Formal Verification of Software

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

Summer Term 2005

All information relevant to this lecture can be found on the web page

www.uni-koblenz.de/~beckert/Lehre/Verification

Contents

Why verification?
 Advantages and disadvantage. Costs and gains.

Contents

- Why verification?
 Advantages and disadvantage. Costs and gains.
- Basics of deductive program verification: Hoare Logic and Dynamic Logic

Contents

- Why verification?
 Advantages and disadvantage. Costs and gains.
- Basics of deductive program verification: Hoare Logic and Dynamic Logic
- Deductive verification of object-oriented programming languages (using Java as an example)

Quality: Important for ...

- Safety-critical applications (railway switches)
 Security-critical applications (access control, electronic banking)
 Financial reasons (phone cards)
 - Legal reasons (electronic signature, EAL6/7 in Common Criteria)

Quality: Important for ...

Safety-critical applications

- (railway switches)
- Security-critical applications (access control, electronic banking)
- Financial reasons (phone cards)
- Legal reasons (electronic signature, EAL6/7 in Common Criteria)

Productivity: Important for ...

Obvious reasons

Quality through ...

- Better and more precise understanding of model and implementation
- Better written software (modularisation, information hiding, ...)
- Error detection with runtime checks
- Test case generation
- Static analysis
- Deductive verification

Productivity through

- Error detection in early stages of development
- Re-use of components (requires specification and validation)
- **Setter documentation, maintenance**
- Test case generation
- Knowledge about formal methods leads to better software development

- Sun the system at chosen inputs and observe its behaviour
 - Randomly chosen
 - Intelligently chosen (by hand: expensive!)
 - Automatically chosen (need formalized spec)

- Sun the system at chosen inputs and observe its behaviour
 - Randomly chosen
 - Intelligently chosen (by hand: expensive!)
 - Automatically chosen (need formalized spec)
- What about other inputs? (test coverage)

- Sun the system at chosen inputs and observe its behaviour
 - Randomly chosen
 - Intelligently chosen (by hand: expensive!)
 - Automatically chosen (need formalized spec)
- What about other inputs? (test coverage)
- What about the observation? (test oracle)

- Run the system at chosen inputs and observe its behaviour
 - Randomly chosen
 - Intelligently chosen (by hand: expensive!)
 - Automatically chosen (need formalized spec)
- What about other inputs? (test coverage)
- What about the observation? (test oracle)

Challenges can be addressed by/require formal methods

Design and specification

Unified Modeling Language – UML

Graphical language for object-oriented modelling Standard of Object Management Group (OMG)

Object Constraint Language – OCL

Formal textual assertion language UML Substandard

Design and specification

Unified Modeling Language – UML

Graphical language for object-oriented modelling Standard of Object Management Group (OMG)

Object Constraint Language – OCL

Formal textual assertion language UML Substandard

Consolidation and documentation of design knowledge

Patterns, idioms, architectures, frameworks, etc.

Design and specification

Unified Modeling Language – UML

Graphical language for object-oriented modelling Standard of Object Management Group (OMG)

Object Constraint Language – OCL

Formal textual assertion language UML Substandard

Consolidation and documentation of design knowledge

Patterns, idioms, architectures, frameworks, etc.

Industrial implementation languages

Java, C#

Types of Requirements

- functional requirements
- communication, protocols
- real-time requirements
- memory use
- security
- 🧕 etc.

Types of Requirements

- functional requirements
- communication, protocols
- real-time requirements
- memory use
- security
- 🧕 etc.

Different Formal Methodsx

- deductive verification
- model checking
- static analysis
- run-time checks (of formel specification)

Types of Requirements

- functional requirements
- communication, protocols
- real-time requirements
- memory use
- security
- 🥒 etc.

Different Formal Methodsx

- deductive verification
- model checking
- static analysis
- run-time checks(of formel specification)

Possible reasons for errors

- Program is not correct (does not satisfy the specification) Formal verification proves absence of this kind of error
- Program is not adequate (error in specification) Formal specification/verification avoid/find this kind of error
- Error in operating system, compiler, hardware
 Not avoided (unless compiler etc. specified/verified)

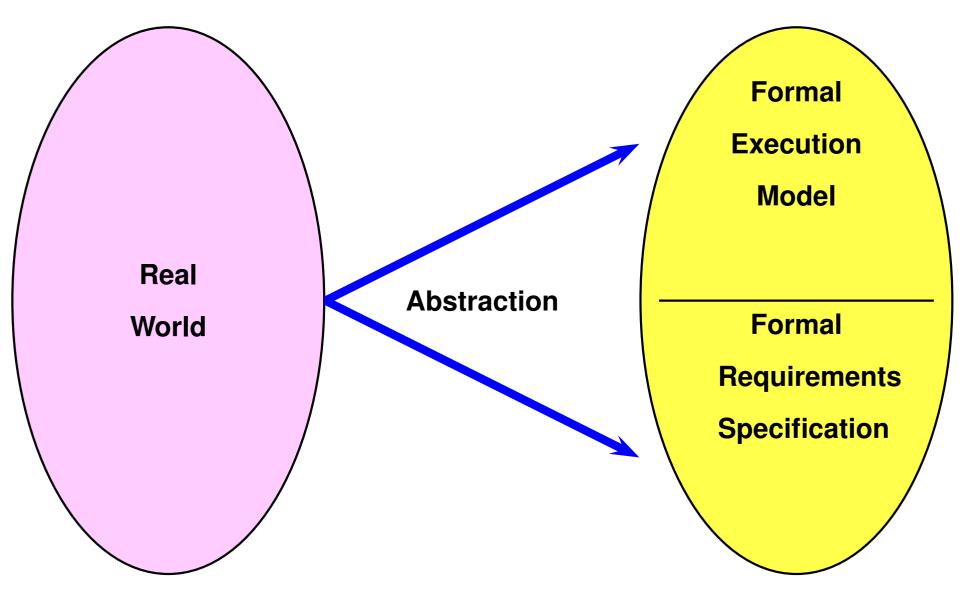
Possible reasons for errors

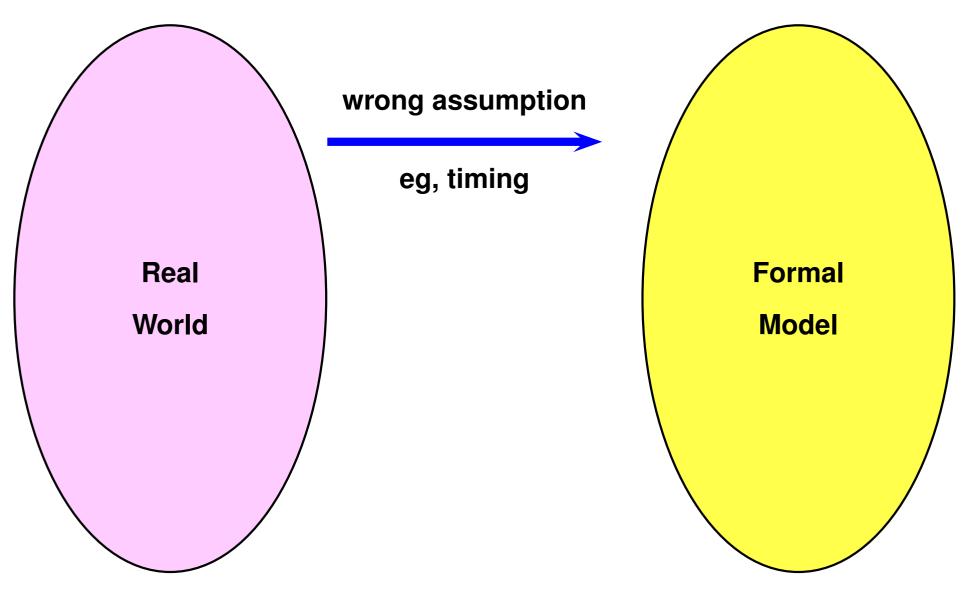
- Program is not correct (does not satisfy the specification) Formal verification proves absence of this kind of error
- Program is not adequate (error in specification) Formal specification/verification avoid/find this kind of error
- Error in operating system, compiler, hardware
 Not avoided (unless compiler etc. specified/verified)

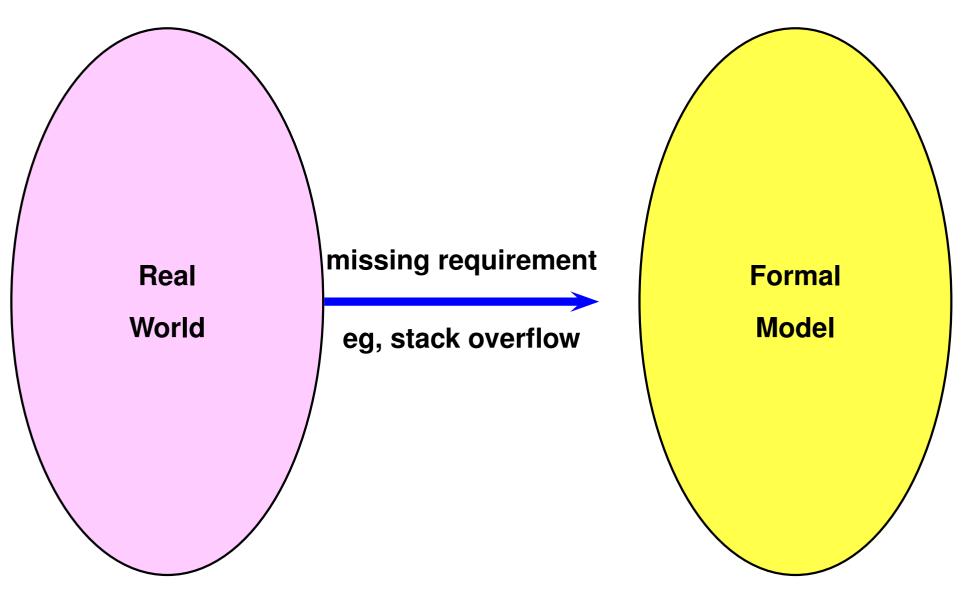
No full specification/verification

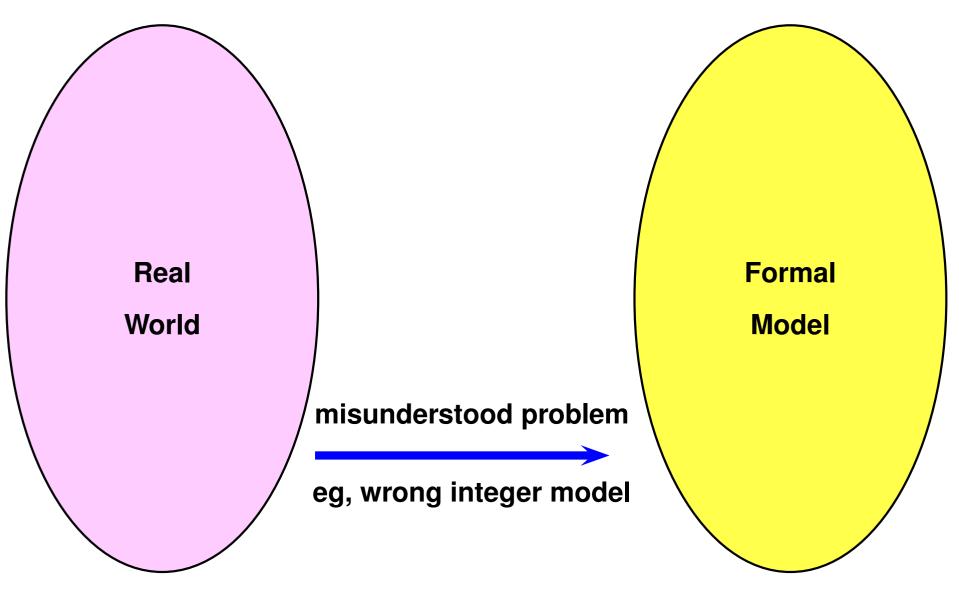
In general, it is neither useful nor feasable to fully specify and verify large software systems. Then, formal methods are restricted to:

- Important parts/modules
- Important properties/requirements


The Main Point of Formal Methods is Not

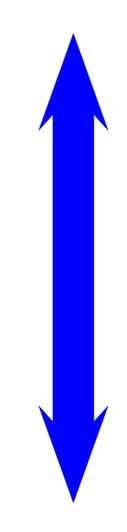

- To show "correctness" of entire systems (What IS correctness? Always go for specific properties!)
- To replace testing entirely
- To replace good design practices


There is no silver bullet that lets you get away without writing crystal clear requirements and good design, in particular, Formal Methods aren't one


- Formal proof can replace many test cases
- Formal methods can be used in automatic test case generation
- Formal methods improve the quality of specifications

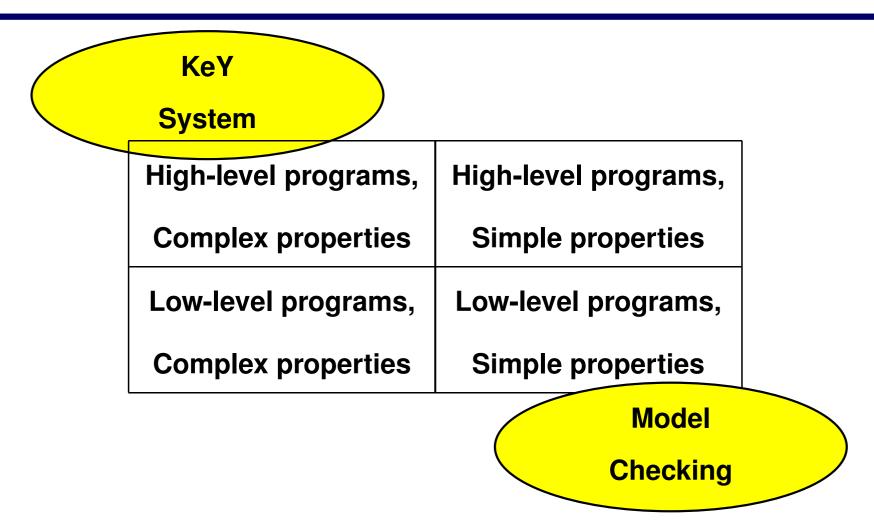
Formalisation of system requirements is hard

Proving properties of systems can be hard


System Abstraction Level

- Low level of abstraction
 - Finitely many states
 - Tedious to program, worse to maintain
 - Automatic proofs are (in principle) possible
- High level of abstraction
 - Complex datatypes and control structures
 - Easier to program
 - Automatic proofs (in general) impossible!

Specification Abstraction Level


- Low level of abstraction
 - Finitely many cases
 - Approximation, low precision
 - Automatic proofs are (in principle) possible
- High level of abstraction
 - General properties
 - High precision, tight modeling
 - Automatic proofs (in general) impossible!


High-level programs,	High-level programs,	
Complex properties	Simple properties	
Low-level programs,	Low-level programs,	
Complex properties	Simple properties	

High-level programs,	High-level programs,	
Complex properties	Simple properties	
Low-level programs,	Low-level programs,	
Complex properties	Simple properties	
	Model	
	Checking	

Main Approaches

- "Automatic" Proof
 - No interaction
 - Sometimes help is required anyway
 - Formal specification still "by hand"
- "Semi-Automatic" Proof
 - Interaction may be required
 - Very often proof tool suggests proof rules
 - Proof is checked by tool

Feature interaction for telephone call processing software

- **J** Tool works directly on C source code
- Web interface to track properties
- Work farmed out to large numbers of computers
- Finds shortest possible error trace
- 18 months, 300 versions, 75 bugs found
- Main burden: Defining meaningful properties

- Device drivers running in "kernel mode" should respect API
- Third-party device drivers that do not respect APIs responsible for 90% of Windows crashes
- SLAM inspects C code, builds a finite state machine, checks requirements
- Being turned into a commercial tool right now

- Design for formal verification
- Combining automatic methods with theorem provers
- Combining static analysis of programs with automatic methods and with theorem provers
- Combining test and formal verification
- Integration of formal methods into SW development process
- Integration of formal method tools into CASE tools

- Are (more and more) used in practice
- Can shorten development time
- Can push the limits of feasible complexity
- Can increase product quality

- Are (more and more) used in practice
- Can shorten development time
- Can push the limits of feasible complexity
- Can increase product quality

Those responsible for software management should consider

formal methods, in particular, where safety-critical,

security-critical, and cost-intensive software is concerned