Vorlesung Theoretische Informatik II

Bernhard Beckert

Institut für Informatik

Wintersemester 2007/2008

Dank

Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von

Katrin Erk (gehalten an der Universität Koblenz-Landau)

Jürgen Dix (gehalten an der TU Clausthal)

Christoph Kreitz (gehalten an der Universität Potsdam)

Ihnen gilt mein herzlicher Dank.

- Bernhard Beckert, Oktober 2007

Die Idee

Zweck

- Formale Definition von Funktionen
- Untersuchung und Anwendung von Funktionsdefinitionen
- Berechnungsmodell
- Grundlage funktionaler Programmiersprachen
- Einfach und doch mächtig

Grundlegende Eigenschaften

- Funktion identifiziert mit λ -Ausdrücken, die sie beschreiben
- Funktionen angewendet auf Funktionen
- Nichts außer Funktionen (keine anderen Datentypen)

Entwickelt von Alonzo Church und Stephen Kleene in den 1930er Jahren

Syntax

Definition 14.1 (\lambda-Ausdruck)

Variable Jede Variable

Χ

ist ein λ-Ausdruck

Abstraktion Ist x eine Variable und e ein λ -Ausdruck, dann ist

 $\lambda x.e$

ein λ-Ausdruck

Anwendung Sind e_1, e_2 λ -Ausdrücke, dann ist

 $e_1 e_2$

ein λ-Ausdruck

Syntax

Assoziativität und Bindungsstärke

Anwendungen sind linksassoziativ:

$$e_1 e_2 e_3 = (e_1 e_2) e_3$$

Anwendung bindet stärker als Abstraktion:

$$\lambda x.e_1 e_2 = \lambda x.(e_1 e_2)$$

WICHTIG!

Dies muss man wissen, um λ -Ausdrücke verstehen zu können!

Beispiele

Einige wichtige λ-Ausdrücke

Indentitätsfunktion:

$$I = \lambda x.x$$

Selbstanwendung:

$$D = \lambda x.x x$$

Auslassen des 2. Argumentes:

$$K = \lambda x.\lambda y.x$$

α -Konversion

Definition 14.2

- Ein Vorkommen einer Variablen x ist gebunden, wenn es im Skopus von λx ist.
- Andernfalls ist es frei.

α -Konversion

- λ-Ausdrücke, die gleich sind bis auf Umbenennen gebundener Variablen
 - werden identifiziert
 - beschreiben dieselbe Funktion

Substitution

Definition 14.3

Das Ergebnis der Substitution von x in e durch e'

in Zeichen: [e'/x]e

entsteht dadurch, dass

- gebundene Variablen so umbenannt werden, dass sie nur einmal vorkommen
- 2 x in e syntaktisch durch e^{t} ersetzt wird

β-Reduktion

β-Reduktion

Der λ-Ausdruck

$$(\lambda x.e) e'$$

kann durch β-Reduktion zu dem Ausdruck

reduziert werden

In Zeichen:
$$(\lambda x.e) \ e' \ \rightarrow_{\beta} \ [e'/x] \ e$$

Wenn $e \rightarrow_{\beta}^{*} e'$, dann

- werden e, e' identifiziert
- beschreiben dieselbe Funktion

β-Reduktion

Beispiel 14.4

$$(\lambda f.f\ (\lambda x.x))\ (\lambda x.x)\ \to_{\beta}^*\ (\lambda y.y)$$

Beispiel 14.5

Der Ausdruck

$$(\lambda x.x x) (\lambda x.x x)$$

kann nicht weiter reduziert werden

Eigenschaften der Reduktion

Eigenschaften der Reduktion mittels α - und β -Reduktion

- β-Reduktion terminiert nicht immer
- β-Reduktion ist nicht deterministisch
- Jedoch: \rightarrow_{β}^* ist konfluent (hat die Church-Rosser-Eigenschaft): Gilt

$$e \rightarrow_{\beta}^{*} e_{1}$$
 und $e \rightarrow_{\beta}^{*} e_{2}$

dann gibt es ein e' mit

$$e_1 o_{eta}^* e'$$
 und $e_2 o_{eta}^* e'$

Darum: Normalformen sind eindeutig

Mächtigkeit des λ -Kalküls

Ausdrucksstärke

Im λ-Kalkül kann man ausdrücken:

- Datentypen wie Integer, Boolean, Listen, Bäume, ...
- Verzweigung
- Rekursion

Turing-Mächtigkeit

Der λ-Kalkül kann Turing-Maschinen simulieren

Unentscheidbarkeit

Es ist unentscheidbar, ob für beliebig gegebene e, e' gilt, dass

$$e \rightarrow_{\beta}^{*} e'$$

Darstellung von Aussagenlogik im λ -Kalkül

Wahrheitswerte

$$true =_{def} \lambda x.\lambda y. x$$

 $false =_{def} \lambda x.\lambda y. y$

if-then-else

if C then U else $V =_{def}$???C U V

Darstellung von Aussagenlogik im λ -Kalkül

Mit true, false, if-then-else alles darstellbar

```
\neg x \equiv if x then false else true
```

 $x \wedge y \equiv \text{if } x \text{ then } y \text{ else false}$

 $x \lor y \equiv if x then true else y$

Damit

 $\neg x \equiv x$ false true

 $x \wedge y \equiv x y \text{ false}$

 $x \lor y \equiv x \text{ true } y$

Darstellung Paaren im λ-Kalkül

Paare

$$mkpair(x,y) =_{def} \lambda b. b. x y$$
 $fst(p) =_{def} p true$
 $snd(p) =_{def} p false$

Ähnlich für

- Tupel
- Listen
- etc.

Darstellung natürlicher Zahlen im λ -Kalkül

Natürliche Zahlen

$$0 =_{\text{def}} \lambda f.\lambda x. x$$

$$1 =_{\text{def}} \lambda f.\lambda x. f x$$

$$2 =_{\text{def}} \lambda f.\lambda x. f (f x)$$

$$3 =_{\text{def}} \lambda f.\lambda x. f (f (f x))$$

$$\vdots$$

$$n =_{\text{def}} \lambda f.\lambda x. \underbrace{f (... (f x)...)}_{\text{a mel}}$$

Darstellung natürlicher Zahlen im λ -Kalkül

Operationen auf natürlichen Zahlen

$$succ(n) =_{def} \lambda g.\lambda y. n g (g y)$$

 $+(n,m) =_{def} n succ m$
 $*(n,m) =_{def} n (m succ) 0$
 $iszero(n) =_{def} n (\lambda b. false) true$

Rekursion im λ-Kalkül

Der Y-Operator

$$Y =_{def} \lambda F.(\lambda y. F(y y)) (\lambda x. F(xx))$$

Y ist Fixpunkt-Operator

$$f(Yf) = Yf$$

für alle f

Rekursion im λ-Kalkül

Beispiel

$$fak \ n =_{def} (Y F) \ n$$

mit

$$F =_{\text{def}} \lambda f. \lambda n. \text{ if iszero}(n) \text{ then 1 else } n*(f(n-1))$$

Allgemein

Der Y-Operator erlaubt es, beliebige μ -rekursive Funktionen im λ -Kalkül zu definieren.