Vorlesung

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Bernhard Beckert

Institut für Informatik

Sommersemester 2007

Dank

Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen von

Katrin Erk (gehalten an der Universität Koblenz-Landau)

Jürgen Dix (gehalten an der TU Clausthal)

Ihnen beiden gilt mein herzlicher Dank.

- Bernhard Beckert, April 2007

Teil V

- Determinierte Turing-Maschinen (DTMs)
- Varianten von Turing-Maschinen
- Indeterminierte Turing-Maschinen (NTMs)
- 4 Universelle determinierte Turing-Maschinen
- 5 Entscheidbar/Aufzählbar
- Determinierte Turing-Maschinen entsprechen Typ 0
- Unentscheidbarkeit

Akzeptierbarkeit und Entscheidbarkeit

Akzeptieren

Eine DTM akzeptiert eine Sprache L, wenn sie

- für jedes Eingabe-Wort $w \in L$ irgendwann hält
- für jedes Wort $v \notin L$ unendlich lang rechnet oder hängt

Entscheiden

Eine DTM entscheidet eine Sprache L, wenn sie

- für jedes Eingabe-Wort $w \in L$ hält mit dem Bandinhalt Y ("Yes")
- für jedes Wort v ∉ L hält mit dem Bandinhalt N ("No")

Akzeptierbarkeit und Entscheidbarkeit

Definition 13.1 (Entscheidbar)

L sei eine Sprache über Σ_0 mit #, N, $Y \notin \Sigma_0$.

$$\emph{M}=(\ \emph{K},\Sigma,\delta,\emph{s}\)$$
 sei eine DTM mit $\Sigma_0\subseteq\Sigma.$

M entscheidet *L*, falls für alle $w \in \Sigma_0^*$ gilt:

L heißt entscheidbar, falls es eine DTM gibt, die L entscheidet.

Akzeptierbarkeit und Entscheidbarkeit

Definition 13.2 (Akzeptierbar)

L sei eine Sprache über Σ_0 mit $\#, N, Y \not\in \Sigma_0$.

 $\textit{M} = (\ \textit{K}, \Sigma, \delta, \textit{s}\)$ sei eine DTM mit $\Sigma_0 \subseteq \Sigma$.

 \mathfrak{M} akzeptiert ein Wort $w \in \Sigma_0^*$, falls \mathfrak{M} bei Input w hält.

 \mathfrak{M} akzeptiert die Sprache L, falls für alle $w \in \Sigma_0^*$ gilt:

 \mathcal{M} akzeptiert w genau dann wenn $w \in L$

L heißt akzeptierbar (oder auch semi-entscheidbar), falls es eine DTM gibt, die L akzeptiert.

Rekursiv aufzählbar

Definition 13.3 (Rekursiv Aufzählbar (recursively enumerable))

L sei eine Sprache über Σ_0 mit $\#, N, Y \not\in \Sigma_0$.

 $\textit{M} = (\ \textit{K}, \Sigma, \delta, \textit{s}\)$ sei eine DTM mit $\Sigma_0 \subseteq \Sigma$.

 \mathfrak{M} zählt L auf, falls es einen Zustand $q_B \in K$ gibt (den Blinkzustand), so daß:

$$L = \{ w \in \Sigma_0^* \mid \exists u \in \Sigma^* : s, \underline{\#} \vdash_{\mathcal{M}}^* q_B, \#w\underline{\#}u \}$$

L heißt rekursiv aufzählbar, falls es eine DTM gibt, die L aufzählt.

Rekursiv aufzählbar

Achtung: aufzählbar \neq abzählbar.

Unterschied

M abzählbar: Es gibt eine surjektive Abbildung der natürlichen Zahlen auf M
M aufzählbar: Diese Abbildung kann von einer Turing-Maschine berechnet werden.

Wegen Endlichkeit der Wörter und des Alphabets sind alle Sprachen abzählbar.

Aber nicht alle Sprachen sind aufzählbar.

Rekursiv aufzählbar: Beispiele

Beispiel 13.4 (Rekursiv aufzählbar aber nicht entscheidbar)

Folgende Mengen sind rekursiv aufzählbar aber nicht entscheidbar:

- Die Menge der Gödelisierungen aller haltenden Turing-Maschinen
- Die Menge aller terminierenden Programme
- Die Menge aller allgemeingültigen prädikatenlogischen Formeln

Satz 13.5 (Akzeptierbar = Rekursiv Aufzählbar)

Eine Sprache ist genau dann rekursiv aufzählbar, wenn sie akzeptierbar ist.

Beweis

"⇒"

Sei L rekursiv aufzählbar

Es gibt also eine DTM \mathcal{M}_L , die L aufzählt.

Zu zeigen: L ist akzeptierbar.

Beweis (Fortsetzung)

Wir konstruieren aus \mathcal{M}_L eine 2-DTM \mathcal{M} , die L akzeptiert:

ullet $\ \mathcal{M}$ wird gestartet mit

- M simuliert auf Band 2 die Maschine M_L.
- ullet Wenn \mathcal{M}_L den **Blinkzustand** q_B erreicht, dann enthält Band 2 von \mathcal{M} ein Wort

mit $w' \in L$.

Beweis (Fortsetzung)

- Nach erreichen des Blinkzustands: \mathfrak{M} vergleicht w und w'.
 - Falls w = w', dann hält \mathcal{M} : $w \in L$.
 - Ansonsten simuliert \mathcal{M} auf Band 2 weiter die Arbeit von \mathcal{M}_L .
- Wenn \mathcal{M}_L hält, ohne das Wort w auf Band 2 erzeugt zu haben, gerät \mathcal{M} in eine Endlosschleife.

Beweis (Fortsetzung)

"⇐"

Sei L akzeptierbar

Es gebe also eine DTM \mathfrak{M}_L , die L akzeptiert.

Zu zeigen: L ist rekursiv aufzählbar.

Wir konstruieren eine DTM \mathcal{M} , die L rekursiv aufzählt.

Grundidee:

- die Wörter aus Σ* der Reihe nach aufzählen
- jedes Wort der Maschine M_L vorlegen
- wenn \mathfrak{M}_L das Wort akzeptiert, in den Blinkzustand q_B gehen

Beweis (Fortsetzung)

Problem: \mathcal{M}_L akzeptiert, sie entscheidet nicht.

Wenn \mathfrak{M}_L ein Wort nicht akzeptiert, rechnet sie unendlich.

Lösung: Wir betrachten die Rechnung von \mathcal{M}_L zu allen Wörtern aus Σ^*

gleichzeitig.

Beweis (Fortsetzung)

 $\Sigma^* = \{w_1, w_2, w_3, \ldots\}$ (in lexikalischer Reihenfolge aufgezählt).

Dann rechnet M so:

- Im ersten Durchlauf berechne den ersten Rechenschritt von \mathfrak{M}_L für w_1 .
- Im zweiten Durchlauf berechne
 - die ersten zwei Rechenschritte von \mathcal{M}_L für w_1 ,
 - einen Rechenschritt für w₂.
- Im dritten Durchlauf berechne drei Rechenschritte für w₁, zwei für w₂ und einen für w₃ und so weiter.

Immer wieder bei der Startkonfiguration anfangen: So müssen wir uns den Bandinhalt der Rechnung von \mathcal{M}_L zu w_i nach j Schritten nicht merken.

Beweis (Fortsetzung)

Wenn $\mathfrak M$ so rechnet, dann gilt:

- \mathcal{M} fängt für jedes $w_i \in \Sigma^*$ in endlicher Zeit (nämlich im *i*-ten Durchlauf) an, die Arbeit von \mathcal{M}_L zu w_i zu simulieren, und
- falls $w_i \in L$ und falls \mathfrak{M}_L , gestartet mit s, $\#w_i$, in j Schritten einen Haltezustand erreicht, dann erreicht \mathfrak{M} nach endlicher Zeit (nämlich im i+j-ten Durchlauf) den Haltezustand von \mathfrak{M}_L in der Rechnung zu w_i .

Beweis (Ende)

- Wenn \mathfrak{M} bei Simulation von \mathfrak{M}_L zur Eingaben w_i auf eine Haltekonfiguration trifft, dann ist $w_i \in L$.
- ullet ${\mathcal M}$ nimmt dann eine Konfiguration

$$q_B, \#w_i \underline{\#}u_i$$

ein – q_B ist der Blinkzustand.

• In der Nebenrechnung u_i steht, welche Teilrechnung von \mathcal{M}_L als nächste zu simulieren ist.

Also zählt $\mathcal M$ die $w\in \Sigma^*$ auf, für die $\mathcal M_L$ hält, und das sind gerade die $w\in L$.

Satz 13.6 (Entscheidbar und akzeptierbar)

Jede entscheidbare Sprache ist akzeptierbar.

Beweis

Sei L eine entscheidbare Sprache und ${\mathfrak M}$ eine DTM, die L entscheidet.

Dann wird L akzeptiert von der DTM \mathcal{M}' , die zunächst \mathcal{M} simuliert und danach in eine Endlosschleife geht, falls \mathcal{M} mit h, #N# endet.

Satz 13.7 (Komplement einer entscheidbaren Sprache ist entscheidbar)

Das Komplement einer entscheidbaren Sprache ist entscheidbar.

Beweis

Sei L eine entscheidbare Sprache und $\mathfrak M$ eine DTM, die L entscheidet.

Dann wird \overline{L} entschieden von einer DTM \mathfrak{M}' , die genau wie \mathfrak{M} rechnet und nur am Schluß die Antworten Y und N vertauscht.

Satz 13.8 (Charakterisierung von Entscheidbarkeit)

Eine Sprache L ist genau dann entscheidbar, wenn sie und ihr Komplement akzeptierbar sind.

Beweis

"⇒"

Sei L ist entscheidbar.

Zu zeigen: L und \overline{L} sind akzeptierbar.

- L ist entscheidbar, also ist L akzeptierbar
- L ist entscheidbar, also ist \overline{L} entscheidbar
- \overline{L} ist entscheidbar, also ist \overline{L} akzeptierbar

Beweis (Fortsetzung)

```
"<del>=</del>
```

Seien L und \overline{L} akzeptierbar.

Zu zeigen: L ist entscheidbar.

- Sei \mathcal{M}_1 eine DTM, die L akzeptiert.
- Sei \mathfrak{M}_2 eine DTM, die \overline{L} akzeptiert.

Daraus konstruieren wir eine 2-DTM \mathfrak{M} , die L entscheidet:

M wird gestartet mit

ullet ${\mathcal M}$ kopiert ${\it w}$ auf Band 2.

Beweis (Ende)

- M simuliert abwechselnd
 - einen Schritt von \mathcal{M}_1 auf Band 1 und
 - einen Schritt von \mathcal{M}_2 auf Band 2.
- Das tut \mathcal{M} , bis entweder \mathcal{M}_1 oder \mathcal{M}_2 hält.
- Eine von beiden muss halten: w gehört entweder zu L oder zu \overline{L} .
- Wenn \mathfrak{M}_1 hält, dann hält \mathfrak{M} mit
 - #Y# auf Band 1 und
 - # auf Band 2.
- Wenn \mathfrak{M}_2 hält, dann hält \mathfrak{M} mit
 - #N# auf Band 1 und
 - # auf Band 2.

Teil V

- Varianten von Turing-Maschinen
- Indeterminierte Turing-Maschinen (NTMs)

- **Determinierte Turing-Maschinen entsprechen Typ 0**

Rekursiv Aufzählbar = Typ 0

Zur Erinnerung

Formale Sprachen sind vom **Typ 0**, wenn sie durch beliebige Grammatiken (keinerlei Einschränkungen) erzeugt werden können.

Rekursiv Aufzählbar = Typ 0

Satz 14.1 (Rekursiv aufzählbar = Typ 0)

Die rekursiv aufzählbaren Sprachen (also die durch DTMn akzeptierbaren Sprachen) sind genau die durch beliebige Grammatiken erzeugten Sprachen (also die vom Typ 0).

Beweisidee

- Zu jeder Turing-Maschine kann eine Grammatik konstruiert werden, deren Ableitungsschritte die Rechenschritte der TM simulieren (spezielle Variable markiert Position des Schreib-/Lesekopfes).
- Zu jeder Grammatik kann eine indeterminierte Turing-Maschine (und damit auch eine DTM) konstruiert werden, deren Rechenschritte den Ableitungsschritten der Grammatik entsprechen.