Vorlesung

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Bernhard Beckert

Institut für Informatik

Sommersemester 2007

Dank

Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen von

Katrin Erk (gehalten an der Universität Koblenz-Landau)

Jürgen Dix (gehalten an der TU Clausthal)

Ihnen beiden gilt mein herzlicher Dank.

- Bernhard Beckert, April 2007

Abschlusseigenschaften

Theorem 16.2 (Abschlusseigenschaften von L_3)

Wenn L, L' reguäre Sprachen sind, dann sind auch

- <u>L</u>
- L∪L'
- L∘L'
- \bullet $L \cap L'$

reguläre Sprachen.

Beweis.

Gemäß Lemma existieren Automaten, die diese Sprachen akzeptieren. Also sind sie regulär

Abschlusseigenschaften

Theorem 16.2 (Abschlusseigenschaften von L_3)

Wenn L, L' reguäre Sprachen sind, dann sind auch

- <u>L</u>
- L∪L'
- L ∘ L'
- L*
- L∩L'

reguläre Sprachen.

Beweis.

Gemäß Lemma existieren Automaten, die diese Sprachen akzeptieren.

Also sind sie regulär.

Lemma 16.3

Sei A ein endlicher Automat.

Es ist entscheidbar, ob die Sprache L(A)

- leer ist.
- unendlich ist.

Korollar

Sei G eine rechtslineare Grammatik.

- leer ist.
- unendlich ist.

Lemma 16.3

Sei A ein endlicher Automat.

Es ist entscheidbar, ob die Sprache L(A)

- leer ist.
- unendlich ist.

Korollar

Sei G eine rechtslineare Grammatik.

- leer ist.
- unendlich ist.

Lemma 16.3

Sei A ein endlicher Automat.

Es ist entscheidbar, ob die Sprache L(A)

- leer ist.
- unendlich ist.

Korollar

Sei G eine rechtslineare Grammatik.

- leer ist.
- unendlich ist.

Lemma 16.3

Sei A ein endlicher Automat.

Es ist entscheidbar, ob die Sprache L(A)

- leer ist.
- unendlich ist.

Korollar

Sei G eine rechtslineare Grammatik.

- leer ist.
- unendlich ist.

Lemma 16.3

Sei A ein endlicher Automat.

Es ist entscheidbar, ob die Sprache L(A)

- leer ist.
- unendlich ist.

Korollar

Sei G eine rechtslineare Grammatik.

- leer ist.
- unendlich ist.

Zu (ii): L(A) ist unendlich

gdw

der einen Zyklus enthält.

Beweis.

Zu (i): L(A) ist nicht leer

gdw

Es gibt einen Weg von einem initialen zu einem finalen Zustand.

Zu (ii): L(A) ist unendlich

gdw

Es gibt einen Weg von einem initialen zu einem finalen Zustand, der einen Zyklus enthält

Beides ist leicht zu überprüfen.

Beweis.

Zu (i): L(A) ist nicht leer

gdw

Es gibt einen Weg von einem initialen zu einem finalen Zustand.

Zu (ii): L(A) ist unendlich

gdw

Es gibt einen Weg von einem initialen zu einem finalen Zustand, der einen Zyklus enthält.

Beides ist leicht zu überprüfen.

Beweis.

Zu (i): L(A) ist nicht leer

gdw

Es gibt einen Weg von einem initialen zu einem finalen Zustand.

Zu (ii): L(A) ist unendlich

gdw

Es gibt einen Weg von einem initialen zu einem finalen Zustand, der einen Zyklus enthält.

Beides ist leicht zu überprüfen.

Lemma 16.4

Seien A_1, A_2 endliche Automaten.

Es ist entscheidbar, ob

$$L(\mathcal{A}_1) = L(\mathcal{A}_2)$$

Korollar

Für rechtlineare Grammatiken G_1 , G_2 , G_3 und endliche Automaten A_1 , A_2 , A_3 ist entscheidbar, ob:

$$L(A_1) \cap L(A_2) = \emptyset$$

$$L(G_1) \cup L(G_2) = L(G_3)$$

USW.

Lemma 16.4

Seien A_1, A_2 endliche Automaten.

Es ist entscheidbar, ob

$$L(\mathcal{A}_1) = L(\mathcal{A}_2)$$

Korollar

Für rechtlineare Grammatiken G_1, G_2, G_3 und endliche Automaten A_1, A_2, A_3 ist entscheidbar, ob:

$$L(\mathcal{A}_1) \cap L(\mathcal{A}_2) = \emptyset$$

$$L(G_1) \cup L(G_2) = L(G_3)$$

usw.

Beweis

Seien A_1 , A_2 endliche Automaten.

Man kann zu A_1 und A_2 einen endlichen Automaten A_{-} konstruieren mit

$$L(A_{=}) = (L(A_1) \cap \overline{L(A_2)}) \cup (\overline{L(A_1)} \cap L(A_2))$$

Es gil

$$L(\mathcal{A}_{=}) = \emptyset$$
 gdw $L(\mathcal{A}_{1}) = L(\mathcal{A}_{2})$

Beweis

Seien A_1 , A_2 endliche Automaten.

Man kann zu A_1 und A_2 einen endlichen Automaten $A_=$ konstruieren mit

$$\textit{L}(\mathcal{A}_{=}) \, = \, (\textit{L}(\mathcal{A}_{1}) \cap \overline{\textit{L}(\mathcal{A}_{2})}) \cup (\overline{\textit{L}(\mathcal{A}_{1})} \cap \textit{L}(\mathcal{A}_{2}))$$

Es gilt

$$L(\mathcal{A}_{=}) = \emptyset$$
 gdw $L(\mathcal{A}_{1}) = L(\mathcal{A}_{2})$

Beweis

Seien A_1 , A_2 endliche Automaten.

Man kann zu \mathcal{A}_1 und \mathcal{A}_2 einen endlichen Automaten \mathcal{A}_{\equiv} konstruieren mit

$$\textit{L}(\mathcal{A}_{=}) \, = \, (\textit{L}(\mathcal{A}_{1}) \cap \overline{\textit{L}(\mathcal{A}_{2})}) \cup (\overline{\textit{L}(\mathcal{A}_{1})} \cap \textit{L}(\mathcal{A}_{2}))$$

Es gilt

$$\mathit{L}(\mathcal{A}_{=}) = \emptyset \quad \text{gdw} \quad \mathit{L}(\mathcal{A}_{1}) = \mathit{L}(\mathcal{A}_{2})$$

Beweis

Seien A_1 , A_2 endliche Automaten.

Man kann zu A_1 und A_2 einen endlichen Automaten $A_=$ konstruieren mit

$$\textit{L}(\mathcal{A}_{=}) \, = \, (\textit{L}(\mathcal{A}_{1}) \cap \overline{\textit{L}(\mathcal{A}_{2})}) \cup (\overline{\textit{L}(\mathcal{A}_{1})} \cap \textit{L}(\mathcal{A}_{2}))$$

Es gilt

$$\mathit{L}(\mathcal{A}_{=}) = \emptyset \quad \underline{\mathsf{gdw}} \quad \mathit{L}(\mathcal{A}_{1}) = \mathit{L}(\mathcal{A}_{2})$$

Teil III

- Determinierte endliche Automaten (DEAs)
- 2 Indeterminierte endliche Automaten (NDEAs)
- Automaten mit epsilon-Kanten
- 4 Endliche Automaten akzeptieren genau die Typ-3-Sprachen
- 5 Pumping-Lemma
- 6 Abschlusseigenschaften und Wortprobleme
- Rational = Reguläre Ausdrücke

Teil III

- Determinierte endliche Automaten (DEAs)
- 2 Indeterminierte endliche Automaten (NDEAs)
- Automaten mit epsilon-Kanten
- Endliche Automaten akzeptieren genau die Typ-3-Sprachen
- Dumping-Lemma
- 6 Abschlusseigenschaften und Wortprobleme
- Rational = Reguläre Ausdrücke

Hauptsatz von Kleene

Theorem 17.1 (Hauptsatz von Kleene)

Die durch endliche Automaten akzeptierten Sprachen sind genau die, die man durch reguläre Ausdrücke beschreiben kann.

Beweis

"⇒" (schwierigere Richtung)

Gegeben ein DEA $\mathcal A$

Zustände von A seien q_1, \ldots, q_n .

O.B.D.A. sei q_1 der initiale Zustand von A

Induktion über die Kompliziertheit des Akzeptierens

$$R_{i,j}^k := \{ w \in \Sigma^* : \quad \delta^*(q_i,w) = q_j \text{ und für alle Präfixe } u \text{ von } w \text{ mit } \epsilon
eq u
eq w ext{ gilt } \delta^*(q_i,u) \in \{q_1,q_2,\ldots,q_k\}$$

Beweis

"⇒" (schwierigere Richtung)

Gegeben ein DEA \mathcal{A} .

Zustände von A seien q_1, \ldots, q_n .

O.B.D.A. sei q_1 der initiale Zustand von A

Induktion über die Kompliziertheit des Akzeptierens

$$R_{i,j}^k := \{w \in \Sigma^*: \quad \delta^*(q_i,w) = q_j \text{ und für alle Präfixe } u \text{ von } w \text{ mit } \epsilon
eq u
eq w ext{ gilt } \delta^*(q_i,u) \in \{q_1,q_2,\ldots,q_k\}$$

Beweis

"⇒" (schwierigere Richtung)

Gegeben ein DEA \mathcal{A} .

Zustände von A seien q_1, \ldots, q_n .

O.B.D.A. sei q_1 der initiale Zustand von A

Induktion über die Kompliziertheit des Akzeptierens

$$R_{i,j}^k := \{ w \in \Sigma^* : \quad \delta^*(q_i,w) = q_j \text{ und für alle Präfixe } u \text{ von } w \text{ mit } \epsilon
eq u
eq w ext{ gilt } \delta^*(q_i,u) \in \{q_1,q_2,\ldots,q_k\}$$

Beweis

"⇒" (schwierigere Richtung)

Gegeben ein DEA \mathcal{A} .

Zustände von A seien q_1, \ldots, q_n .

O.B.D.A. sei q_1 der initiale Zustand von A

Induktion über die Kompliziertheit des Akzeptierens

$$R_{i,j}^k := \{w \in \Sigma^*: \quad \delta^*(q_i,w) = q_j \text{ und für alle Präfixe } u \text{ von } w \text{ mit } \epsilon
eq u
eq w ext{ gilt } \delta^*(q_i,u) \in \{q_1,q_2,\ldots,q_k\}$$

Beweis

"⇒" (schwierigere Richtung)

Gegeben ein DEA \mathcal{A} .

Zustände von A seien q_1, \ldots, q_n .

O.B.D.A. sei q_1 der initiale Zustand von A

Induktion über die Kompliziertheit des Akzeptierens

$$R_{i,j}^k := \{w \in \Sigma^* : \quad \delta^*(q_i,w) = q_i \text{ und für alle Präfixe } u \text{ von } w \text{ mit } \epsilon
eq u
eq w ext{ gilt } \delta^*(q_i,u) \in \{q_1,q_2,\ldots,q_k\}$$

Beweis

"⇒" (schwierigere Richtung)

Gegeben ein DEA \mathcal{A} .

Zustände von A seien q_1, \ldots, q_n .

O.B.D.A. sei q_1 der initiale Zustand von A

Induktion über die Kompliziertheit des Akzeptierens

$$R_{i,j}^k := \{ w \in \Sigma^* : \quad \delta^*(q_i,w) = q_j \text{ und für alle Präfixe } u \text{ von } w \text{ mit } \epsilon
eq u
eq w ext{ gilt } \delta^*(q_i,u) \in \{q_1,q_2,\ldots,q_k\} \, \}$$

Beweis (Forts.)

Offensichtlich ist

$$L(\mathcal{A}) = \bigcup_{q_f \in F} R_{1,f}^n$$

Es genügt zu zeigen

Alle Mengen $R_{1,f}^n$ sind durch reguläre Ausdrücke beschreibbar

Dazu: Durch Induktion über k (an der Tafel):

Für alle $1 \le i, j \le n$: $R_{1,j}^k$ is durch einen regulären Ausdruck beschreibb

Beweis (Forts.)

Offensichtlich ist

$$L(\mathcal{A}) = \bigcup_{q_f \in F} R_{1,f}^n$$

Es genügt zu zeigen:

Alle Mengen $R_{1,f}^n$ sind durch reguläre Ausdrücke beschreibbar.

Dazu: Durch Induktion über *k* (an der Tafel):

Für alle $1 \le i, j \le n$: $R_{1,j}^k$ is durch einen regulären Ausdruck beschreibt

Beweis (Forts.)

Offensichtlich ist

$$L(\mathcal{A}) = \bigcup_{q_f \in F} R_{1,f}^n$$

Es genügt zu zeigen:

Alle Mengen $R_{1,f}^n$ sind durch reguläre Ausdrücke beschreibbar.

Dazu: Durch Induktion über *k* (an der Tafel):

Für alle $1 \le i, j \le n$: $R_{1,j}^k$ is durch einen regulären Ausdruck beschreibb.

Beweis

"
—" (einfacherer Richtung)

Durch Induktion über den Aufbau regulärer Ausdrücke

Zu jedem regulären Ausdruck gibt es einen äquivlanten ε-NDEA

(an der Tafel)

Beweis

"

—" (einfacherer Richtung)

Durch Induktion über den Aufbau regulärer Ausdrücke:

Zu jedem regulären Ausdruck gibt es einen äquivlanten ε-NDEA

(an der Tafel)