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Propositional Logic: Syntax

Special symbols

( ) ¬ ∧ ∨ → ↔

Signature

Propositional variables Σ = {p0, p1, . . .}

Formulas

The propositional variables p ∈ Σ are formulas

If A, B are formulas, then

¬A (A ∧ B) (A∨ B) (A→ B) (A↔ B)

are formulas
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Propositional Logic: Unified Notation

Introduced by Smullyan, 1968

Conjunctive formulas Type α

¬¬A (A ∧ B) ¬(A∨ B) ¬(A→ B)

Disjunctive formulas Type β

¬(A∧ B) (A ∨ B) (A→ B)
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Propositional Logic: Unified Notation

Non-literal formulas and their corresponding “logical” sub-formulas

α α1 α2

A∧B A B

¬(A∨B) ¬A ¬B

¬(A→B) A ¬B

¬¬A A A

β β1 β2

¬(A∧B) ¬A ¬B

A∨B A B

A→B ¬A B
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Propositional Logic: Unified Notation

Non-literal formulas and their corresponding “logical” sub-formulas

α α1 α2
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Propositional Logic: Semantics

Interpretation

Function I : Σ→ {true, false}

Valuation

Extension of interpretation to formulas as follows:

valI(p) = I(p)

valI(¬p) =







true if I(p) = false

false if I(p) = true
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Propositional Logic: Semantics

valI(α) =







true if valI(α1) = true

and valI(α2) = true

false if valI(α1) = false

or valI(α2) = false

valI(β) =







true if valI(β1) = true

or valI(β2) = true

false if valI(β1) = false

and valI(β2) = false
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Propositional Logic: Semantics

valI(A↔B) =







true if valI(A) = valI(B)

false if valI(A) 6= valI(B)
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Predicate Logic: Syntax

Additional special symbols

“,” “∀” “∃”

Object variables

Var = {x0, x1, . . .}

Signature

Triple Σ = 〈FΣ, PΣ, αΣ〉 consisting of

set FΣ of functions symbols

set PΣ of predicate symbols

function αΣ : FΣ ∪ PΣ→ N

assigning aritys to function and predicate symbols
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Predicate Logic: Syntax

Terms

variables x ∈ Var are terms

if f ∈ FΣ, αΣ( f ) = n, and t1, . . . , tn terms, then f (t1, . . . , tn) is a term

Atoms

If p ∈ PΣ, αΣ(p) = n, and t1, . . . , tn terms, then p(t1, . . . , tn) is an atom

B. Beckert: Formal Verification of Software – p.9



Predicate Logic: Syntax

Terms

variables x ∈ Var are terms

if f ∈ FΣ, αΣ( f ) = n, and t1, . . . , tn terms, then f (t1, . . . , tn) is a term

Atoms

If p ∈ PΣ, αΣ(p) = n, and t1, . . . , tn terms, then p(t1, . . . , tn) is an atom

B. Beckert: Formal Verification of Software – p.9



Predicate Logic: Syntax

Formulas

Atoms are formulas

If A, B are formulas, x ∈ Var, then

¬A, (A∧ B), (A∨ B), (A→ B), (A↔ B), ∀xA, ∃xA

are formulas

Literals

If A is an atom, then A and ¬A are literals
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Example

Signature

Σ≤ = 〈{0, a, b, f},{in_iv, leq}, α〉

with

α(0) = α(a) = α(b) = 0

α( f ) = 1

α(leq) = 2

α(in_iv) = 3 (in interval)

Formula

φ = ¬ leq(y, x)
︸ ︷︷ ︸

Atom

→ ∃z (¬leq(z, x)∧¬leq(y, z))
︸ ︷︷ ︸

Scope of ∃z
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Predicate Logic: Unified Notation

Extension of unified notation for propositional logic

Universal formulas Type γ

∀xA ¬∃xA

Existential formulas Type δ

¬∀xA ∃xA
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Predicate Logic: Unified Notation

γ- and δ-formulas and their corresponding “logical” sub-formulas

γ γ1(x)

∀xA(x) A(x)

¬∃xA(x) ¬A(x)

δ δ1(x)

¬∀xA(x) ¬A(x)

∃xA(x) A(x)
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Predicate Logic: Semantics

Interpretation

A pair D = 〈D, I〉 where

D an arbitrary non-empty set, the universe

I an interpretation function

for f ∈ FΣ: I( f ) : Dα( f ) → D

for p ∈ PΣ: I(p) : Dα(p)→ {true, false}

Variable assignment

A function λ : Var→ D
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Predicate Logic: Semantics

Valuation

Extension of interpretation and variable assignment to formulas

valD ,λ(x) = λ(x) for x ∈ Var

valD ,λ( f (t1, . . . , tn)) = I( f )(valD ,λ(t1), . . . ,valD ,λ(tn))

valD ,λ(p(t1, . . . , tn)) = I(p)(valD ,λ(t1), . . . ,valD ,λ(tn))

valD ,λ(∀xA) =







true if valD ,λd
x
(A) = true for all d ∈ D

false otherwise

valD ,λ(∃xA) =







true if valD ,λd
x
(A) = true for some d ∈ D

false otherwise

valD ,λ defined for propositional operators in the same way as valI .
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Predicate Logic: Semantics

Example

D = R

I(0) = 0

I(a) = −1

I(b) = 1

I( f ) =







R→ R

x 7→ x2

I(leq) = true iff x ≤R y

I(in_iv) = true iff x ∈ [a, b]
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Predicate Logic: Semantics

Model

An interpretation D is model of a set Φ of formulas iff

valD ,λ(A) = true for all λ and all A ∈ Φ.

Notation: D � Φ

Satisfiable

Φ ist satisfiable iff there are

an interpretation D and a variable assignment λ s.t.

valD ,λ(A) = true for all A ∈ Φ

Validity

A is valid iff

all interpretations are a model of A
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Predicate Logic: Semantics

Consequence

A formula A is a consequence of Φ iff

all models of Φ are models of A as well

Notation: Φ � A

Equivalent formulas

Two formulas are equivalent iff

they are consequences of each other

Satisfiability equivalent formulas

Two formulas are satisfiability equivalent iff

they are either both satisfiable or both unsatisfiable
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Substitutions

Substitution

Function σ : Var→ Term

Written as: {x1← t1, . . . , xn← tn}

where σ(x) =







ti if x = xi for 1 ≤ i ≤ n

x otherwise

Extension to terms and formulas

By replacing all free occurrences of variables x by σ(x)
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Substitutions

Example:

φ = ¬leq(y, x)→ ∃z(¬leq(z, x)∧¬leq(y, z))

σ = {x← a, y← w, z← c}

φσ = ¬leq(w, a)→ ∃z(¬leq(z, a)∧¬leq(w, z))

Note

Substitution forbidden in cases such as:

φ as above and σ = {y← f (z)}
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Typed Signatures

Definition

A typed Signature is a tuple

Σ = (S,≤, F, P, α),

where

S is a finite set of types (or sorts)

≤ is a partial ordering on S

F, P are sets of function and predicate symbols (as before)

α : F∪ P→ S∗ assigns argument and domain types
to function and predicate symbols
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Typed Signatures

The function α

α( f ) = Z1 . . . ZnZ′ means:

f is a symbol for functions assigning to n-tuples of elements

of type Z1 . . . Zn an element of type Z′

α(p) = Z1, . . . , Zn means:

p is a symbol for relations on n-tuples of elements

of types Z1, . . . , Zn

Variables are typed as well

For each type Z ∈ S there is an infinite set of variables of type Z
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Typed Signatures: Terms

If x is a variable of type Z, then x is a term of type Z

If

– t1, . . . , tn are terms of types Y1, . . . , Yn

– f is a functions symbol with α( f ) = Z1 · · ·ZnZ′

– Yi ≤ Zi for all 1 ≤ i ≤ n

then f (t1, . . . , tn) is a term of type Z′.
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Typed Signatures: Formulas

If

– t1, . . . , tn are terms with types Y1, . . . , Yn
– p is a predicate symbol α(p) = Z1 · · ·Zn
– Yi ≤ Zi for all 1 ≤ i ≤ n

then p(t1, . . . , tn) is a typed (or well-sorted) formula

If t, s are terms of sorts X and Y with X ≤ Y or Y ≤ X,
then t .

= s is a typed formula

If A, B are typed formulas, then so are

¬A (A∧ B) (A ∨ B) (A→ B)

If A is a typed formula and x is a typed variable, then

∀xA ∃xA

are typed formulas
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Typed Interpretations

Given a signature Σ = (S,≤, F, P, α)

Interpretation

A pair (D, I) such that

{DZ | Z ∈ S} is a family of non-empty sets with

– D =
S

{DZ | Z ∈ S}
– DZ1 ⊆ DZ2 if Z1 ≤ Z2

I( f ) : DZ1 × · · · × DZn → DZ′ if α( f ) = Z1 · · ·ZnZ′

I(p) ⊆ DZ1 × · · · × DZn if α(p) = Z1 · · ·Zn
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Typed Substitutions

Typed substitution

A substitution is well-sorted if for each variable x,

the type of the term σ(x) is a sub-type of the type of x
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Special Type Structures

A type structure (S,≤) is

discrete,

in case Z1 ≤ Z2 only if Z1 = Z2

a tree structure,

in case U ≤ Z1 and U ≤ Z2 implies Z2 ≤ Z1 oder Z1 ≤ Z2

a lattice,

in case that for any two sorts Z1, Z2 there is an infimum U, i.e.

– U ≤ Z1 and U ≤ Z2

– W ≤ U for every sort W ∈ S with W ≤ Z1 and W ≤ Z2

B. Beckert: Formal Verification of Software – p.27
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