Vorlesung

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Bernhard Beckert

Institut für Informatik

Sommersemester 2007

Dank

Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen von

Katrin Erk (gehalten an der Universität Koblenz-Landau)

Jürgen Dix (gehalten an der TU Clausthal)

Ihnen beiden gilt mein herzlicher Dank.

- Bernhard Beckert, April 2007

- Sucht Wörter (Strings) in Dateien
- Benutzt reguläre Ausdrücke als Suchmuster
- Sehr schnell
- Volle Funktionalität mit egrep (UNIX/LINUX)

- Sucht Wörter (Strings) in Dateien
- Benutzt reguläre Ausdrücke als Suchmuster
- Sehr schnell
- Volle Funktionalität mit egrep (UNIX/LINUX)

- Sucht Wörter (Strings) in Dateien
- Benutzt reguläre Ausdrücke als Suchmuster
- Sehr schnell
- Volle Funktionalität mit egrep (UNIX/LINUX)

- Sucht Wörter (Strings) in Dateien
- Benutzt reguläre Ausdrücke als Suchmuster
- Sehr schnell
- Volle Funktionalität mit egrep (UNIX/LINUX)

Syntax bei grep				
grep	Regulärer Ausdruck			
ww'	ww'			
$w \mid w'$	w+w'			
W*	w^*			
w +	w^+			

	Sugar
	a+b+c
	a+b+c+d
	beliebiges Zeichen aus Σ

Syntax bei grep				
grep	Regulärer Ausdruck			
ww'	ww'			
$w \mid w'$	w+w'			
W*	w *			
w +	w^+			

Syntactic Sugar					
	grep	Regulärer Ausdruck			
	[abc]	a+b+c			
	[a-d]	a+b+c+d			
		heliehiges Zeichen aus Σ			

Grammatik

- Beschreibt eine Sprache
- Menge von Regeln, mit deren Hilfe man Wörter ableiten kann
- Die zu einer Grammatik gehörende Sprache besteht aus den
 - ableitbaren
 - terminalen

Wörtern

Grammatik

- Beschreibt eine Sprache
- Menge von Regeln, mit deren Hilfe man Wörter ableiten kann
- Die zu einer Grammatik gehörende Sprache besteht aus der
 - ableitbaren
 - terminalen

Wörtern

Grammatik

- Beschreibt eine Sprache
- Menge von Regeln, mit deren Hilfe man Wörter ableiten kann
- Die zu einer Grammatik gehörende Sprache besteht aus den
 - ableitbaren
 - terminalen

Wörtern

Definition 6.6 (Grammatik)

Eine Grammatik G über einem Alphabet Σ ist ein Tupel

$$G = (V, T, R, S)$$

- V eine endliche Menge von Variablen
- $T \subseteq \Sigma$ eine endliche Menge von **Terminalen** mit $V \cap T = \emptyset$
- R eine endliche Menge von Regeln
- $S \in V$ das **Startsymbol**

Definition 6.6 (Grammatik)

Eine Grammatik G über einem Alphabet Σ ist ein Tupel

$$G = (V, T, R, S)$$

- V eine endliche Menge von Variablen
- $T \subseteq \Sigma$ eine endliche Menge von **Terminalen** mit $V \cap T = \emptyset$
- R eine endliche Menge von Regeln
- $S \in V$ das **Startsymbol**

Definition 6.6 (Grammatik)

Eine Grammatik G über einem Alphabet Σ ist ein Tupel

$$G = (V, T, R, S)$$

- V eine endliche Menge von Variablen
- $T \subseteq \Sigma$ eine endliche Menge von **Terminalen** mit $V \cap T = \emptyset$
- R eine endliche Menge von Regeln
- $S \in V$ das **Startsymbol**

Definition 6.6 (Grammatik)

Eine Grammatik G über einem Alphabet Σ ist ein Tupel

$$G = (V, T, R, S)$$

- V eine endliche Menge von Variablen
- $T \subseteq \Sigma$ eine endliche Menge von **Terminalen** mit $V \cap T = \emptyset$
- R eine endliche Menge von Regeln
- $S \in V$ das **Startsymbol**

Definition 6.6 (Grammatik)

Eine Grammatik G über einem Alphabet Σ ist ein Tupel

$$G = (V, T, R, S)$$

- V eine endliche Menge von Variablen
- $T \subseteq \Sigma$ eine endliche Menge von **Terminalen** mit $V \cap T = \emptyset$
- R eine endliche Menge von Regeln
- $S \in V$ das Startsymbol

Definition 6.7 (Regel)

Eine Regel ist ein Element

$$(P,Q) \in ((V \cup T)^* \ V \ (V \cup T)^*) \times (V \cup T)^*$$

Das heißt:

- P und Q sind Wörter über $(V \cup T)$
- P muss mindestens eine Variable enthalten
- Q ist beliebig

Bezeichnung:

P: Prämisse

Q: Conclusio

Definition 6.7 (Regel)

Eine Regel ist ein Element

$$(P,Q) \in ((V \cup T)^* V (V \cup T)^*) \times (V \cup T)^*$$

Das heißt:

- P und Q sind Wörter über $(V \cup T)$
- P muss mindestens eine Variable enthalten
- Q ist beliebig

Bezeichnung

P: Prämisse

Q: Conclusio

Definition 6.7 (Regel)

Eine Regel ist ein Element

$$(P,Q) \in ((V \cup T)^* V (V \cup T)^*) \times (V \cup T)^*$$

Das heißt:

- P und Q sind Wörter über $(V \cup T)$
- P muss mindestens eine Variable enthalten
- Q ist beliebig

Bezeichnung:

P: Prämisse

Q: Conclusio

Schreibweise für Regeln

Schreibweise für Regel (P, Q):

$$P \rightarrow_G Q$$
 bzw. $P \rightarrow Q$

Abkürzung für mehrere Regeln mit derselben Prämisse:

$$P \rightarrow Q_1 \mid Q_2 \mid Q_3$$
 für $P \rightarrow Q_1, P \rightarrow Q_2, P \rightarrow Q_3$

- Variablen als Großbuchstaben
- Terminale als Kleinbuchstaben

Schreibweise für Regeln

Schreibweise für Regel (P, Q):

$$P \rightarrow_G Q$$
 bzw. $P \rightarrow Q$

• Abkürzung für mehrere Regeln mit derselben Prämisse:

$$P
ightarrow Q_1 \mid Q_2 \mid Q_3 \qquad \mbox{für} \qquad P
ightarrow Q_1, \; P
ightarrow Q_2, \; P
ightarrow Q_3$$

- Variablen als Großbuchstaben
- Terminale als Kleinbuchstaben

Schreibweise für Regeln

Schreibweise für Regel (P, Q):

$$P \rightarrow_G Q$$
 bzw. $P \rightarrow Q$

• Abkürzung für mehrere Regeln mit derselben Prämisse:

$$P
ightarrow Q_1 \mid Q_2 \mid Q_3 \qquad \mbox{für} \qquad P
ightarrow Q_1, \; P
ightarrow Q_2, \; P
ightarrow Q_3$$

- Variablen als Großbuchstaben
- Terminale als Kleinbuchstaben

Schreibweise für Regeln

Schreibweise für Regel (P, Q):

$$P \rightarrow_G Q$$
 bzw. $P \rightarrow Q$

• Abkürzung für mehrere Regeln mit derselben Prämisse:

$$P
ightarrow Q_1 \mid Q_2 \mid Q_3 \qquad \mbox{für} \qquad P
ightarrow Q_1, \; P
ightarrow Q_2, \; P
ightarrow Q_3$$

- Variablen als Großbuchstaben
- Terminale als Kleinbuchstaben

Beispiel 6.8

 $S \rightarrow B$

 $B \rightarrow do begin B end$

 $B \rightarrow A$

 $A \rightarrow nop A$

 $\textbf{A} \,\rightarrow\, \epsilon$

Algorithmus

Eingabe: Eine Grammatik

- \bigcirc aktuellWort := S (Startsymbol)
- \bigcirc Wähle eine Regel $P \rightarrow Q$, so dass P in aktuellWort vorkomm
- Ersetze (ein) Vorkommen von P in aktuellWort durch Quich
- Falls aktuellWort noch Variablen enthält (nicht terminal), GOTO 2

Ausgabe: Das terminale Wort aktuellWort

Beachte

- ist nicht deterministisch (Auswahl der Regel)
 - kann mehr als ein Ergebnis liefern (oder auch keines)
 - kann in Endlosschleifen geraten

Algorithmus

Eingabe: Eine Grammatik

- ② Wähle eine Regel $P \rightarrow Q$, so dass P in aktuellWort vorkommt
- Ersetze (ein) Vorkommen von P in aktuellWort durch Q
- Falls aktuellWort noch Variablen enthält (nicht terminal), GOTO 2

Ausgabe: Das terminale Wort aktuellWort

Beachte

- ist nicht deterministisch (Auswahl der Regel)
- kann mehr als ein Ergebnis liefern (oder auch keines)
- kann in Endlosschleifen geraten

Algorithmus

Eingabe: Eine Grammatik

- **2** Wähle eine Regel $P \rightarrow Q$, so dass P in *aktuellWort* vorkommt
- Ersetze (ein) Vorkommen von P in aktuellWort durch Q
- Falls aktuellWort noch Variablen enthält (nicht terminal), GOTO 2

Ausgabe: Das terminale Wort aktuellWort

Beachte

- ist nicht deterministisch (Auswahl der Regel)
 - kann mehr als ein Ergebnis liefern (oder auch keines)
 - kann in Endlosschleifen geraten

Algorithmus

Eingabe: Eine Grammatik

- ② Wähle eine Regel $P \rightarrow Q$, so dass P in aktuellWort vorkommt
- Ersetze (ein) Vorkommen von P in aktuellWort durch Q
- Falls aktuellWort noch Variablen enthält (nicht terminal), GOTO 2

Ausgabe: Das terminale Wort aktuellWort

Beachte

- a ist sight deterministicals (Λυρυναλ) der Π
 - kann mehr als ein Ergebnis liefern (oder auch keines)
 - kann in Endlosschleifen geraten

Algorithmus

Eingabe: Eine Grammatik

- aktuellWort := S (Startsymbol)
- ② Wähle eine Regel $P \rightarrow Q$, so dass P in aktuellWort vorkommt
- Ersetze (ein) Vorkommen von P in aktuellWort durch Q
- Falls aktuellWort noch Variablen enthält (nicht terminal), GOTO 2

Ausgabe: Das terminale Wort aktuellWort

Beachte

- ist nicht deterministisch (Auswahl der Regel)
- kann mehr als ein Ergebnis liefern (oder auch keines)
- kann in Endlosschleifen geraten

Algorithmus

Eingabe: Eine Grammatik

- aktuellWort := S (Startsymbol)
- ② Wähle eine Regel $P \rightarrow Q$, so dass P in aktuellWort vorkommt
- Ersetze (ein) Vorkommen von P in aktuellWort durch Q
- Falls aktuellWort noch Variablen enthält (nicht terminal), GOTO 2

Ausgabe: Das terminale Wort aktuellWort

Beachte

- ist nicht deterministisch (Auswahl der Regel)
- kann mehr als ein Ergebnis liefern (oder auch keines)
- kann in Endlosschleifen geraten

Algorithmus

Eingabe: Eine Grammatik

- aktuellWort := S (Startsymbol)
- ② Wähle eine Regel $P \rightarrow Q$, so dass P in aktuellWort vorkommt
- Ersetze (ein) Vorkommen von P in aktuellWort durch Q
- Falls aktuellWort noch Variablen enthält (nicht terminal), GOTO 2

Ausgabe: Das terminale Wort aktuellWort

Beachte

- ist nicht deterministisch (Auswahl der Regel)
- kann mehr als ein Ergebnis liefern (oder auch keines)
- kann in Endlosschleifen geraten

Algorithmus

Eingabe: Eine Grammatik

- aktuellWort := S (Startsymbol)
- ② Wähle eine Regel $P \rightarrow Q$, so dass P in aktuellWort vorkommt
- Ersetze (ein) Vorkommen von P in aktuellWort durch Q
- Falls aktuellWort noch Variablen enthält (nicht terminal), GOTO 2

Ausgabe: Das terminale Wort aktuellWort

Beachte

- ist nicht deterministisch (Auswahl der Regel)
- kann mehr als ein Ergebnis liefern (oder auch keines)
- kann in Endlosschleifen geraten

Algorithmus

Eingabe: Eine Grammatik

- aktuellWort := S (Startsymbol)
- ② Wähle eine Regel $P \rightarrow Q$, so dass P in aktuellWort vorkommt
- Ersetze (ein) Vorkommen von P in aktuellWort durch Q
- Falls aktuellWort noch Variablen enthält (nicht terminal), GOTO 2

Ausgabe: Das terminale Wort aktuellWort

Beachte

- ist nicht deterministisch (Auswahl der Regel)
- kann mehr als ein Ergebnis liefern (oder auch keines)
- kann in Endlosschleifen geraten

Algorithmus

Eingabe: Eine Grammatik

- aktuellWort := S (Startsymbol)
- ② Wähle eine Regel $P \rightarrow Q$, so dass P in aktuellWort vorkommt
- Ersetze (ein) Vorkommen von P in aktuellWort durch Q
- Falls aktuellWort noch Variablen enthält (nicht terminal), GOTO 2

Ausgabe: Das terminale Wort aktuellWort

Beachte

- ist nicht deterministisch (Auswahl der Regel)
- kann mehr als ein Ergebnis liefern (oder auch keines)
- kann in Endlosschleifen geraten

Beispiel 6.9 (Einfache Grammatiken)

Welche Wörter kann man ableiten?

$$\bullet G_a = (\{S\}, \{a\}, \{R_1, R_2\}, S)$$

$$R_1 = S \rightarrow aS$$

$$R_2 = S \rightarrow \varepsilon$$

$$G_{ab} = (\{S\}, \{a,b\}, \{R_1, R_2\}, S)$$

$$R_1 = S \rightarrow aSb$$

$$R_2 = S \rightarrow \varepsilon$$

• Sei
$$G_{gerade} = (\{S, S_0\}, \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, \{R_1, R_2\}, S)$$

 $R_1 = S \rightarrow 1S |2S_0|3S |4S_0|5S |6S_0|7S |8S_0|9S$
 $R_2 = S_0 \rightarrow S |\epsilon$

Beispiel 6.9 (Einfache Grammatiken)

Welche Wörter kann man ableiten?

$$\bullet G_a = (\{S\}, \{a\}, \{R_1, R_2\}, S)$$

$$R_1 = S \rightarrow aS$$

$$R_2 = S \rightarrow \varepsilon$$

$$\bullet G_{ab} = (\{S\}, \{a,b\}, \{R_1, R_2\}, S)$$

$$R_1 = S \rightarrow aSb$$

$$R_2 = S \rightarrow \varepsilon$$

• Sei
$$G_{gerade} = (\{S, S_0\}, \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, \{R_1, R_2\}, S)$$

$$R_1 = S \rightarrow 1S|2S_0|3S|4S_0|5S|6S_0|7S|8S_0|9S$$

$$R_2 = S_0 \rightarrow S|\epsilon$$

Beispiel 6.9 (Einfache Grammatiken)

Welche Wörter kann man ableiten?

$$\bullet G_a = (\{S\}, \{a\}, \{R_1, R_2\}, S)$$

$$R_1 = S \rightarrow aS$$

$$R_2 = S \rightarrow \varepsilon$$

$$G_{ab} = (\{S\}, \{a,b\}, \{R_1, R_2\}, S)$$

$$R_1 = S \rightarrow aSb$$

$$R_2 = S \rightarrow \varepsilon$$

• Sei
$$G_{gerade} = (\{S, S_0\}, \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, \{R_1, R_2\}, S)$$

$$R_1 = S \rightarrow 1S |2S_0|3S |4S_0|5S |6S_0|7S |8S_0|9S$$

$$R_2 = S_0 \rightarrow S |\epsilon$$

Definition 6.10 (Ableitung, Rechnung)

Gegeben:

- Grammatik G = (V, T, R, S)
- Wörter w, w' aus $(V \cup T)^*$

Es gilt

$$w \Longrightarrow_G w'$$
 ("w geht über in w' ")

falls

$$\exists u, v \in (V \cup T)^* \exists P \to Q \in R \ (w = uPv \text{ und } w' = uQv)$$

Definition 6.10 (Ableitung, Rechnung)

Gegeben:

- Grammatik G = (V, T, R, S)
- Wörter w, w' aus $(V \cup T)^*$

Es gilt

$$w \Longrightarrow_{_G} w'$$
 ("w geht über in w' ")

falls

$$\exists u, v \in (V \cup T)^* \exists P \rightarrow Q \in R \ (w = uPv \text{ und } w' = uQv)$$

Schreibweise für Ableitung

$$w \Longrightarrow_{G}^{*} w'$$

falls es Wörter $w_0, \dots, w_n \in (V \cup T)^* \ (n \ge 0)$ gibt mit

- \bullet $w = w_0$
- $w_m = w'$
- $w_i \Longrightarrow_G w_{i+1}$ für $0 \le i < n$

Merke: $w \Longrightarrow_{G}^{*} w$ gilt stets (n = 0)

Die Folge w_0, \ldots, w_n heißt Ableitung oder Rechnung

- von w_0 nach w_i
- in G
- der Länge r

Schreibweise für Ableitung

$$w \Longrightarrow_{G}^{*} w'$$

falls es Wörter $w_0, \ldots, w_n \in (V \cup T)^* \ (n \ge 0)$ gibt mit

- $w = w_0$
- $w_m = w'$
- $w_i \Longrightarrow_G w_{i+1}$ für $0 \le i < n$

Merke:
$$w \Longrightarrow_{G}^{*} w$$
 gilt stets $(n = 0)$

Die Folge w_0, \ldots, w_n heißt Ableitung oder Rechnung

- von w_0 nach w_r
- in G
- der Länge n

Schreibweise für Ableitung

$$w \Longrightarrow_{G}^{*} w'$$

falls es Wörter $w_0, \dots, w_n \in (V \cup T)^* \ (n \ge 0)$ gibt mit

- $w = w_0$
- $w_m = w'$
- $w_i \Longrightarrow_G w_{i+1}$ für $0 \le i < n$

Merke: $w \Longrightarrow_{G}^{*} w$ gilt stets (n = 0)

Die Folge w_0, \ldots, w_n heißt Ableitung oder Rechnung

- von w_0 nach w_n
- in G
- der Länge n

Beispiel 6.11 (Indeterminismus)

Wir betrachten die Grammatik $G = (\{S,B\},\{a,b,c\},\{R_0,R_1,R_2,R_3\},S)$

$$R_0 = S \rightarrow aBBc$$

 $R_1 = B \rightarrow b$
 $R_2 = B \rightarrow ba$
 $R_3 = BB \rightarrow bBa$

Drei Möglichkeiten, das Wort abbac zu erzeugen:

$$S \implies_{R_0} aBBc \implies_{R_1} abBc \implies_{R_2} abbac$$
 $S \implies_{R_0} aBBc \implies_{R_2} aBbac \implies_{R_1} abbac$ $S \implies_{R_0} aBBc \implies_{R_3} abBac \implies_{R_1} abbac$

Beispiel 6.11 (Indeterminismus)

Wir betrachten die Grammatik $G = (\{S,B\},\{a,b,c\},\{R_0,R_1,R_2,R_3\},S)$

$$R_0 = S \rightarrow aBBc$$

 $R_1 = B \rightarrow b$
 $R_2 = B \rightarrow ba$
 $R_3 = BB \rightarrow bBa$

Drei Möglichkeiten, das Wort abbac zu erzeugen:

- Erlaubt einfachere Definition von Grammatiken
- Für manche Sprachen gibt es keine eindeutige Grammatiken
- Eine Grammatik beschreibt die Struktur der Wörter.
 Ein Wort kann mehrere mögliche Strukturen haben.
- Für natürliche Sprachen braucht man das unbedingt: Manche Sätze sind mehrdeutig (in ihrer Grammatik), also müssen auch die Grammatiken mehrdeutig sein!

- Erlaubt einfachere Definition von Grammatiken
- Für manche Sprachen gibt es keine eindeutige Grammatiken
- Eine Grammatik beschreibt die Struktur der Wörter.
 Ein Wort kann mehrere mögliche Strukturen haben.
- Für natürliche Sprachen braucht man das unbedingt: Manche Sätze sind mehrdeutig (in ihrer Grammatik), also müssen auch die Grammatiken mehrdeutig sein!

- Erlaubt einfachere Definition von Grammatiken
- Für manche Sprachen gibt es keine eindeutige Grammatiken
- Eine Grammatik beschreibt die Struktur der Wörter.
 Ein Wort kann mehrere mögliche Strukturen haben.
- Für natürliche Sprachen braucht man das unbedingt: Manche Sätze sind mehrdeutig (in ihrer Grammatik), also müssen auch die Grammatiken mehrdeutig sein!

- Erlaubt einfachere Definition von Grammatiken
- Für manche Sprachen gibt es keine eindeutige Grammatiken
- Eine Grammatik beschreibt die Struktur der Wörter.
 Ein Wort kann mehrere mögliche Strukturen haben.
- Für natürliche Sprachen braucht man das unbedingt: Manche Sätze sind mehrdeutig (in ihrer Grammatik), also müssen auch die Grammatiken mehrdeutig sein!

Beispiel 6.12 (Mehrdeutige Grammatik natürlichsprachlicher Sätze)

Time flies like an arrow. Fruit flies like a banana.

- Beide Sätze haben zwei mögliche grammatische Strukturen.
- Erst unser semantisches Verständnis wählt eine aus.

Beispiel 6.12 (Mehrdeutige Grammatik natürlichsprachlicher Sätze)

Time flies like an arrow. Fruit flies like a banana.

- Beide Sätze haben zwei mögliche grammatische Strukturen.
- Erst unser semantisches Verständnis wählt eine aus.

Erzeugte Sprache, Äquivalenz

Definition 6.13 (Erzeugte Sprache)

Gegeben: Eine Grammatik G

Die von G erzeugte Sprache L(G) ist die Menge aller **terminalen** Wörter, die durch G vom Startsymbol S aus erzeugt werden können:

$$L(G) := \{ w \in T^* \mid S \Longrightarrow_G^* w \}$$

Definition 6.14 (Äquivalenz)

Zwei Grammatiken G_1, G_2 heißen **äquivalent** gdw

$$L(G_1) = L(G_2)$$

Erzeugte Sprache, Äquivalenz

Definition 6.13 (Erzeugte Sprache)

Gegeben: Eine Grammatik G

Die von G erzeugte Sprache L(G) ist die Menge aller **terminalen** Wörter, die durch G vom Startsymbol S aus erzeugt werden können:

$$L(G) := \{ w \in T^* \mid S \Longrightarrow_G^* w \}$$

Definition 6.14 (Äquivalenz)

Zwei Grammatiken G_1, G_2 heißen äquivalent gdw

$$L(G_1) = L(G_2)$$

