Vorlesung Theoretische Informatik II

Bernhard Beckert

Institut für Informatik

Wintersemester 2007/2008

Dank

Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von

Katrin Erk (gehalten an der Universität Koblenz-Landau)

Jürgen Dix (gehalten an der TU Clausthal)

Christoph Kreitz (gehalten an der Universität Potsdam)

Ihnen gilt mein herzlicher Dank.

- Bernhard Beckert, Oktober 2007

Teil II

- Registermaschinen
- 2 LOOP-Programme
- WHILE-Programme
- 4 GOTO-Programme
- 5 Beziehungen zwischen LOOP, WHILE, GOTO und Turingmaschinen

Registermaschinen: Syntax von GOTO-Programmen

Definition 7.1 (Index)

Ein Index (Zeilennummer) ist eine Zahl $j \ge 0$.

Registermaschinen: Syntax von GOTO-Programmen

Definition 7.2 (GOTO-Befehl, GOTO-Programm)

- $x_i := x_i + 1$
- $\bullet x_i := x_i 1$

sind GOTO-Befehle für alle Register xi

Wenn x_i ein Register ist und i ein Index, dann ist

• if $x_i = 0$ goto j

ein GOTO-Befehl

Wenn B_1, \ldots, B_k GOTO-Befehle sind und j_1, \ldots, j_k Indizes ($k \ge 1$), dann ist

• $j_1: B_1; j_2: B_2; \ldots; j_k: B_k$

ein GOTO-Programm

Unterschied im Aufbau: WHILE und GOTO

Unterschied im Aufbau

- WHILE-Programme enthalten WHILE-Programme Rekursive Definition von Syntax und Semantik
- GOTO-Programme sind eine Liste von GOTO-Befehlen Nicht-rekursive Definition von Syntax und Semantik

Definition 7.3 (Semantik von GOTO-Programmen)

Sei

$$P = j_1 : B_1; j_2 : B_2; ...; j_k : B_k$$

ein GOTO-Programm.

Außerdem sei j_{k+1} ein Index, der nicht in P vorkommt (Programmende).

Es gilt

$$\Delta(P)(s_1,s_2)$$

genau dann, wenn es für ein beliebiges $n \ge 0$

- Zustände s'_0, \ldots, s'_n
- Indizes z_0, \ldots, z_n

gibt, für die folgendes gilt ...

Definition (Forts.)

- $s_0' = s_1$
- $s_n' = s_2$
- $z_0 = j_1$
- $z_n = j_{k+1}$

Definition (Forts.)

• für $0 \le l < n$ gilt, wobei $j_s : B_s$ die Zeile in P ist mit $j_s = z_l$:

Merke

Die Anzahl der Rücksprünge (≈ Schleifendurchläufe) ist **nicht** zu Anfang festgelegt

Endlosschleifen sind möglich

Notation

```
GOTO = Menge aller totalen GOTO-berechenbaren Funktionen 
OTO<sup>part</sup> = Menge aller GOTO-berechenbaren Funktionen
```

(incl. partiellen)

Theorem 7.4

WHILE = GOTO $WHILE^{part} = GOTO^{part}$

Beweis

1. WHILE \subseteq **GOTO** und **WHILE**^{part} \subseteq **GOTO**^{part}:

Es genügt zu zeigen, dass while $x_i \neq 0$ do P end mit GOTO-Befehlen simuliert werden kann.

Wir können dabei annehmen, dass *P* kein while (mehr) enthält (ersetze die while von innen nach außen)

Beweis (Forts.)

```
while x_i \neq 0 do P end
```

wird ersetzt durch

```
j_1: if x_i = 0 goto j_3; P'; j_2: if x_n = 0 goto j_1; // unbedingter Sprung, da x_n = 0 j_3: x_n := x_n - 1 // NOP, nur Sprungziel
```

Dabei:

- x_n ein bisher nicht verwendetes Register
- P' entsteht aus P, indem allen Befehlen ohne Index ein beliebiger (neuer) Index vorangestellt wird

Beweis (Forts.)

2. GOTO \subseteq WHILE und GOTO^{part} \subseteq WHILE^{part}:

Jedes GOTO-Programm

$$j_1: B_1; \ j_2: B_2; \ \ldots; \ j_k: B_k$$

kann durch das folgende äquivalente WHILE-Programm ersetzt werden:

```
\begin{split} \mathbf{x}_{\text{index}} &:= j_1; \\ \text{while } \mathbf{x}_{\text{index}} \neq \mathbf{0} \text{ do} \\ &\text{if } \mathbf{x}_{\text{index}} = j_1 \text{ then } B_1' \text{ end}; \\ &\text{if } \mathbf{x}_{\text{index}} = j_2 \text{ then } B_2' \text{ end}; \\ &\vdots \\ &\text{if } \mathbf{x}_{\text{index}} = j_k \text{ then } B_k' \text{ end}; \\ \text{end} \end{split}
```

Beweis (Forts.)

Dabei für $1 \le i \le k$:

Falls
$$B_i = x_i := x_i \pm 1$$
:

$$B'_i = x_i := x_i \pm 1; x_{index} = j_{i+1}$$

Falls
$$B_i = \inf x_i = 0$$
 goto j_{goto} :

$$B_i' =$$
 if $\mathbf{x}_i = \mathbf{0}$ then $\mathbf{x}_{ ext{index}} = j_{ ext{goto}}$ else $\mathbf{x}_{ ext{index}} = j_{i+1}$

Außerdem:

$$j_{k+1} = 0$$

Schlussfolgerung aus dem Beweis

Jede WHILE-berechenbare Funktion lässt sich durch ein WHILE+IF-Programm mit nur einer Schleife berechnen.

Weitere Schlussfolgerung

Spaghetti-Code (GOTO) ist nicht mächtiger als strukturierter Code (WHILE)

Denn:

Man kann mit dem einen das andere nachahmen.

Teil II

- Beziehungen zwischen LOOP, WHILE, GOTO und Turingmaschinen

Rück- und Ausblick

Aus dem bisherigen wissen wir schon:

LOOP
$$\subseteq$$
 WHILE $=$ GOTO \subseteq WHILE part $=$ GOTO part

Noch zu zeigen:

- LOOP ≠ WHILE
- WHILE = TM und WHILE part = TM part

GOTO ⊂ **TM**

Theorem 8.1

 $GOTO \subset TM$

Beweisskizze

Es genügt zu zeigen, dass zu jedem GOTO-Programm

$$P = j_1 : B_1; j_2 : B_2; ...; j_k : B_k$$

eine äguivalente Turingmaschine konstruiert werden kann.

$GOTO \subseteq TM$

Beweisskizze (Forts.)

Sei I die Zahl der in P vorkommenden Register

Konstruiere eine TM M mit / Halbbändern über dem Alphabet $\Sigma = \{\#, | \}$

Das *i*-te Band enthält immer soviele |, wie der Wert von x_i ist

M hat für jede Zeile j_r : B_r von P einen Zustand s_r

Wenn M in s_r ist, macht sie das, was B_r entspricht:

- Register inkrementieren oder dekrementieren
- Sprungbedingung auswerten
- In entsprechenden Folgezustand gehen

All dies kann eine TM offensichtlich leisten

$GOTO \subset TM$

Beweisskizze (Forts.)

In "Theoretische Informatik I" haben wir gezeigt:

Zu jeder TM mit mehreren Halbbändern gibt es eine äquivalente Standard-TM mit nur einem Halbband.

Also gibt es auch eine Standard-TM, die das Programm P simuliert.

Bemerkung

TM \subseteq **GOTO** und damit **TM** = **GOTO** = **WHILE** beweisen wir später

Lemma 8.2

Die Menge aller LOOP-Programme ist rekursiv aufzählbar.

Beweisskizze

Man kann eine Grammatik angeben, die die LOOP-Programme erzeugt.

Bemerkung

Das gilt genauso für WHILE-Programme, GOTO-Programme und Turingmaschinen.

Lemma 8.3

Es gibt eine Turingmaschine $M_{I,OOP}$, die alle LOOP-Programme simuliert.

Genauer:

Gegeben sei eine Aufzählung P_1, P_2, P_3, \ldots aller LOOP-Programme.

Wenn P_i auf Eingabe m, die Ausgabe o berechnet, dann berechnet M_{LOOP} auf Eingabe $\langle i, m \rangle$ die Ausgabe o.

Beweisskizze

Der Beweis kannn genauso geführt werden, wie der Beweis, dass es eine universelle TM gibt, die alle Turingmaschinen simuliert.

Bemerkung

Auch das gilt genauso für WHILE-Programme, GOTO-Programme und TMen.

Theorem 8.4

LOOP ≠ TM

Beweis

Die Funktion $\psi : \mathbb{N} \to \mathbb{N}$ sei definiert durch:

$$\psi(i) = P_i(i) + 1$$
 (Ausgabe von P_i auf Eingabe i plus 1)

1. $\psi \in TM$

Ändere M_{LOOP} so ab, dass nach der Berechnung von $P_i(i)$ noch 1 addiert wird.

Beweis (Forts.)

2. ψ ∉ LOOP

Angenommen, es gebe ein LOOP-Programm P_{i_0} , das ψ berechnet.

Aber:

Die Ausgabe von P_{i_0} auf Eingabe von i_0 ist

$$P_{i_0}(i_0) \neq P_{i_0}(i_0) + 1 = \psi(i_0)$$

Widerspruch!

Bemerkung

Dies gilt **nicht** für WHILE-Programme, GOTO-Programme und TMen.

Warum? Beweis beruht auf Totalität von ψ,

denn sonst kann $P_{i_0}(i_0) = P_{i_0}(i_0) + 1$ undefiniert sein.

Rück- und Ausblick

Aus dem bisherigen wissen wir:

- LOOP ⊆ WHILE = GOTO ⊆ TM
- WHILE $part = GOTO^{part} \subset TM^{part}$

Noch zu zeigen:

 $\mathsf{TM} \subseteq \mathsf{WHILE} \text{ und } \mathsf{TM}^{part} \subseteq \mathsf{WHILE}^{part}$