Vorlesung

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Bernhard Beckert

Institut für Informatik

Sommersemester 2007

B. Beckert - Grundlagen d. Theoretischen Informatik:

SS 2007 1 / 284

Indeterminierte Turing-Maschine

Beispiel 11.3

Eine indeterminierte Turing-Maschine, die

 $L = \{ w \in \{a, b\}^* \mid w \text{ besitzt } aba \text{ als Teilwort} \}$

azkeptiert.

Siehe Tafel.

Dank

Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen von

Katrin Erk (gehalten an der Universität Koblenz-Landau)

Jürgen Dix (gehalten an der TU Clausthal)

Ihnen beiden gilt mein herzlicher Dank.

- Bernhard Beckert, April 2007

B. Beckert - Grundlagen d. Theoretischen Informatik:

SS 2007 2 / 284

Indeterminierte Turing-Maschine

Beispiel 11.4

Sei

 $L = \{ |^n \mid n \text{ ist nicht prim und } n \geq 2 \}$

Eine NTM kann diese Sprache wie folgt azeptieren:

- Eine Zahl "raten" und (nach rechts) aufs Band schreiben.
- Noch eine Zahl "raten" und daneben schreiben.
- 3 Die beiden Zahlen miteinander multiplizieren.
- Das Ergebnis mit der Eingabe vergleichen.
- Genau dann, wenn beide gleich sind, anhalten

190 / 284

Indeterminierte Turing-Maschine

Indeterminierte Turing-Maschine

Theorem 11.5 (Simulation von NTM durch DTM)

Jede Sprache, die von einer indeterminierten Turing-Maschine akzeptiert wird, wird auch von einer Standard-DTM akzeptiert.

Beweis (Anfang)

Sei

- *L* eine Sprache über Σ_0^* mit # $\notin \Sigma_0$;
- $\mathcal{M} = (K, \Sigma, \Delta, s)$ eine indeterminierte Turing-Maschine, die L akzeptiert.

B. Beckert - Grundlagen d. Theoretischen Informatik:

SS 2007 192 / 284

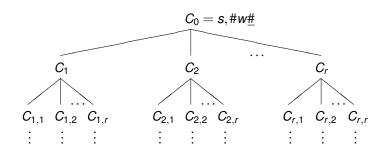
Indeterminierte Turing-Maschine

Beweis (Fortsetzung)

Suchbaum, Rechnungsbaum:

Stelle alle Rechnungen von \mathcal{M} von einer Startkonfiguration C_0 dar als einen Baum mit Wurzel C_0 .

Ein Ast ist eine mögliche Rechnung von \mathcal{M} .



Beweis (Fortsetzung)

Wir konstruieren zu \mathcal{M} eine Standard-DTM \mathcal{M}' , die so rechnet:

- \mathcal{M}' durchläuft systematisch **alle** Rechnungen von \mathcal{M} , und sucht dabei nach einer Haltekonfiguration.
- \bullet \mathfrak{M}' genau dann, wenn sie eine Haltekonfiguration von \mathfrak{M} findet.

B. Beckert - Grundlagen d. Theoretischen Informatik:

SS 2007 193 / 284

Indeterminierte Turing-Maschine

Beweis (Fortsetzung)

Problem:

Es kann zur Startkonfiguration

$$C_0 = s, \#w\#$$

unendlich viele Rechnungen von ${\mathfrak M}$ geben, und jede einzelne von ihnen kann unendlich lang sein.

Wir können also nicht erst einen Ast ganz durchlaufen und dann den nächsten Ast durchsuchen.

Indeterminierte Turing-Maschine

Beweis (Fortsetzung)

Die Lösung:

Breitensuche

Drchlaufe den Rechnungsbaum nicht depth-first, sondern per **iterative deepening**.

- Untersuchen alle möglichen Rechnungen bis zum ersten Schritt.
- Untersuchen alle möglichen Rechnungen bis zum zweiten Schritt.
- Untersuchen alle möglichen Rechnungen bis zum dritten Schritt.
- usw.

B. Beckert - Grundlagen d. Theoretischen Informatik:

SS 2007 196 / 284

Indeterminierte Turing-Maschine

Beweis (Fortsetzung)

 \mathcal{M}' kann (z.B.) als eine 3-DTM gewählt werden:

- Auf dem ersten Band steht immer das Eingabewort w. Da die Rechnung immer wieder neu mit s, #w# von $\mathcal M$ beginnt, wird das Eingabewort immer wieder gebraucht.
- Auf dem zweiten Band steht, welcher Weg durch den Rechnungsbaum gerade verfolgt wird.

Der Einfachheit halber: Wenn eine Konfiguration weniger als *r* Nachfolgekonfigurationen hat, soll der zugehörige Knoten trotzdem *r* Söhne haben, und die überzähligen Konfigurationen sind leer.

Indeterminierte Turing-Maschine

Beweis (Fortsetzung)

Können wir damit denn in endlicher Zeit eine Haltekonfiguration finden, falls es eine gibt?

Problem:

Kann der Rechnungsbaum nicht nur **unendlich tief**, sondern auch **unendlich breit** werden?

Nein, denn:

Maximale Anzahl von Nachfolgekonfigurationen

$$r = max\{|\Delta(q, a)| \mid q \in K, a \in \Sigma\}$$

B. Beckert - Grundlagen d. Theoretischen Informatik:

SS 2007 197 / 284

Indeterminierte Turing-Maschine

Beweis (Fortsetzung)

Darstellung des aktuellen Pfades im Rechnungsbaum als Zahl im r-adischen System.

Eine Zahl $d_1 \dots d_n$ bedeutet:

- Von der Startkonfiguration C_0 aus ist die d_1 -te der r möglichen Nachfolgekonfigurationen gewählt worden, C_{d_1} .
- Von C_{d_1} , einem Knoten der Tiefe 1, aus wurde die d_2 -te mögliche Nachfolgekonfiguration gewählt,
- usw.

Indeterminierte Turing-Maschine

Beweis (Fortsetzung)

Ausführung des Iterative Deepening:

- Beginne mit 0 auf zweitem Band.
- Jeweils nächste zu betrachtende Rechnung erhöhen der Zahl auf Band 2 um 1
- Auf Band 3 wird eine Rechnung von M determiniert simuliert.
 Und zwar entsprechend der Zahl d₁...d_n auf Band 2.
 Die Endkonfiguration C_{d₁...d_n} dieser Rechnung steht im Rechnungsbaum an dem Knoten, der das Ende des Pfades d₁...d_n bildet.
- Ist die Konfiguration $C_{d_1...d_n}$ eine Haltekonfiguration, so hält \mathcal{M}' .
- Sonst Zahl auf Band 2 erhöhen und die nächste Rechnungssimulation beginnen

B. Beckert - Grundlagen d. Theoretischen Informatik:

SS 2007 200 / 284

Teil V

- 1 Determinierte Turing-Maschinen (DTMs)
- 2 Varianten von Turing-Maschinen
- 3 Indeterminierte Turing-Maschinen (NTMs)
- 4 Universelle determinierte Turing-Maschinen
- 5 Entscheidbar/Aufzählbar
- Determinierte Turing-Maschinen entsprechen Typ 0
- Unentscheidbarkeit

Indeterminierte Turing-Maschine

Beweis (Ende)

Damit gilt:

 \mathcal{M}' hält bei Input w gdw

es gibt in R_{C_0} eine Haltekonfiguration.

Das ist genau dann der Fall, wenn

- \mathfrak{M} bei Input w hält,
- w in L liegt.

B. Beckert - Grundlagen d. Theoretischen Informatik:

SS 2007 201 / 284

Universelle Turing-Maschine

Vergleich Turing-Maschine / "normaler" Computer

Turing-Maschinen sind sehr mächtig.

Wie mächtig sind sie wirklich?

- Eine Turing-Maschine hat eine vorgegebenes "Programm" (Regelmenge)
- "Normale" Computer können beliebige Programme ausführen.

Tatsächlich geht das mit Turing-Maschinen auch!

Universelle Turing-Maschine

Turing-Maschine, die andere TMen simuliert

- Universelle TM $\mathcal U$ bekommt als Eingabe:
 - ullet die Regelmenge einer beliebigen Turing-Maschine ${\mathfrak M}$ und
 - ein Wort w, auf dem \mathcal{M} rechnen soll.
- ${\mathcal U}$ simuliert ${\mathfrak M}$, indem sie jeweils nachschlägt, welchen δ -Übergang ${\mathfrak M}$ machen würde.

B. Beckert – Grundlagen d. Theoretischen Informatik: Universelle determinierte Turing-Maschinen

SS 2007 204 / 284

Universelle Turing-Maschine

Standardisierung von Alphabet, Zustandsmenge, Startzustand

- Unendliches Alphabet $\Sigma_{\infty} = \{a_0, a_1, \ldots\},\$ so daß das Alphabet jeder DTM eine Teilmenge von Σ_{∞} ist.
- Namen der Zustände einer DTM sind egal. Sie seien also q_1, \ldots, q_n (n kann dabei von DTM zu DTM verschieden sein).
- Sei q₁ immer der Startzustand, und bezeichne q₀ den Haltezustand

Damit:

Wir können eine DTM komplett beschreiben, indem wir nur ihre δ -Übergänge beschreiben.

Universelle Turing-Maschine

TM als Eingabe für eine andere TM

Frage:

In welches Format fasst man die Regeln einer DTM ${\mathfrak M}$ am besten, um sie einer universellen DTM als Eingabe zu geben?

Was muss man angeben, um eine DTM komplett zu beschreiben?

- das Alphabet,
- die Zustände.
- die δ-Übergänge
- den Startzustand.

B. Beckert - Grundlagen d. Theoretischen Informatik: Universelle determinierte Turing-Maschinen

SS 2007

205 / 284

Universelle Turing-Maschine

(Mögliche) Kodierung der Übergangsrelation

Die DTM $\mathcal{L}_{\#}$ habe die Regeln

$$q_1, \# \mapsto q_2, L$$
 $q_2, \# \mapsto h, \#$
 $q_1, | \mapsto q_2, L$ $q_2, | \mapsto q_2, L$

Dabei sei: $\# = a_0$ und $| = a_1$

Dann kann die DTM $\mathcal{L}_{\#}$ so beschrieben werden:

	a ₀	a ₁		Ζ S 2λ S 2λ
q_1	q_2, L	q_2, L	oder kürzer:	Z S 00 S 2λ
q_2	h, a_0	q_2, L		

Universelle Turing-Maschine

(Mögliche) Kodierung der Übergangsrelation

Dabei steht:

- Z für "nächste Zeile"
- S für "nächste Spalte"
- λ für "links", ρ für "rechts"
- die Zahl n für den n-ten Zustand und für das n-te Zeichen von Σ_{∞} .

Damit ist die DTM insgesamt durch ein einziges Wort beschrieben:

 $ZS2\lambda S2\lambda ZS00S2\lambda$

B. Beckert - Grundlagen d. Theoretischen Informatik: Universelle determinierte Turing-Maschinen

SS 2007 208 / 284

Kurt Gödel

Kurt Gödel ★ 1906, † 1978

- Bedeutendster Logiker des 20. Jahrhunderts
- Vollständigkeitssatz (1929)
 Promotion in Wien
- Unvollständigkeitssatz (1931)
 Idee er Gödilisierung
- Beweis der Unabhängigkeit der Kontinuuemshypothese
- Dozent in Princeton,
 befreundet mit Albert Einstein
- Tragischer Tod: Verfolgungswahn, Depressionen, Tod durch Unterernährung.

Universelle Turing-Maschine

Gödelisierung

Ein Verfahren, jeder Turing-Maschine eine Zahl oder ein Wort (**Gödelzahl** bzw. **Gödelwort**) so zuzuordnen, daß man aus der Zahl bzw. dem Wort die Turing-Maschine effektiv rekonstruieren kann.

B. Beckert – Grundlagen d. Theoretischen Informatik: Universelle determinierte Turing-Maschinen

SS 2007

209 / 284