Criteria.
The CC has been designed in such a way that it is flexible enough to al-
low a bridging to the existing national schemes of security evaluation,
certification and accreditation. The first CC version was published in
1996 and the second more extensive version adopted by the Interna-
tional Standards Organisation (ISO) in 1998.[8]
CC therefore stands for the requirements for the IT security of a prod-
uct or system under unique categories of functional requirements and
assurance (1.2.3) requirements. Here is a summary of these require-
ments:

� The CC functional requirements define the desired security be-
haviour. These requirements are grouped into classes which are
very general, but all members of a class having the same focus.
There are eleven functionality classes so far. These are: Audit,
Cryptographic support, Communications, User Data Protection,

5

Identification and Authentification, Security Management, Pri-
vacy, Protection of the TOE Security Funcions, Resource Uti-
lization, TOE Access as well as Trusted Path/Channels.
The catalogue of functional components provide guidance on the
organization of the requirements for new parts to be included in
the ST. The functional requirements are expressed in classes,
families and components. Within these classes, there can be
inter-dependencies. An example is the dependence of Data Pro-
tection class has on the correct Identification and Authentifica-
tion of users in order to be effective.[8][9]

� The CC security assurance requirements form the countercheck
for the security measures that they are effective and correctly
implemented. The too are grouped into classes and members
of a class just as those in functional requirements share a com-
mon focus. There are eight assurance classes: Configuration
Management, Delivery and Operation, Development, Guidance
Documents, Life Cycle Support, Tests, Vulnerability Assessment
and Assurance Maintenance.
The EAC categorization into classes is similar to that of the func-
tionality classes above. Each class has a number of member fam-
ilies, each family having an emphasis area but at the same time
sharing security objectives with the others in the class. These
classes are a summary of security requirements and all members
of a class have a similar focal point.

At this point, it would be appropriate to expound on a few important
terms which play a central role and thus used frequently:

� Target of evaluation (TOE): an IT product or system and its as-
sociated administrator and user guidance documentation that is
the subject of an evaluation. The TOE objectives, requirements
and summary specification of security function and assurance
measures together form the primary inputs to Security Target
- ST (1.2.2)- used by evaluators as basis for evaluators. TOE
therefore defines assets to protect.

� TOE Security Functions (TSF): A set consisting of all hardware,
software, and firmware of the TOE that must be relied upon for
the correct enforcement of the TSP.

� TOE Security Policy (TSP): A set of rules that regulate how
assets are managed, protected, and distributed within a TOE.

The diagram (1) is a summary of the correlation between the CC
components. All efforts are directed at the Target Of Evaluation:

6

Figure 1: The CC components

But what kind of people are involved and in what capacity? What
is their funtion here? In a certification scenario, three parties play key
roles. All the three are the main users of CC:

� Consumers: Apply the results of CC evaluation and are part of
the decision making whether a product or system fulfil the se-
curity needs. These needs may be a result of both risk analysis
and policy direction. The consumers can use results to decide
on different systems or products through comparison. They fur-
ther specify the security functionality of the product in terms
of protection profiles agreed upon and and select the level of
evaluation assurance from a defined list of seven levels (1.2.3)
independently.

� Developers: Design, formulate and develop the security specifica-
tions for TOEs. They react to expressed or perceived consumer
needs. The developers use the CC to evaluate their products or
systems, and thus identify the security requirements to be ful-
filled by them. They can also use CC as a basis for their claim
that the TOE meets the identified demands through stipulated
security functions and assurances to be evaluated. Every TOE
requirement is contained in the security target. The CC further
puts down the security functions that a developer includes in the
TOE.

� Evaluators: Oversee and determine whether a TOE effectively
meets security functions claimed by the developers using func-

7

tional requirements. the CC describes the set of general activi-
ties the evaluator has to carry out and the security functions on
which to implement the actions. However, CC does not specify
steps to be taken in performing the actions.

1.2.1 Protection Profiles

PP is a definition of a set of IT security requirements and aims for
a category of TOEs which are implementation independent. The re-
quirements are directed to a category of products and systems which
are developed to meet certain similar user requirements for security.
A PP is designed to be used more than once and to define the re-
quirements to be applied effectively to meet the identified objectives.
The concept of PP is further aimed at to support functional standard
and as an help in formulating acquiring specifications. A PP should
therefore be user oriented and should avoid prompting the user to re-
fer to other documents which might not be within reach. In simple
english, PP says what the system is supposed to do. The other im-
portant function of PP is the evaluation rating. This is the chance for
the absolute experts to check and decide if the system really meets
requirements specified in PP.[9]

1.2.2 Security Target

Another important structure of CC is the Security Target. An ST
contains the security requirements of an identified TOE and states
the functional and assurance security measures offered by that TOE
to meet the laid down requirements, in other words, it is a basis over
which an evaluation is performed. It defines the target of evaluation,
the environment, the threats, assets to protect, security objectives and
assumptions. It contains the IT security objectives and requirements
of a specific identified TOE and defines the functional and assurance
measures offered by that TOE to meet stated requirements. A ST
may demand conformity of one or more PPs, and forms the basis for
an evaluation.[9]

1.2.3 Evaluation Assurance Levels (EALs)

Evaluation assurance can be informally described as trustworthiness
or reliability. EALs seek to reach a balance between the level of assur-
ance and the cost and feasibility of reaching that level of assurance.
The CC style points on separate approaches of assurance in a TOE
at the end of the evaluation, and of maintenance of that assurance
during the operational use of the TOE.

8

The CC contains a set of defined assurance levels constructed using
components from the assurance families. Other groupings of compo-
nents are not excluded. To meet specific objectives an assurance level
can be augmented by one or more additional components.The levels
are intended partly to provide backward compatibility to source cri-
teria and to provide internally consistent general purpose assurance
packages. The levels’ hierarchy increases with the increasing assur-
ance. EAL1 is the entry level and upto EAL4 the rigour and detail
is increased but no special security techniques. At the top level 5 to
7, there are compelling limitations to meeting the stipulated require-
ments due to developer and evaluator activities’ costs.[6]

� EAL1

- Functionally tested.
This level is used where some assurance of correct operation is needed,
but the security risk is not seen as high. It makes an evaluation of the
TOE available to the customer. Its evaluation should be possible with-
out the help of the developer of the TOE and should be for minimal
outlay. The user should be able to test the consistency in comparison
to its documentation and should provide protection against indenti-
fied threats. The level covers only functionality i.e. that a system will
work in an environment.

� EAL2

- Structurally tested.
This level requires the developer’s assistance especially on the provi-
sion of design information and test results. This should however not
demand more from the developer as it is should in the market. There
should also be no substantial increase in investment and costs. EAL2
is mostly used where the user or developer needs a low to moderate
level of security assurance when the complete development record is
not nearby. In this level, the security mechanism are checked but only
moderately but less stricter than level 3.

� EAL3

- Methodically tested and checked.
EAL3 enables a reliable developer to reach maximum assurance from
positive security engineering at the design stage without having to
make extensive changes to existing and properly functioning develop-
ment practices. The level comes into action where the developers and
users need a medium level of independent security assurance and re-
quire a proper investigation of the TOE and its development without
extensive re-engineering. Many systems have achieved the rating of
this level for example Linux Server v. 8. see section (2.1).

9

� EAL4

- methodically designed, tested and reviewed.
This level is the one we will most likely meet in IT systems. Operat-
ing systems like Windows 2000, Linux Server v.9, and NetWare have
achieved its rating. This is because it is the first level that proves
that a system is safe. The level enables the developer to maximise
assurance obtained from positive security engineering based on good
commercial development practices. These practices may not exten-
sive expert knowledge, skills and other resources. This level might be
the highest that can be applied to existing industry and at the same
time economically sound. The developer and user require a medium
to high level of independently assured security in normal goods’ TOEs
and the presence of a willingness to carry the extra costs arising from
re-engineering.

� EAL5

- semi-formally designed and tested.
This level introduces the formal models to the assurance evaluation,
even though to a preliminary extent. It enables the developer to
gain maximum assurance from security engineering on the basis of
strict commercial development practices. The level further uses the
development environment controls and understandable TOE config-
uration management including automation and evidence of security
procedures to provide assurance. EAL5 extends EAL4 by requiring
semi-formal design descriptions, the whole implementation, a more
structured architecture, among others.

� EAL6

- semi-formally verified design and tested.
The high assurance provided through EAL6 enable developers pro-
duce a high standard TOE for protecting high value assets against
significant risks. The level is hence applicable for developing security
TOEs for application in high risk situations where the value of the
assets to be protected justifies the extra costs. EAL6 provides as-
surance by an analysis of the security functions using functional and
complete interface specification, guidance documentation, high and
level design of the TOE and a structured presentation of the imple-
mentation to understand the security behaviour. More assurance is
reached through a formal model of the TOE security policy, semifor-
mality of the functional specification, high and low level design and
a semiformal demonstration of contact between them. No system has
yet attained level 6 rating.

10

� EAL7

- Formally verified design and tested.
The last and highest level of evaluation is directed at evaluation of
extremely high risk situations and or the high value of assets is not an
hurdle for spending more time and carrying more costs for the security.
However, practical application of this level is at the moment limited
to TOEs with rigidly focused security functionality that is liable to
extensive formal analysis. The formal model in this level is improved
by a formal presentation of the functional specification and high level
design showing correlation. Proof of developer White Box1 testing is a
must, as well as complete independent confirmation of developer test
results. EAL7 therefore extends EAL6 through requirement of more
comprehensive analysis using formal representations and correspon-
dence and comprehensive testing. The level is limited to very specific
systems with very specific security functionality. There is however no
system yet, that has been evaluated on this level.

Figure (2) summarizes the EALs above. The Assurance Classes, Fam-
ilies and their corresponding components are illustrated The numbers
denote the component. The assurance families marked red are the
ones that apply semiformal (or formal) models in the verification and
are all to be found in the development assurance class. An example of
how to read the table: One of the assurance components of EAL7 is
the ADV SPM.3. This is the formal TOE security policy model (TSP)
in the development class. The numbers denote the component, in line
with its hierarchy in the level family. Component numbers stressed
in bold signify the relationship between components within a family.
Bolding convention calls for the bolding of all new requirements. The
other components (with semi-formal or formal aspects) are:
- In EAL5: ADV FSP.3 (semi-formal functional specification), ADV HLD.3
(semi-formal high-level design), ADV RCR.2 (semi-formal represen-
tation correspondence demonstration) and ADV SPM.3 (formal TOE
security policy model).
- In EAL6: ADV FSP.3 (semi-formal functional specification), ADV HLD.4
(semi-formal high-level explanation) and ADV LLD.2 (semi-formal
low-level design).
- In EAL7: ADV FSP.4 (formal function specification), ADV HLD.5
(formal high-level design), and ADV RCR.3 (formal correspondence

1White Box testing also known as clear box, glass box or structural testing is used
in computer programming, software engineering and software testing to check that the
outputs of a program, given certain inputs, conform to the internal design and implemen-
tation of the program. The term White Box indicates that the tester closely examines the
internal implementation of the program being tested.

11

demonstration). The high-level design decomposes the system into

Figure 2: The EAL summary

modules, or subsystems, which provide the functionality described in
the functional specification. The low-level design provides a specifica-
tion of the internal workings of each module.

2 Examples of certified products

First of all, what are formal methods?
Formal methods are methods that apply modelling, calculation, pre-
diction in the specification, ideas and techniques from arithmetical or

12

formal logic to specify and reason about hardware and software sys-
tems. Formal methods therefore help to ensure that a system fulfil
the specifications which (if fulfilled) later used to decide if the system
is to be certified for the corresponding level or not. Just to stress the
difference between formal methods and security catalogues (e.g. the
CC), the catalogues are used to stipulate the specifications and the
processes (e.g. formal methods) of how these specifications should be
evaluated. In other words the catalogue is just a long list of specifi-
cations which has to be fulfilled. To find out if they are fulfilled, the
processes are put in action.
Before even applying formal methods which are represented in the
higher evaluation levels (EAL5 to EAL7) in product evaluation, the
product has to pass through the lower levels first. As we will find out,
just about all products never get through to the rigorous evaluation
with the high assurance levels. Formal specifications have a number
of advantages which could be of importance if applied e.g.
- they may be analysed mathematically and finally demonstrating
their consistency and completeness.
- they may be used to guide the tester (evaluator) of the system com-
ponent in identifying appropriate test cases.
- they may be processed using software tools which may in turn make
possible the animation of the specification to provide a software pro-
totype.

All theory is grey. Having discussed a criteria (CC) that leads to
certification with many of its features, it is now time to come back
down to reality. What is gained from all the theory above? Which
systems are being certified at which level? Why is an higher degree of
confidence needed and for which systems?

2.1 Example 1

To demonstrate this a concrete product example might do the trick:
SUSE LINUX Enterprise Server v.8 (SLES8) [1] sponsored by the
IBM Corporation. (SLES v.9 has also been evaluated and obtained
an EAL4 rating, Same level attained by Microsoft Windows 2000. See
further down).
According to the manufacturer, the Server v.8 has been evaluated and
obtained an EAL3 rating. In this level the following activities must
have been undertaken: independent confirmation of a selected sam-
ple of developer tests results, search for weakness justified by devel-
oper, development environment control and TOE configuration man-
agement. Just for a start: for someone looking for a secure server, this

13

evaluation still be less elaborate: it has only be methodically tested
and checked, nothing more. There is no code re-engineering, no inter-
ruption of development process, but more costs.
The TOE was, the operating system, running and tested on the hard-
ware and firmware specified in the security target which were; the
evaluation assurance level of EAL3. The test plan was limited to the
areas enforcing the secure operation of SLES8. The design of the test
cases was only to verify the correct operation of security related user
programs, database files and system calls. In fact the author himself
explicitly mentions that the testing for system availability in a stress
environment was beyond the scope of the evaluation [1] - and this
should be what a test is actually for (how the systems handles serious
errors). In spite of this shortcoming, the system passed through the
rest of the evaluation objectives successfully and works well in a nor-
mal environment. On the formal methods application, the product is
not anywhere nearby. It would have to undergo EAL4 testing (which
SLES9 already underwent) and then perhaps from there think about
EAL5.
There are a number of reasons why a product like SLES8 may not be
evaluated in the higher levels soon especially with the application of
formal methods although some of the reasons could at the same time
be advantages of evaluating systems with the formal methods:

1. Consumers would like to see security advantages fast, concrete,
cheap and as simple as possible. These advantages could be for
example guaranteed higher security, stable systems and the pos-
sibility of adding more components (e.g. new application soft-
ware) without having to seal new security holes. With formal
methods, this might be a huge task, since it involves discrete
mathematics for specification. This will require more engage-
ment of more developers who will then in turn might be more
expensive. On the other hand, this will require very versed con-
sumers, calm enough to go through the specification jungle of
denotation and proofs.

2. To achieve a higher security, the system features and compo-
nents has to be kept to the minimum. It is well known that the
more components and features a system has, the more prone it
becomes to attacks. In other words, the wider the war front, the
more thinner the defence (or the more the soldiers needed). The
more components would mean that there is more to evaluate,
the costs would generally rise and the formal specifications to
evaluate such a system might be more extensive. The problem is
exemplary for MS-Windows systems which have been burdened
with so much features that it is almost impossible to detect a

14

weak point. Else the user or customer would have to accept a
system with very few features if any at all (a lot of doubt if this
would ever happen).

3. To produce high quality code or highly secure systems that will
still fully function in the business environment, the developer will
need a lot of time and resources. This demand a great amount
of finances which the manufacturers are trying to save in the
first place. Therefore a compromise has to be reached between
profit and security. The developers at the same time stand under
great pressure to deliver (functioning) goods at a stipulated time.
This might not only be impossible but also dangerous to health.
Working long hours or overtime does not really contribute to
secure and high quality products. Employing more developers
could be a solution but this comes with more costs which will
be in contradiction to the saving target. If more developers can
deliver high quality goods with certification in EAL5+, the only
remaining problem would be to find a market which will absorb
the products. The manufacturers could therefore take the ad-
vantage of the high quality to market the products. This could
work out since due to the fact that the products tested in EAL4
have had a good market.

4. Many consumers lack the expertize (or cannot afford) to ser-
vice or repair the highly complex systems which might become
necessary in order to continually check the system if it fulfils
the security requirements over the time. Security demands that
there be a regular check of systems and when need be updates
or other measures be undertaken. They will therefore go for the
next best. This problem may even be intensified by poor doc-
umentation of the code especially in the middle levels. On the
other hand, the formal methods in the higher levels should by its
nature be properly documented which may in turn be of assis-
tance in understanding the system. But since it is rare (if at all
there exist) to find a system that has been evaluated with higher
methods, this advantage does not come to use. The consumer
will try to understand the problem or issues at hand and the
system documents should then be helpful. At the end, product
may have been evaluated and certified, but for a user, it may
still be a mystery.

With the above reasons and others, certification might still remain as
interest for a few. And indeed as long as certification has not become
compulsory, there will not be much to show of it. On the other hand,
there are examples of system certification that are compulsory. These

15

laws are made by a government for example or regulated by a certain
ministry. Here is an example of a certifying body [11]: The State of
Schleswig-Holstein has founded a department for data security. This
is an independent body (financed by the State itself) which has duties
like data security in commercial sector, consulting on data security,
development of new technologies for data security and protection, and
in the case of this paper; issuing of a seal of approval for IT products.
On the other hand, they countercheck the security complaints from
the citizens and inform the manufacturer of the product security flaws,
carry out assessment of products and even advice people on our to
set up computer systems. Once again to the seal of approval: for
now, the seal is issued only for IT products. After a system has been
evaluated, this seal is issued for the product which has passed some
stipulated security requirements. Though this certification is not yet
compulsory, the market has shown that people go for the products
with this seal, meaning that the more they are bought, the further,
the manufacturers check closely on security and at the same time
getting good financial returns. If therefore, such a certifying body
is made compulsory nation- or even worldwide, by say a government
or groups of them, the products will surely be more secure. If the
certifying body uses a criteria like CC with EALs above, then we can
get closer to the application of formal methods for evaluation.

2.2 Example 2

Here is a further example of a certified product: Microsoft Windows
2000. The evaluation was financed by Microsoft and was undertaken
against the Control Access Protection Profile (CAPP) [6]. The soft-
ware attained a EAL4 rating, meaning that formal methods did not
come to application. EAL4 is the first level that proves that a system
is safe, as the vendor was willing to fix problems in the development
process of the product to achieve this rating. EAL 4 incurs cost to the
vendor, re-engineering is possible if flaws are found. There is therefore
no measurable evaluation of software especially the code - no evalu-
ation of the software itself is required at all. In spite of not having
been evaluated and tested in a high level (EAL5-EAL7), Windows
2000 could still be said to have a good functionality. For anyone who
does not require very high assurance, the system can still fulfil the
minimum of security.
Finally, do we stand a chance of experiencing full formal specification
at work in evaluation? I could not come across a system has already
been evaluated with full formal specifications in EAL5 to EAL7 (per-
haps except the Smart Card VM below in EAL5). Well, as an expert

16

[10] in the field of verification freely admitted, we are still far away
from this. On the other hand, smaller systems (with less components
and less program complexity e.g. cars) could be evaluated formally
in the near future. There is hope however that some impossibilities
now are the assignments of tomorrow. It could even be the govern-
ments’ duty (or international bodies) to stipulate regulations of which
systems must go through which level of evaluation, not only defining
the criteria for evaluation. Further, a certifying body could determine
which level different system types must be evaluated in, for example
all operating systems in EAL4+ (I could not yet confirm at which level
a certifying body e.g. a government demand for operating systems).

2.3 Example 3

The last example: Java Card Virtual Machine (JCVM) developed by
the Sun Microsystems. A JCVM is a surrogate to the Smartcard which
is an integrated system that is mostly used to supply security to an
information system. A Smartcard is used to secure data storage and
authentification. They are widely used in the banking and commu-
nication sector and might be extended to eCommerce and eIdentity
among other branches. Smartcards may run on platform independent
virtual machines and interaction with systems occur via Application
Programming Interfaces.
JCVM has been evaluated and obtained a EAL4 and EAL5+ rating.
TOE: processor chip and IC for software (drivers). Evaluation level
5 is about semiformal design and testing and as described above, in-
volves search for vulnerabilities and resistance to moderate potential
attacks, semi-formal demonstration of correspondence and functional
specification and high level design among others. In other words, it is
a gain of confidence from EAL4.
Since JCVM is based on a collection of applets (small programs written
in Java language) which together form a closed system, what happens
if the part on which one (internal) applet depends on is defective? Will
the problem spread to other applets or even be detected anyway? To
overcome this problem, JavaCards try to prevent data leaking and ref-
erences passing from applet to applet through some form of dynamic
security mechanism named firewall, which controls the object sharing.
Every time an access to a resource is required, the firewall checks it.
If this is not allowed, the firewall returns a security exception. For
these questions (and perhaps many others) could there be an answer
in formal specification?
JavaCards try to improve security and increase reliability through the
application of formal specification and verification of the source code.

17

Since the applet language is simple and API relatively small, the ap-
plication of formal methods is simplified. One way of formalizing the
specifications of JavaCard for a CC evaluation is by the use of the
B-Method. The B-Method applies semi-formal and formal models
which are components of the high level evaluation to specify, design
and code high risk systems. B-Method covers the whole system life-
cycle i.e. from specification to executable code. A refinement (way of
reformulating machine data and operations by introducing more con-
crete information which in turn causes machine expansion) process to
obtain the implementation of the B specification. Every refinement
level must be internally correct towards its abstraction. B models are
independent from one another and represent independent processes.
One model can include several machines linked together using special
clauses. As for the JCVM model, there are five modules used, i.e. the
dispatcher, the interpreter, the firewall, java stack, exception manager
and the memory.[12]

Figure 3: Architecture of the JCVM B machines

In B-Method, the modeling policy is specified and documented in
the INVARIANT clause of a B machine (clause has for example, the
states description, transitions restrictions, e.t.c.). The characteristics
contained in this clause must be respected after the initialization of
the machine variables and after each operational call. A model can-
not be proved if this condition is not true (not fulfilled). The B model
of the dynamic security policy (set of functional requirements docu-
mented in a CC document - Security Policy Model or SPM) should
not contain any operation since it is a set of predicates to be veri-
fied. In EAL5, of formal model of the TOE Security Policy (TSP)
shall be provided in ADV SPM.3. The developer shall also prove the
correspondence between TSP and the functional specification. This
correspondence must establish that the security fucntions are consis-
tent and complete with respect to the model, that the model contains
the rules and characteristics of all policies of the TSP that can be

18

modelled as well as that the model itself is consistent and complete.
The formal model required by an EAL5 evaluation should therefore
not specify how things are done but rather what is done. Therefore
the machines of the policy model only contain the definition set of
variables, the initialization of these variables and the INVARIANT to
be fulfilled by the variables.

Figure 4: Example of an INVARIANT definition

The functional requirements in SPM are explained by analyzing
the security functions and mechanisms that are involved at runtime.
The JCVM runtime policy is not really based on semi-formal model
but used to describe exactly what shall happen. In other words, the
formal model contains one machine that mathematically describes all
possible paths in the runtime graph. In the formal model, the different
states of the graph must be associated to concrete data of the system.
A system can in turn be in two entities: the bytecode interpreter and
the applet firewall. The interpreter processes the current bytecode
and then calls the firewall if the execution requires access authoriza-
tion to be delivered. A firewall requires information on the runtime
current context and some attributes of the accessed object (context,
type, e.t.c.).
In the semi-formal model, the interpreter action are separated into
two, i.e. obtaining parameters from stack (associated to java stack)
and the bytecode execution itself (associated to interpreter). In the
EAL5 for JCVM, the relations between the security functions and the
policy are not formally required, rather in the EAL7 evaluation, which
JavaCard is yet to reach.
The TSP design in EAL7 provides the formal definition of the pol-
icy to be fulfilled by the TOE model. The FSP component imposes
the establishment of a model of each security function. In the model,
function interfaces (mechanisms and environment) shall be defined

19

and described. In EAL7, there is a formal presentation of high-level
design which is a refinement of the whole specification in a modu-
lar way. The HLD, LLD and FSP formal model components must
be consistent and justify that it is an accurate and complete specifi-
cation of the TOE requirements. The correspondence between HLD
and LLD shall be semi-formal based on the identification of a total
bijection between data and states of TSF. The RCR (representation
correspondence) shall be formal. EAL7 thus requires a demonstration
that the SFs (which are formally specified and designed) enforce the
security policy through the proof of the formal model containing both
the policy and the functions.

Which systems (very high risk) now could be good candidates to be
evaluated in high levels? Of course it would be a major security step
forward if all systems with fairly high to very high risk are evaluated
in spite of the reasons above. Very complex and high risk products
like the atomic reactor control systems, banking systems, space rock-
ets or military systems could then undergo the rigorous evaluation.
After all, it is in everybody’s interest to have products which have
been certified under well-known and trusted criteria.

3 Conclusion

This paper dealt with the common verification of software and hard-
ware for example through application of formal methods in the highest
levels of evaluation assurance (EAL5-EAL7) if any.
All said and done, the legible question at this point would be: to buy
a certified product or not. Here the customer or the user for that
matter will have to decide alone. The decision may be simplified by
factors like:
- after assessing own needs, the requirements could be determined.
- decide on the product one is most sure it will meet the needs.
- the costs factor.
- some or many products might have a compulsory certification e.g.
from a government body (see the Schleswig-Holstein example [11]).
The consumer would just have to know what the product was tested
for and under which criteria the product was tested or evaluated for
and of course if the testing body is trustworthy.

Formal methods or not formal methods?
The consumer (or developer for that matter) has to assess the bene-
fits of the formalisation (which again may demand a certain level of
know-how). The CC also shall require justifications for the methods

20

and tools that have been used and this is more work. The ultimate
goal is to increase the level of confidence that the security is provided,
but it still remains open if it is possible to quantify the improvement.
The formal specification is not really a panacea for high security. They
are man-made and could respectively have flaws which may not be de-
tected, therefore evaluating a systems with wrong tools. But there is
no other way out of better security, if not to just hope that nothing
bad will happen (it does though), maybe we would be better off by im-
proving the formalisation infrastructure (though with disadvantages
above) rather than to design more powerful proof techniques. This
may include:
- Integration with semi-formal methods (gets us closer to formal meth-
ods).
- Methodology for modelisation in the context of the CC and better
system structuring.
- Methodology for proving in the large.
- Better communication with non-experts (includes the consumers).
- Better integration between tools and guidelines (documentation) to
use them in an appropriate way. This could also include better com-
patibility integration between security research efforts and the existing
systems.

21

References

[1] Daniel H. Jones (2003).Test Plan for SuSE Linux Enterprise
Server V8 EAL3 Security Function Verification,
http://ltp.sourceforge.net/docs/EAL3 test plan v1.9.htm.

[2] Anthony Hall, Seven Myths of Formal Methods, IEEE Software
6(9), 1990.

[3] Bundesamt für Sicherheit in der Informationstechnik, Common
Methodology for Information Technology Security Evaluation,
(2004).
http://download.commoncriteria.de/Dokumente/cemv2.4r256.pdf.

[4] Certification Report, (2001).
http://www.commoncriteriaportal.org/public/files/epfiles/0166a.pdf

[5] Alain Merle. Evaluation des produits suivant les Criteres Com-
muns, (2001).
http://www.systemes-critiques.org/merle.pdf

[6] National Security Agency. Controlled Access Protection Profile
(1999). Fort George, USA.

[7] Bolignano et al, (2003). Formal Methods in Practice: the Miss-
ing Link. A Perspective from the Security Area.
http://www.systemes-critiques.org/bolignano.pdf.

[8] Introduction to Common Criteria, (2005).
http://download.commoncriteria.de/Dokumente/cemv2.4r256.pdf

[9] Common Criteria for Information Technology Security Evalu-
ation, (1999).
http://www.commoncriteriaportal.org/public/files/ccusersguide.pdf

[10] Heise Online, (21.06.2005). Software ohne Fehl und Tadel.
http://www.heise.de/tr/artikel/60759.

[11] Center for Data Security Schleswig-Holstein, (05.07.2005).
http://www.datenschutzzentrum.de/.

[12] Using B Method to Formalize the Java Card Runtime Security
Policy for a Common Criteria Evaluation, (2000).
http://www.gemplus.com/smart/rd/publications/pdf/MT00bjav.pdf.

22

