Formal Verification of Software

Propositional and Predicate Logic

Bernhard Beckert

— 1

UNIVERSITAT KOBLENZ-LANDAU

B. Beckert: Formal Verification of Software — p.1

Propositional Logic: Syntax

Special symbols

() = AV = =

B. Beckert: Formal Verification of Software — p.2

Propositional Logic: Syntax

Special symbols

() = AV = =

Signature

Propositional variables ~ = {pg, p1, ...}

B. Beckert: Formal Verification of Software — p.2

Propositional Logic: Syntax

Special symbols

() = AV = =

Signature

Propositional variables ~ = {pg, p1, ...}

Formulas

¢ The propositional variables p € 2 are formulas

s If A, B are formulas, then

A (AN B) (AV B) (A — B) (A <~ B)

are formulas

B. Beckert: Formal Verification of Software — p.2

Propositional Logic: Unified Notation

Introduced by Smullyan, 1968

B. Beckert: Formal Verification of Software — p.3

Propositional Logic: Unified Notation

Introduced by Smullyan, 1968

Conjunctive formulas Type «

~-A (AAB) —(AVB) —(A— B)

B. Beckert: Formal Verification of Software — p.3

Propositional Logic: Unified Notation

Introduced by Smullyan, 1968

Conjunctive formulas Type «

~-A (AAB) —(AVB) —(A— B)

Disjunctive formulas Type (3

~(AAB) (AVB) (A— B)

B. Beckert: Formal Verification of Software — p.3

Propositional Logic: Unified Notation

Non-literal formulas and their corresponding “logical” sub-formulas

al| ap Qo
ANB| A B
~(AVB) | =A —B
~(A—B)| A -B
—A| A A

B. Beckert: Formal Verification of Software — p.4

Propositional Logic: Unified Notation

Non-literal formulas and their corresponding “logical” sub-formulas

al| ap Qo
ANB| A B
~(AVB) | =A —B
~(A—B)| A -B
Sy A

B

61 B

—(AAB)
AVB
A—B

—A B
A B
-A B

B. Beckert: Formal Verification of Software — p.4

Propositional Logic: Semantics

Interpretation

Function [: ¥ — {true, false}

B. Beckert: Formal Verification of Software — p.5

Propositional Logic: Semantics

Interpretation

Function [: ¥ — {true, false}

Valuation

Extension of interpretation to formulas as follows:

vali(p) = I(p)

)
true if I(p) = false

vali(-p) = <

false if I(p) = true

B. Beckert: Formal Verification of Software — p.5

Propositional Logic: Semantics

true if val;(aq) = true

and val;(ay) = true
val[(a) =«

false if val;(aq) = false

or val;(ay) = false

B. Beckert: Formal Verification of Software — p.6

Propositional Logic: Semantics

Va|[(Oé)

valr(3)

true

false

frue

false

if valj(a1) = true

and val;(ay) = true

if val;(aq) = false

or val;(ay) = false

if val;(31) = true

or val;(3,) = true

if val;((3;) = false

and val;(,) = false

B. Beckert: Formal Verification of Software — p.6

Propositional Logic: Semantics

true if val;(A) = val;(B)
valj(A—B) = {

false if val;(A) # val;(B)

B. Beckert: Formal Verification of Software — p.7

Predicate Logic: Syntax

Additional special symbols
u’n u\v/n “311

B. Beckert: Formal Verification of Software — p.8

Predicate Logic: Syntax

Additional special symbols
u’n u\v/n uEIn

Object variables

Var = {xg, X1, ...}

B. Beckert: Formal Verification of Software — p.8

Predicate Logic: Syntax

Additional special symbols
u’n u\v/n “3”

Object variables

Var = {xg, X1, ...}

Signature

Triple Z = (Fs, Ps, as) consisting of

& set Fs of functions symbols
& set Ps of predicate symbols
s functionas: FUPs — N

assigning aritys to function and predicate symbols

B. Beckert: Formal Verification of Software — p.8

Predicate Logic: Syntax

Terms

& Vvariables x € Var are terms

s if feFs,as(f)=n,and ty,...,t, terms, then f(t{,...,t,) isaterm

B. Beckert: Formal Verification of Software — p.9

Predicate Logic: Syntax

Terms

& Vvariables x € Var are terms

®

if f € Fs, as(f) =n,and t{,...,t, terms, then f(t{,...,t,) isaterm

Atoms

If p € Ps, as(p) =n,and tq,...,t, terms, then p(t, .. .,t;) is an atom

B. Beckert: Formal Verification of Software — p.9

Predicate Logic: Syntax

Formulas

& Atoms are formulas

s If A, B are formulas, x € Var, then
-A, (AANB), (AVvB), (A—B), (A< B), VxA, dxA

are formulas

B. Beckert: Formal Verification of Software — p.10

Predicate Logic: Syntax

Formulas

& Atoms are formulas

s If A, B are formulas, x € Var, then
-A, (AANB), (AVvB), (A—B), (A< B), VxA, dxA

are formulas

Literals

If A is an atom, then A and —A are literals

B. Beckert: Formal Verification of Software — p.10

Example

Signature

2. =({0,a,b, f},{in_iv,leg}, a)
with

a(0) =aa) = ab) =0

a(f) =1

a(leq) =2

a(in_iv) =3 (in interval)

B. Beckert: Formal Verification of Software — p.11

Example

Signature

2. =({0,a,b, f},{in_iv,leg}, a)
with

a(0) = a(a) = a(b) =0

aff) =1

a(leq) =2

a(in_iv) =3 (in interval)

Formula

¢ = —leq(y,x) — 3z (—leq(z,x) A —leq(y, z))
N—— \ ~— ~
Atom Scope of dz

B. Beckert: Formal Verification of Software — p.11

Predicate Logic: Unified Notation

Extension of unified notation for propositional logic

Universal formulas Type v

VxA —9xA

B. Beckert: Formal Verification of Software — p.12

Predicate Logic: Unified Notation

Extension of unified notation for propositional logic

Universal formulas Type v

VxA —9xA

Existential formulas Type 0

—VxA dx A

B. Beckert: Formal Verification of Software — p.12

Predicate Logic: Unified Notation

~v- and o-formulas and their corresponding “logical” sub-formulas

v |)
VxA(x) | A(x)
—dxA(x) | 7A(x)

0| 01(x)
—VxA(x) | 7A(x)
JdxA(x) | A(x)

B. Beckert: Formal Verification of Software — p.13

Predicate Logic: Semantics

Interpretation
A pair D = (D, I) where
& D an arbitrary non-empty set, the universe
& [an interpretation function
forfeF: I(f): DY) — D
forp€ Ps: I(p): DMP) — {true, false}

B. Beckert: Formal Verification of Software — p.14

Predicate Logic: Semantics

Interpretation
A pair D = (D, I) where
& D an arbitrary non-empty set, the universe
& [an interpretation function
forfeF: I(f): DY) — D
forp€ Ps: I(p): DMP) — {true, false}

Variable assignment

A function A:Var — D

B. Beckert: Formal Verification of Software — p.14

Predicate Logic: Semantics

Valuation
Extension of interpretation and variable assignment to formulas

valy A (x) = A(x) forx € Var
Valﬂ),)\(f(tla SR tn)) — I(f)(valﬂ),)\(tl)a s 7va|Q),)\(tn))

B. Beckert: Formal Verification of Software — p.15

Predicate Logic: Semantics

Valuation

Extension of interpretation and variable assignment to formulas
valy A (x) = A(x) forx € Var

valy A\ (f(t1, ..., tn)) = I(f)(valy \(t1), - . ., valy A(En))

valy A\(p(t1, ... tn) = I(p)(valy \(t1), ..., valy \(t))

true ifval, \s(A) =true foralldc D
valy \(VxA) = < o

false otherwise

N7

true ifval, s(A) =true forsomed e D
valy \(dxA) = < e

false otherwise

\

val,, \ defined for propositional operators in the same way as val;.

B. Beckert: Formal Verification of Software — p.15

Predicate Logic: Semantics

Example

D = R

1(0) = 0

I(a) = -1

I(b) = 1
)
R—R

I(f) =
\ X — x?

I(leg) =true iff x<py

I(in_iv) =true iff x &€ [a,b]

B. Beckert: Formal Verification of Software — p.16

Predicate Logic: Semantics

Model

An interpretation D is model of a set ® of formulas iff
val, \(A) =true for all A and all A € ®.
Notation: D F ®

B. Beckert: Formal Verification of Software — p.17

Predicate Logic: Semantics

Model

An interpretation D is model of a set ® of formulas iff
val, \(A) =true for all A and all A € ®.

Notation: D F ®

Satisfiable
d ist satisfiable iff there are
an interpretation © and a variable assignment A s.t.

valy \(A) =true forall A € ®

B. Beckert: Formal Verification of Software — p.17

Predicate Logic: Semantics

Model

An interpretation D is model of a set ® of formulas iff
val, \(A) =true for all A and all A € ®.

Notation: D F ®

Satisfiable
d ist satisfiable iff there are
an interpretation © and a variable assignment A s.t.

valy \(A) =true forall A € ®

Validity
A is valid iff

all interpretations are a model of A

B. Beckert: Formal Verification of Software — p.17

Predicate Logic: Semantics

Consequence
A formula A is a consequence of @ iff

all models of ® are models of A as well

Notation: PF A

B. Beckert: Formal Verification of Software — p.18

Predicate Logic: Semantics

Consequence
A formula A is a consequence of @ iff
all models of ® are models of A as well

Notation: PF A

Equivalent formulas
Two formulas are equivalent iff

they are consequences of each other

B. Beckert: Formal Verification of Software — p.18

Predicate Logic: Semantics

Consequence
A formula A is a consequence of @ iff
all models of ® are models of A as well

Notation: PF A

Equivalent formulas
Two formulas are equivalent iff

they are consequences of each other

Satisfiability equivalent formulas
Two formulas are satisfiability equivalent iff

they are either both satisfiable or both unsatisfiable

B. Beckert: Formal Verification of Software — p.18

Substitutions

Substitution

Function o :Var — Term

Written as: {x1 —t1,..., 0y — ty}

)
t; ifx=x;forl1 <i1<mn
where o(x) = <
x otherwise

\

B. Beckert: Formal Verification of Software — p.19

Substitutions

Substitution

Function o :Var — Term

Written as: {x1 —t1,..., 0y — ty}

)
t; ifx=x;forl1 <i1<mn
where o(x) = <

x otherwise

\

Extension to terms and formulas

By replacing all free occurrences of variables x by o(x)

B. Beckert: Formal Verification of Software — p.19

Substitutions

Example:

¢ = -leq(y,x) — 3z(=leq(z, x) N\ —leq(y, z))
o = {x—a,y—w, z+c}

po = -leq(w,a) — Jz(—leq(z,a) N\ —leq(w, z))

B. Beckert: Formal Verification of Software — p.20

Substitutions

Example:
¢ = -leq(y,x) — 3z(=leq(z, x) N\ —leq(y, z))
o = {x—a,y—w, z+c}
po = -leq(w,a) — Jz(—leq(z,a) N\ —leq(w, z))
Note

Substitution forbidden in cases such as:

¢ asabove and o ={y« f(z)}

B. Beckert: Formal Verification of Software — p.20

Typed Signatures

Definition

A typed Signature is a tuple
ZZ(S,§7F,P,OC)7

where
& Sis afinite set of types (or sorts)
o < is apartial orderingon S
& F, P are sets of function and predicate symbols (as before)

s «:FUP — S§" assigns argument and domain types
to function and predicate symbols

B. Beckert: Formal Verification of Software — p.21

Typed Signatures

The function «

a(f)

a(p)

Z1...2Z,7" means:

f is a symbol for functions assigning to n-tuples of elements

of type Z;...Z, an element of type Z’

/Zq,...,2y Means:

p I1s a symbol for relations on n-tuples
of types Z4,..., 2,

of elements

B. Beckert: Formal Verification of Software — p.22

Typed Signatures

The function «
alf) = Zi...Z,7' means:

f is a symbol for functions assigning to n-tuples of elements
of type Z;...Z, an element of type Z’

alp) = Zi,...,Z, means:

p 1s a symbol for relations on n-tuples of elements

of types Z4,..., 2,

Variables are typed as well

For each type Z € S there is an infinite set of variables of type Z

B. Beckert: Formal Verification of Software — p.22

Typed Signatures: Terms

& If x is a variable of type Z, then x is a term of type Z

s |If

— t1,...,t, are terms of types Y1,...,Y,
— fis a functions symbol with «(f) = Z1--- Z,,Z/
- Y; < Z;foralll<i1<mn

then f(t1,...,t,) is a term of type Z'.

B. Beckert: Formal Verification of Software — p.23

Typed Signhatures: Formulas

s |If

—t1,...,t, are terms with types Yq,...,Y,
— p is a predicate symbol a(p) = Z1--- Zy
~Y; < Z;foralll<i1<mn

then p(tq,...,t,) is a typed (or well-sorted) formula

B. Beckert: Formal Verification of Software — p.24

Typed Signhatures: Formulas

s |If

—t1,...,t, are terms with types Yq,...,Y,
— p is a predicate symbol a(p) = Z1--- Zy
~Y; < Z;foralll<i1<mn

then p(tq,...,t,) is a typed (or well-sorted) formula

o Ift,sareterms of sorts X and Y with X <Y or Y < X,
then t = s is a typed formula

B. Beckert: Formal Verification of Software — p.24

Typed Signhatures: Formulas

s |If

—t1,...,t, are terms with types Yq,...,Y,
— p is a predicate symbol a(p) = Z1--- Zy
~Y; < Z;foralll<i1<mn

then p(tq,...,t,) is a typed (or well-sorted) formula

o Ift,sareterms of sorts X and Y with X <Y or Y < X,
then t = s is a typed formula

s If A, B are typed formulas, then so are

~A (AAB) (AVB) (A— B)

B. Beckert: Formal Verification of Software — p.24

Typed Signhatures: Formulas

s |If

—t1,...,t, are terms with types Yq,...,Y,
— p is a predicate symbol a(p) = Z1--- Zy
~Y; < Z;foralll<i1<mn

then p(tq,...,t,) is a typed (or well-sorted) formula

o Ift,sareterms of sorts X and Y with X <Y or Y < X,
then t = s is a typed formula

s If A, B are typed formulas, then so are

~A (AAB) (AVB) (A— B)

o If Ais atyped formula and x is a typed variable, then

VxA dxA

are typed formulas

B. Beckert: Formal Verification of Software — p.24

Typed Interpretations
Given a signature 2 = (5, <,F, P, o)
Interpretation

A pair (D, I) such that

s {Dyz | Z € S} is a family of non-empty sets with

- D=U{Dy | Z €S}
— Dz, C Dy, 21 < 2o

s I(f): Dz, x---x Dz — Dy ifa(f)=21---Z,7’

o I(p) C Dy, x---xDy ifalp)=2Z1-Zn

B. Beckert: Formal Verification of Software — p.25

Typed Substitutions

Typed substitution

A substitution is well-sorted If for each variable x,

the type of the term o(x) is a sub-type of the type of x

B. Beckert: Formal Verification of Software — p.26

Special Type Structures

A type structure (5, <) is

& discrete,

incase Z1 < Zronlyif Z1 = 27>

B. Beckert: Formal Verification of Software — p.27

Special Type Structures

A type structure (5, <) is

& discrete,

incase Z1 < Zronlyif Z1 = 27>

& atree structure,

incase U < Ziand U < Z, implies Z, < Zq oder Z1 < Z»

B. Beckert: Formal Verification of Software — p.27

Special Type Structures

A type structure (5, <) is
& discrete,
incase Z1 < Zronlyif Z1 = 27>
& atree structure,
incase U < Ziand U < Z, implies Z, < Zq oder Z1 < Z»

& alattice,
In case that for any two sorts Z1, Z» there is an infimum U, i.e.
- uU<zZiand U < 2Z»
- W< Uforeverysort We SwithW < Z;and W < 7,

B. Beckert: Formal Verification of Software — p.27

	
	Propositional Logic: Syntax
	Propositional Logic: Unified Notation
	Propositional Logic: Unified Notation
	Propositional Logic: Semantics
	Propositional Logic: Semantics
	Propositional Logic: Semantics
	Predicate Logic: Syntax
	Predicate Logic: Syntax
	Predicate Logic: Syntax
	Example
	Predicate Logic: Unified Notation
	Predicate Logic: Unified Notation
	Predicate Logic: Semantics
	Predicate Logic: Semantics
	Predicate Logic: Semantics
	Predicate Logic: Semantics
	Predicate Logic: Semantics
	Substitutions
	Substitutions
	Typed Signatures
	Typed Signatures
	Typed Signatures: Terms
	Typed Signatures: Formulas
	Typed Interpretations
	Typed Substitutions
	Special Type Structures

