### Vorlesung

# Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

#### **Bernhard Beckert**

Institut für Informatik



Sommersemester 2007

# **Dank**

Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen von

Katrin Erk (gehalten an der Universität Koblenz-Landau)

Jürgen Dix (gehalten an der TU Clausthal)

Ihnen beiden gilt mein herzlicher Dank.

- Bernhard Beckert, April 2007

# Teil II

- Sprache, Grammatik
- Warum Sprachen?
- Oie Chomsky-Hierarchie
- Probleme über Sprachen
- 5 Endlich, unendlich und dann?

# Probleme über Sprachen

### **Interessante Probleme (informell)**

- Ist ein gegebenes Wort in einer Sprache (definiert durch eine Grammatik) enthalten?
- Erzeugen zwei gegebene Grammatiken dieselbe Sprache?

Mit welchen Algorithmen können diese Probleme gelöst werden?

# Probleme und Algorithmen im allgemeinen

### **Definition 9.1 (Problem, Algorithmus)**

Ein **Problem** *P* ist die Frage, ob eine bestimmte Eigenschaft auf gegebene Objekte zutrifft.

Dabei ist eine bekannte, abzählbaren Grundmenge solcher Objekte gegeben.

Für jedes Objekt o gilt: die Eigenschaft trifft auf o zu oder nicht.

## **Definition 9.2 (Algorithmus)**

Ein **Algorithmus** für ein Problem *P* ist eine Vorschrift (ein Programm), die zu beliebigem Objekt *o* berechnet, ob die Eigenschaft für *o* zutrifft oder nicht.

# Probleme und Algorithmen im allgemeinen

# **Beispiel 9.3 (Einige Probleme)**

- Für  $n \in \mathbb{N}$ : Ist n eine Primzahl?
- Für ein Wort  $w \in \Sigma^*$  und ein Element G aus der Menge aller Grammatiken über  $\Sigma$ : Gilt  $w \in L(G)$ ?
- Für ein Element G aus der Menge aller Grammatiken:
   Ist L(G) leer (endlich, unendlich)?
- Für  $(a, b, c) \in \mathbb{N}^3$ : Hat  $a^n + b^n = c^n$  eine Lösung in den natürlichen Zahlen?
- Für ein Programm p aus der Menge aller Java-Programme:
   Terminiert p?

# Teil II

- Sprache, Grammatik
- Warum Sprachen?
- Die Chomsky-Hierarchie
- Probleme über Sprachen
- Endlich, unendlich und dann?

# **Abzählbarkeit**

### **Definition 10.1 (Abzählbarkeit)**

Eine Menge M heißt abzählbar, wenn

• es eine surjektive Funktion

$$f: \mathbb{N}_0 \to M$$

gibt,

oder M leer ist.

### Intuition

Eine Menge ist abzählbar, wenn sie höchstens so mächtig wie  $\mathbb{N}_0$  ist.

# **Abzählbarkeit**

# Lemma 10.2

Eine Menge M ist abzählbar, wenn es eine injektive Funktion

$$f: M \to \mathbb{N}_0$$

gibt.

# **Abzählbarkeit**

### Beispiel 10.3

#### Abzählbar sind:

- N₀
- Q
- alle endlichen Mengen
- die Vereinigung zweier abzählbarer Mengen
- die Vereiningung abzählbar vieler abzählbarer Mengen

# **Hilberts Hotel**

### **David Hilbert** ★ 1862, † 1943

- Einer der bedeutensten und einflußreichsten Mathematiker aller Zeiten
- Professor in Königsberg und Göttingen
- Wichtige Beiträge zu
  - Logik
  - Funktionalanalysis
  - Zahlentheorie
  - Mathematische Grundlagen der Physik
  - uvm.



# Diagonalisierungsargument für Überabzählbarkeit

#### Theorem 10.4

Die Menge  $\mathbb R$  der rellen Zahlen ist überabzählbar.

#### Beweis.

Wir zeigen, dass schon das Intervall [0,1] überabzählbar ist.

Annahme: Es gibt eine Aufzählung, also eine surjektive Funktion

$$f: \mathbb{N}_0 \to [0,1]$$

Dann sei

$$f(i) = 0, d_0^i d_1^i d_2^i \dots$$

die Dezimaldarstellung der i-ten reellen Zahl.

# Diagonalisierungsargument für Überabzählbarkeit

#### Beweis.

Fortsetzung:

Wir definieren eine neue Zahl  $d=0,\overline{d}_0\overline{d}_1\overline{d}_2\dots$  durch

$$\overline{d}_n = \begin{cases} d_n^n + 1 & \text{falls } d_n^n < 9\\ 0 & \text{sonst} \end{cases}$$

d unterscheidet sich in der n-ten Stelle von  $d_n$ .

Also  $d \neq d_n$  für alle  $n \in \mathbb{N}_0$ 

Also kommt d in der Aufzählung nicht vor. Widerspruch!



# Wieviele gibt es?

#### Wieviele

- Grammatiken
- Sprachen
- Algorithmen

gibt es überhaupt?

### Mögliche Antworten

- Endlich viele
- Unendlich viele
- Abzählbar viele
- Überabzählbar viele
- Nicht klar f
  ür Algorithmen, da dieser Begriff nicht genau definiert wurde

# Wieviele Wörter, Grammatiken gibt es?

#### **Lemma 10.5**

Gegeben: Signatur  $\Sigma$ , endlich oder abzählbar unendlich

Dann ist  $\Sigma^*$  abzählbar unendlich.

#### Beweis.

 $\Sigma$  ist abzählbar, also ist  $\Sigma^i$  abzählbar,  $i \in \mathbb{N}$ .

 $\Sigma^*$  ist die Vereinigung der abzählbar vielen abzählbaren Mengen  $\Sigma^i$ .

# Wieviele Wörter, Grammatiken gibt es?

#### **Lemma 10.6**

Gegeben: Signatur  $\Sigma$ , endlich oder abzählbar unendlich

Dann ist die Menge aller Grammatiken über  $\Sigma$  abzählbar unendlich

#### Beweis.

Grammatiken sind endlich und also als Wörter über einer geeigneten erweiterten Grammatik

$$\Sigma \cup V \cup \{\rightarrow, \ldots\}$$

darstellbar.

Die Menge der Wörter über dieser erweiterten Grammatik ist abzählbar (Lemma 10.5).



# Wieviele Algorithmen gibt es?

#### **Lemma 10.7**

Es gibt (nur) abzählbar viele Algorithmen.

#### Beweis.

Algorithmen müssen per Definition eine endliche Beschreibung haben.

Sie sind also als Wörter über einer Signatur  $\Sigma$  darstellbar (für jedes abzählbare  $\Sigma$ ).

Also sind sie abzählbar (Lemma 10.5).

# Wieviele Funktionen $f: \mathbb{N}_0 \to \mathbb{N}_0$ gibt es?

#### **Lemma 10.8**

Es gibt überabzählbar viele Funktionen  $f: \mathbb{N}_0 \to \mathbb{N}_0$ .

#### Beweis.

Angenommen, es existiere eine Abzählung

$$f_1, f_2, \ldots f_n, \ldots$$

Dann sei

$$C: \mathbb{N}_0 \to \mathbb{N}_0 \quad \text{mit} \quad C(n) = \left\{ egin{array}{ll} 1 & \text{falls } f_n(n) = 0; \\ 0 & \text{sonst} \end{array} \right.$$

$$C(i) \neq f_i(i)$$

Also: C ist von allen  $f_i$  verschieden.

Widerspruch!

# Wieviele Funktionen $f: \mathbb{N}_0 \to \mathbb{N}_0$ gibt es?

### **Lemma 10.9**

Es gibt überabzählbar viele Funktionen  $f: \mathbb{N}_0 \to \{0,1\}.$ 

### Beweis.

Analog.



# Wieviele Sprachen gibt es?

#### Lemma 10.10

Gegeben eine Signatur  $\Sigma$  (endlich oder unendlich).

Die Menge der Sprachen über  $\Sigma$  ist überabzählbar.

#### Beweis.

Sei eine beliebige Abzählung aller Wörter über  $\Sigma$  gegeben:

$$w_1, w_2, \dots$$

Dann kann man die Sprachen L über  $\Sigma$  mit den Funktionen  $f:\mathbb{N}_0 \to \{0,1\}$  identifizieren, vermittels

$$f(i) = 1$$
 gdw  $w_i \in L$ 

Von diesen gibt es überabzählbar viele.

### Korollar

## Korollar 10.11

Nicht jede Sprache kann durch eine Grammatik dargestellt werden.

# Zusammenfassung

Gegeben eine Signatur  $\Sigma$ 

#### Abzählbar

- N
- Menge aller Wörter
- Menge aller Grammatiken
- Menge aller Algorithmen

### Überabzählbar

- ullet Die Menge aller Teilmengen von  ${\mathbb N}$
- Die Menge aller reellen Zahlen
- Die Menge aller Funktionen  $f: \mathbb{N}_0 \to \mathbb{N}_0$  bzw.  $f: \mathbb{N}_0 \to \{0, 1\}$
- Die Menge aller Sprachen