
Formal Specification of Software

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

Summer Term 2004

Based on a lecture held by

Peter H. Schmitt at the
University of Karlsruhe Formal Specification of Software – p.1



Web Page

All information relevant to this lecture can be found on the web page

www.uni-koblenz.de/˜beckert/Lehre/Spezifikation

Formal Specification of Software – p.2



Contents

Mathematical and logical basis

– Set Theory
– Predicate logic
– Modal logic

Specification techniques

– UML class diagrams (by example)
– Object Constraint Language, OCL (by example)
– Formal semantics of OCL (and UML class diagrams)
– Abstract State Machines, ASMs
– Abstract Data Types

Common Abstract Specification Language, CASL
– State Charts
– The specification language Z

Formal Specification of Software – p.3



Why Formal Methods?

Quality: Important for . . .

Safety-critical applications (railway switches)

Security-critical applications (access control, electronic banking)

Financial reasons (phone cards)

Legal reasons (electronic signature, EAL6/7 in Common Criteria)

Productivity: Important for . . .

Obvious reasons

Formal Specification of Software – p.4



Why Formal Methods?

Quality through . . .

Better and more precise understanding of model and implementation

Better written software (modularisation, information hiding, . . . )

Error detection with runtime checks

Test case generation

Static analysis

Deductive verification

Formal Specification of Software – p.5



Why Formal Methods?

Productivity through

Error detection in early stages of development

Re-use of components (requires specification and validation)

Better documentation, maintenance

Knowledge about formal methods leads to
better software development

Formal Specification of Software – p.6



Favourable Development

Design and specification

Unified Modeling Language – UML

Graphical language for object-oriented modelling
Standard of Object Management Group (OMG)

Object Constraint Language – OCL

Formal textual assertion language
UML Substandard

Consolidation and documentation of design knowledge

Patterns, idioms, architectures, frameworks, etc.

Industrial implementation languages

Java, C#

Formal Specification of Software – p.7



Types of Requirements

Types of Requirements

functional requirements

communication, protocols

real-time requirements

memory use

security

etc.

Different Formal Methodsx

deductive verification

model checking

static analysis

run-time checks
(of formel specification)

Formal Specification of Software – p.8



Limitations of Formal Methods

Possible reasons for errors

Program is not correct (does not satisfy the specification)
Formal verification proves absence of this kind of error

Program is not adequate (error in specification)
Formal specification/verification avoid/find this kind of error

Error in operating system, compiler, hardware
Not avoided (unless compiler etc. specified/verified)

No full specification/verification

In general, it is neither useful nor feasable to fully specify and verify
large software systems. Then, formal methods are restricted to:

Important parts/modules

Important properties/requirements
Formal Specification of Software – p.9


	
	Web Page
	Why Formal Methods?
	Why Formal Methods?

