Vorlesung Theoretische Informatik II

Bernhard Beckert

Institut für Informatik

Wintersemester 2007/2008

Dank

Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von

Katrin Erk (gehalten an der Universität Koblenz-Landau)

Jürgen Dix (gehalten an der TU Clausthal)

Christoph Kreitz (gehalten an der Universität Potsdam)

Ihnen gilt mein herzlicher Dank.

- Bernhard Beckert, Oktober 2007

Darstellung von Aussagenlogik im λ -Kalkül

Wahrheitswerte

$$true =_{def} \lambda x.\lambda y. x$$

 $false =_{def} \lambda x.\lambda y. y$

if-then-else

if C then U else $V =_{def}$???C U V

Darstellung von Aussagenlogik im λ -Kalkül

Mit true, false, if-then-else alles darstellbar

```
\neg x \equiv if x then false else true
```

 $x \wedge y \equiv if x then y else false$

 $x \lor y \equiv if x then true else y$

Damit

 $\neg x \equiv x$ false true

 $x \wedge y \equiv x y \text{ false}$

 $x \lor y \equiv x \text{ true } y$

Darstellung Paaren im λ-Kalkül

Paare

$$mkpair(x,y) =_{def} \lambda b. b. x y$$
 $fst(p) =_{def} p true$
 $snd(p) =_{def} p false$

Ähnlich für

- Tupel
- Listen
- etc.

Darstellung natürlicher Zahlen im λ -Kalkül

Natürliche Zahlen

$$0 =_{\text{def}} \lambda f.\lambda x. x$$

$$1 =_{\text{def}} \lambda f.\lambda x. f x$$

$$2 =_{\text{def}} \lambda f.\lambda x. f (f x)$$

$$3 =_{\text{def}} \lambda f.\lambda x. f (f (f x))$$

$$\vdots$$

$$n =_{\text{def}} \lambda f.\lambda x. \underbrace{f (... (f x)...)}_{q \text{ mal}}$$

Darstellung natürlicher Zahlen im λ -Kalkül

Operationen auf natürlichen Zahlen

$$succ(n) =_{def} \lambda g.\lambda y. n g (g y)$$

 $+(n,m) =_{def} n succ m$
 $*(n,m) =_{def} n (m succ) 0$
 $iszero(n) =_{def} n (\lambda b. false) true$

Rekursion im λ-Kalkül

Der Y-Operator

$$Y =_{def} \lambda F.(\lambda y. F(y y)) (\lambda x. F(xx))$$

Y ist Fixpunkt-Operator

$$f(Yf) = Yf$$

für alle f

Rekursion im λ-Kalkül

Beispiel

$$fak \ n =_{def} (Y F) \ n$$

mit

$$F =_{\text{def}} \lambda f. \lambda n. \text{ if iszero}(n) \text{ then 1 else } n*(f(n-1))$$

Allgemein

Der Y-Operator erlaubt es, beliebige μ -rekursive Funktionen im λ -Kalkül zu definieren.