Formal Verification of Software

Propositional and Predicate Logic

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

Propositional Logic: Syntax

Special symbols

$$() \neg \land \lor \to \leftrightarrow$$

Propositional Logic: Syntax

Special symbols

$$() \neg \land \lor \to \leftrightarrow$$

Signature

Propositional variables $\Sigma = \{p_0, p_1, \ldots\}$

Propositional Logic: Syntax

Special symbols

$$() \neg \land \lor \to \leftrightarrow$$

Signature

Propositional variables $\Sigma = \{p_0, p_1, \ldots\}$

Formulas

- **•** The propositional variables $p \in \Sigma$ are formulas
- \blacksquare If A, B are formulas, then

$$\neg A \quad (A \land B) \quad (A \lor B) \quad (A \to B) \quad (A \leftrightarrow B)$$

are formulas

Introduced by Smullyan, 1968

Introduced by Smullyan, 1968

Conjunctive formulas Type α

 $\neg \neg A$ $(A \land B)$ $\neg (A \lor B)$ $\neg (A \to B)$

Introduced by Smullyan, 1968

$$\neg \neg A \qquad (A \land B) \qquad \neg (A \lor B) \qquad \neg (A \to B)$$

Disjunctive formulas Type β

$$\neg (A \land B)$$
 $(A \lor B)$ $(A \to B)$

Non-literal formulas and their corresponding "logical" sub-formulas

$$\begin{array}{c|c|c} \alpha & \alpha_1 & \alpha_2 \\ \hline A \land B & A & B \\ \neg (A \lor B) & \neg A & \neg B \\ \neg (A \rightarrow B) & A & \neg B \\ \hline \neg \neg A & A & A \end{array}$$

Non-literal formulas and their corresponding "logical" sub-formulas

α	$lpha_1$	α_2	β	β_1	β_2
$A \wedge B$	A	В	$\neg(A \land B)$	$\neg A$	$\neg B$
$\neg(A \lor B)$	$\neg A$	$\neg B$	$A \lor B$	A	В
$\neg(A \rightarrow B)$	A	$\neg B$	$A {\rightarrow} B$	$\neg A$	В
$\neg \neg A$	A	A			

Interpretation

Function $I : \Sigma \rightarrow \{\underline{true}, \underline{false}\}$

Interpretation

Function $I : \Sigma \rightarrow \{\underline{true}, \underline{false}\}$

Valuation

Extension of interpretation to formulas as follows:

$$val_{I}(p) = I(p)$$

$$val_{I}(\neg p) = \begin{cases} \underline{true} & \text{if } I(p) = \underline{false} \\ \underline{false} & \text{if } I(p) = \underline{true} \end{cases}$$

 $\mathsf{val}_{I}(\alpha) = \begin{cases} \underline{\mathsf{true}} & \mathsf{if} \, \mathsf{val}_{I}(\alpha_{1}) = \underline{\mathsf{true}} \\ & \mathsf{and} \, \mathsf{val}_{I}(\alpha_{2}) = \underline{\mathsf{true}} \\ \\ & \underline{\mathsf{false}} & \mathsf{if} \, \mathsf{val}_{I}(\alpha_{1}) = \underline{\mathsf{false}} \\ & \mathsf{or} \, \mathsf{val}_{I}(\alpha_{2}) = \underline{\mathsf{false}} \end{cases}$

$$\mathsf{val}_{I}(A \leftrightarrow B) = \begin{cases} \underline{\mathsf{true}} & \mathsf{if} \, \mathsf{val}_{I}(A) = \mathsf{val}_{I}(B) \\\\ \underline{\mathsf{false}} & \mathsf{if} \, \mathsf{val}_{I}(A) \neq \mathsf{val}_{I}(B) \end{cases}$$

Additional special symbols

Additional special symbols

"" "∀" "∃"

Object variables

Var = { x_0, x_1, \ldots }

Additional special symbols

"" "∀" "∃"

Object variables

Var = { x_0, x_1, \ldots }

Signature

Triple $\Sigma = \langle F_{\Sigma}, P_{\Sigma}, \alpha_{\Sigma} \rangle$ consisting of

- set F_{Σ} of functions symbols
- **set** P_{Σ} of predicate symbols
- function $\alpha_{\Sigma} : F_{\Sigma} \cup P_{\Sigma} → \mathbb{N}$ assigning aritys to function and predicate symbols

Terms

- \checkmark variables $x \in Var$ are terms
- **●** if $f \in F_{\Sigma}$, $\alpha_{\Sigma}(f) = n$, and t_1, \ldots, t_n terms, then $f(t_1, \ldots, t_n)$ is a term

Terms

- \checkmark variables $x \in Var$ are terms
- if $f \in F_{\Sigma}$, $\alpha_{\Sigma}(f) = n$, and t_1, \ldots, t_n terms, then $f(t_1, \ldots, t_n)$ is a term

Atoms

If $p \in P_{\Sigma}$, $\alpha_{\Sigma}(p) = n$, and t_1, \ldots, t_n terms, then $p(t_1, \ldots, t_n)$ is an atom

Formulas

- Atoms are formulas
- **•** If A, B are formulas, $x \in Var$, then

$$\neg A$$
, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$, $\forall xA$, $\exists xA$

are formulas

Formulas

- Atoms are formulas
- **•** If A, B are formulas, $x \in Var$, then

$$eg A, (A \land B), (A \lor B), (A \to B), (A \leftrightarrow B), \forall xA, \exists xA$$

are formulas

Literals

If A is an atom, then A and $\neg A$ are literals

Example

Signature

$$\Sigma_{\leq} = \langle \{0, a, b, f\}, \{in_iv, leq\}, lpha
angle$$
 with

$$\alpha(0) = \alpha(a) = \alpha(b) = 0$$

$$\alpha(f) = 1$$

$$\alpha(leq) = 2$$

$$\alpha(in_iv) = 3$$
 (in interval)

Example

Signature

$$\Sigma_{\leq} = \langle \{0, a, b, f\}, \{in_iv, leq\}, \alpha \rangle$$

with

$$\alpha(0) = \alpha(a) = \alpha(b) = 0$$

$$\alpha(f) = 1$$

$$\alpha(leq) = 2$$

$$\alpha(in_iv) = 3$$
 (in interval)

Formula

$$\phi = \neg \underbrace{leq(y, x)}_{\text{Atom}} \rightarrow \exists z \underbrace{(\neg leq(z, x) \land \neg leq(y, z))}_{\text{Scope of } \exists z}$$

Predicate Logic: Unified Notation

Extension of unified notation for propositional logic

 ${\rm Universal\ formulas}\qquad {\rm Type}\ \gamma$

 $\forall xA \quad \neg \exists xA$

Predicate Logic: Unified Notation

Extension of unified notation for propositional logic

Universal formulas Type γ

 $\forall xA \quad \neg \exists xA$

Existential formulas

Type δ

 $\neg \forall x A \qquad \exists x A$

 $\gamma\text{-}$ and $\delta\text{-}\text{formulas}$ and their corresponding "logical" sub-formulas

$$\gamma$$
 $\gamma_1(x)$ δ $\delta_1(x)$ $\forall x A(x)$ $A(x)$ $\neg \forall x A(x)$ $\neg A(x)$ $\neg \exists x A(x)$ $\neg A(x)$ $\exists x A(x)$ $A(x)$

Interpretation

A pair $\mathcal{D} = \langle D, I \rangle$ where

- **D** an arbitrary non-empty set, the *universe*
- I an interpretation function

for $f \in F_{\Sigma}$: $I(f) : D^{\alpha(f)} \to D$ for $p \in P_{\Sigma}$: $I(p) : D^{\alpha(p)} \to \{\underline{\text{true}}, \underline{\text{false}}\}$

Interpretation

A pair $\mathcal{D} = \langle D, I \rangle$ where

- **D** an arbitrary non-empty set, the *universe*
- I an interpretation function

for $f \in F_{\Sigma}$: $I(f) : D^{\alpha(f)} \to D$ for $p \in P_{\Sigma}$: $I(p) : D^{\alpha(p)} \to \{\underline{\text{true}}, \underline{\text{false}}\}$

Variable assignment

A function $\lambda : \operatorname{Var} \to D$

Valuation

Extension of interpretation and variable assignment to formulas

 $\operatorname{val}_{\mathcal{D},\lambda}(x) = \lambda(x) \quad \text{ for } x \in \operatorname{Var}$

 $\mathsf{val}_{\mathcal{D},\lambda}(f(t_1,\ldots,t_n)) = I(f)(\mathsf{val}_{\mathcal{D},\lambda}(t_1),\ldots,\mathsf{val}_{\mathcal{D},\lambda}(t_n))$

Valuation

Extension of interpretation and variable assignment to formulas

 $\operatorname{val}_{\mathcal{D},\lambda}(x) = \lambda(x) \quad \text{for } x \in \operatorname{Var}$ $\operatorname{val}_{\mathcal{D},\lambda}(f(t_1,\ldots,t_n)) = I(f)(\operatorname{val}_{\mathcal{D},\lambda}(t_1),\ldots,\operatorname{val}_{\mathcal{D},\lambda}(t_n))$

$$\operatorname{val}_{\mathcal{D},\lambda}(p(t_1,\ldots,t_n)) = I(p)(\operatorname{val}_{\mathcal{D},\lambda}(t_1),\ldots,\operatorname{val}_{\mathcal{D},\lambda}(t_n))$$
$$\operatorname{val}_{\mathcal{D},\lambda}(\forall xA) = \begin{cases} \underline{\operatorname{true}} & \text{if } \operatorname{val}_{\mathcal{D},\lambda_x^d}(A) = \underline{\operatorname{true}} & \text{for all } d \in D \\ \underline{\operatorname{false}} & \text{otherwise} \end{cases}$$
$$\operatorname{val}_{\mathcal{D},\lambda}(\exists xA) = \begin{cases} \underline{\operatorname{true}} & \text{if } \operatorname{val}_{\mathcal{D},\lambda_x^d}(A) = \underline{\operatorname{true}} & \text{for some } d \in D \\ \underline{\operatorname{false}} & \text{otherwise} \end{cases}$$

 $val_{\mathcal{D},\lambda}$ defined for propositional operators in the same way as val_{I} .

Example

D	=	\mathbb{R}
<i>I</i> (0)	—	0
I(a)	—	-1
I(b)	=	1
I(f)	=	$\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{cases}$
$I(leq) = \underline{true}$	iff	$x \leq_{\mathbb{R}} y$
$I(in_iv) = \underline{true}$	iff	$x \in [a, b]$

Model

An interpretation ${\mathcal D}\,$ is model of a set Φ of formulas iff

 $\operatorname{val}_{\mathcal{D},\lambda}(A) = \underline{\operatorname{true}}$ for all λ and all $A \in \Phi$.

Notation: $\mathcal{D} \models \Phi$

Model

An interpretation ${\mathcal D}\,$ is model of a set Φ of formulas iff

 $\operatorname{val}_{\mathcal{D},\lambda}(A) = \underline{\operatorname{true}}$ for all λ and all $A \in \Phi$.

<u>Notation:</u> $\mathcal{D} \models \Phi$

Satisfiable

 Φ ist satisfiable iff there are

an interpretation \mathcal{D} and a variable assignment λ s.t.

 $\operatorname{val}_{\mathcal{D},\lambda}(A) = \underline{\operatorname{true}} \quad \text{for all } A \in \Phi$

Model

An interpretation ${\mathcal D}\,$ is model of a set Φ of formulas iff

 $\operatorname{val}_{\mathcal{D},\lambda}(A) = \underline{\operatorname{true}}$ for all λ and all $A \in \Phi$.

Notation: $\mathcal{D} \models \Phi$

Satisfiable

 $\boldsymbol{\Phi}$ ist satisfiable iff there are

an interpretation \mathcal{D} and a variable assignment λ s.t.

 $\operatorname{val}_{\mathcal{D},\lambda}(A) = \underline{\operatorname{true}} \quad \text{for all } A \in \Phi$

Validity

A is valid iff

all interpretations are a model of \boldsymbol{A}

Consequence

A formula A is a consequence of Φ iff

all models of Φ are models of A as well

Notation: $\Phi \vDash A$

Consequence

A formula A is a consequence of Φ iff

all models of Φ are models of A as well

Notation: $\Phi \vDash A$

Equivalent formulas

Two formulas are equivalent iff

they are consequences of each other

Consequence

A formula A is a consequence of Φ iff

all models of Φ are models of A as well

Notation: $\Phi \vDash A$

Equivalent formulas

Two formulas are equivalent iff

they are consequences of each other

Satisfiability equivalent formulas

Two formulas are satisfiability equivalent iff

they are either both satisfiable or both unsatisfiable

Substitution

Function $\sigma : Var \rightarrow Term$

Written as: $\{x_1 \leftarrow t_1, \ldots, x_n \leftarrow t_n\}$

where $\sigma(x) = \begin{cases} t_i & \text{if } x = x_i \text{ for } 1 \leq i \leq n \\ x & \text{otherwise} \end{cases}$

Substitution

Function $\sigma : Var \rightarrow Term$

Written as:
$$\{x_1 \leftarrow t_1, \ldots, x_n \leftarrow t_n\}$$

where
$$\sigma(x) = \begin{cases} t_i & \text{if } x = x_i \text{ for } 1 \leq i \leq n \\ x & \text{otherwise} \end{cases}$$

Extension to terms and formulas

By replacing all *free* occurrences of variables x by $\sigma(x)$

Example:

$$\begin{split} \phi &= \neg leq(y, x) \to \exists z (\neg leq(z, x) \land \neg leq(y, z)) \\ \sigma &= \{x \leftarrow a, y \leftarrow w, z \leftarrow c\} \\ \phi \sigma &= \neg leq(w, a) \to \exists z (\neg leq(z, a) \land \neg leq(w, z)) \end{split}$$

Example:

$$\begin{split} \phi &= \neg leq(y, x) \to \exists z (\neg leq(z, x) \land \neg leq(y, z)) \\ \sigma &= \{x \leftarrow a, y \leftarrow w, z \leftarrow c\} \\ \phi \sigma &= \neg leq(w, a) \to \exists z (\neg leq(z, a) \land \neg leq(w, z)) \end{split}$$

Note

Substitution forbidden in cases such as:

 ϕ as above and $\sigma = \{y \leftarrow f(z)\}$

Typed Signatures

Definition

A typed Signature is a tuple

$$\Sigma = (S, \leq, F, P, \alpha),$$

where

- *S* is a finite set of *types* (or *sorts*)
- $\bullet \leq is a partial ordering on S$
- *F*, *P* are sets of function and predicate symbols (as before)
- $\alpha: F \cup P \to S^*$ assigns argument and domain types to function and predicate symbols

Typed Signatures

The function $\boldsymbol{\alpha}$

$$\alpha(f) = Z_1 \dots Z_n Z'$$
 means:

f is a symbol for functions assigning to *n*-tuples of elements of type $Z_1 \ldots Z_n$ an element of type Z'

$$\alpha(p) = Z_1, \ldots, Z_n$$
 means:

p is a symbol for relations on n-tuples of elements of types Z_1, \ldots, Z_n

Typed Signatures

The function $\boldsymbol{\alpha}$

$$\alpha(f) = Z_1 \dots Z_n Z'$$
 means:

f is a symbol for functions assigning to *n*-tuples of elements of type $Z_1 \ldots Z_n$ an element of type Z'

$$\alpha(p) = Z_1, \ldots, Z_n$$
 means:

p is a symbol for relations on n-tuples of elements of types Z_1, \ldots, Z_n

Variables are typed as well

For each type $Z \in S$ there is an infinite set of variables of type Z

Typed Signatures: Terms

- \checkmark If x is a variable of type Z, then x is a term of type Z
- 🥒 lf
 - t_1, \ldots, t_n are terms of types Y_1, \ldots, Y_n
 - f is a functions symbol with $\alpha(f) = Z_1 \cdots Z_n Z'$

-
$$Y_i \leq Z_i$$
 for all $1 \leq i \leq n$

then $f(t_1, \ldots, t_n)$ is a term of type Z'.

🥒 lf

- t_1, \ldots, t_n are terms with types Y_1, \ldots, Y_n - p is a predicate symbol $\alpha(p) = Z_1 \cdots Z_n$ - $Y_i \leq Z_i$ for all $1 \leq i \leq n$

then $p(t_1, \ldots, t_n)$ is a typed (or well-sorted) formula

🥒 lf

-
$$t_1, \ldots, t_n$$
 are terms with types Y_1, \ldots, Y_n
- p is a predicate symbol $\alpha(p) = Z_1 \cdots Z_n$
- $Y_i \leq Z_i$ for all $1 \leq i \leq n$

then $p(t_1, \ldots, t_n)$ is a typed (or well-sorted) formula

If *t*, *s* are terms of sorts *X* and *Y* with *X* ≤ *Y* or *Y* ≤ *X*,
 then *t* \doteq *s* is a typed formula

🥒 lf

-
$$t_1, \ldots, t_n$$
 are terms with types Y_1, \ldots, Y_n
- p is a predicate symbol $\alpha(p) = Z_1 \cdots Z_n$
- $Y_i \leq Z_i$ for all $1 \leq i \leq n$

then $p(t_1, \ldots, t_n)$ is a typed (or well-sorted) formula

- If *t*, *s* are terms of sorts *X* and *Y* with *X* ≤ *Y* or *Y* ≤ *X*,
 then *t* \doteq *s* is a typed formula
- \blacksquare If A, B are typed formulas, then so are

$$\neg A$$
 $(A \land B)$ $(A \lor B)$ $(A \to B)$

🥒 lf

- t_1, \ldots, t_n are terms with types Y_1, \ldots, Y_n - p is a predicate symbol $\alpha(p) = Z_1 \cdots Z_n$ - $Y_i \leq Z_i$ for all $1 \leq i \leq n$

then $p(t_1, \ldots, t_n)$ is a typed (or well-sorted) formula

- If *t*, *s* are terms of sorts *X* and *Y* with *X* ≤ *Y* or *Y* ≤ *X*, then $t \doteq s$ is a typed formula
- \blacksquare If A, B are typed formulas, then so are

 $\neg A$ $(A \land B)$ $(A \lor B)$ $(A \to B)$

 \checkmark If A is a typed formula and x is a typed variable, then

$$\forall xA \quad \exists xA$$

are typed formulas

Typed Interpretations

Given a signature $\Sigma = (S, \leq, F, P, \alpha)$

Interpretation

A pair (D, I) such that

{D_Z | Z ∈ S} is a family of non-empty sets with
 D = ∪{D_Z | Z ∈ S}
 D_{Z1} ⊆ D_{Z2} if Z1 ≤ Z2

- $I(f): D_{Z_1} \times \cdots \times D_{Z_n} \to D_{Z'}$ if $\alpha(f) = Z_1 \cdots Z_n Z'$
- $I(p) \subseteq D_{Z_1} \times \cdots \times D_{Z_n}$ if $\alpha(p) = Z_1 \cdots Z_n$

Typed substitution

A substitution is well-sorted if for each variable x, the type of the term $\sigma(x)$ is a sub-type of the type of x

Special Type Structures

A type structure (S, \leq) is

s discrete,

in case $Z_1 \leq Z_2$ only if $Z_1 = Z_2$

Special Type Structures

A type structure (S, \leq) is

s discrete,

in case $Z_1 \leq Z_2$ only if $Z_1 = Z_2$

a tree structure,

in case $U \leq Z_1$ and $U \leq Z_2$ implies $Z_2 \leq Z_1$ oder $Z_1 \leq Z_2$

Special Type Structures

A type structure (S, \leq) is

s discrete,

in case $Z_1 \leq Z_2$ only if $Z_1 = Z_2$

• a tree structure,

in case $U \leq Z_1$ and $U \leq Z_2$ implies $Z_2 \leq Z_1$ oder $Z_1 \leq Z_2$

s a *lattice*,

in case that for any two sorts Z_1 , Z_2 there is an infimum U, i.e.

–
$$U \leq Z_1$$
 and $U \leq Z_2$

- $W \leq U$ for every sort $W \in S$ with $W \leq Z_1$ and $W \leq Z_2$