
Formal Verification of Software

Propositional and Predicate Logic

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

B. Beckert: Formal Verification of Software – p.1

Propositional Logic: Syntax

Special symbols

() ¬ ∧ ∨ → ↔

Signature

Propositional variables Σ = {p0, p1, . . .}

Formulas

The propositional variables p ∈ Σ are formulas

If A, B are formulas, then

¬A (A ∧ B) (A∨ B) (A→ B) (A↔ B)

are formulas

B. Beckert: Formal Verification of Software – p.2

Propositional Logic: Syntax

Special symbols

() ¬ ∧ ∨ → ↔

Signature

Propositional variables Σ = {p0, p1, . . .}

Formulas

The propositional variables p ∈ Σ are formulas

If A, B are formulas, then

¬A (A ∧ B) (A∨ B) (A→ B) (A↔ B)

are formulas

B. Beckert: Formal Verification of Software – p.2

Propositional Logic: Syntax

Special symbols

() ¬ ∧ ∨ → ↔

Signature

Propositional variables Σ = {p0, p1, . . .}

Formulas

The propositional variables p ∈ Σ are formulas

If A, B are formulas, then

¬A (A ∧ B) (A∨ B) (A→ B) (A↔ B)

are formulas

B. Beckert: Formal Verification of Software – p.2

Propositional Logic: Unified Notation

Introduced by Smullyan, 1968

Conjunctive formulas Type α

¬¬A (A ∧ B) ¬(A∨ B) ¬(A→ B)

Disjunctive formulas Type β

¬(A∧ B) (A ∨ B) (A→ B)

B. Beckert: Formal Verification of Software – p.3

Propositional Logic: Unified Notation

Introduced by Smullyan, 1968

Conjunctive formulas Type α

¬¬A (A ∧ B) ¬(A∨ B) ¬(A→ B)

Disjunctive formulas Type β

¬(A∧ B) (A ∨ B) (A→ B)

B. Beckert: Formal Verification of Software – p.3

Propositional Logic: Unified Notation

Introduced by Smullyan, 1968

Conjunctive formulas Type α

¬¬A (A ∧ B) ¬(A∨ B) ¬(A→ B)

Disjunctive formulas Type β

¬(A∧ B) (A ∨ B) (A→ B)

B. Beckert: Formal Verification of Software – p.3

Propositional Logic: Unified Notation

Non-literal formulas and their corresponding “logical” sub-formulas

α α1 α2

A∧B A B

¬(A∨B) ¬A ¬B

¬(A→B) A ¬B

¬¬A A A

β β1 β2

¬(A∧B) ¬A ¬B

A∨B A B

A→B ¬A B

B. Beckert: Formal Verification of Software – p.4

Propositional Logic: Unified Notation

Non-literal formulas and their corresponding “logical” sub-formulas

α α1 α2

A∧B A B

¬(A∨B) ¬A ¬B

¬(A→B) A ¬B

¬¬A A A

β β1 β2

¬(A∧B) ¬A ¬B

A∨B A B

A→B ¬A B

B. Beckert: Formal Verification of Software – p.4

Propositional Logic: Semantics

Interpretation

Function I : Σ→ {true, false}

Valuation

Extension of interpretation to formulas as follows:

valI(p) = I(p)

valI(¬p) =

true if I(p) = false

false if I(p) = true

B. Beckert: Formal Verification of Software – p.5

Propositional Logic: Semantics

Interpretation

Function I : Σ→ {true, false}

Valuation

Extension of interpretation to formulas as follows:

valI(p) = I(p)

valI(¬p) =

true if I(p) = false

false if I(p) = true

B. Beckert: Formal Verification of Software – p.5

Propositional Logic: Semantics

valI(α) =

true if valI(α1) = true

and valI(α2) = true

false if valI(α1) = false

or valI(α2) = false

valI(β) =

true if valI(β1) = true

or valI(β2) = true

false if valI(β1) = false

and valI(β2) = false

B. Beckert: Formal Verification of Software – p.6

Propositional Logic: Semantics

valI(α) =

true if valI(α1) = true

and valI(α2) = true

false if valI(α1) = false

or valI(α2) = false

valI(β) =

true if valI(β1) = true

or valI(β2) = true

false if valI(β1) = false

and valI(β2) = false

B. Beckert: Formal Verification of Software – p.6

Propositional Logic: Semantics

valI(A↔B) =

true if valI(A) = valI(B)

false if valI(A) 6= valI(B)

B. Beckert: Formal Verification of Software – p.7

Predicate Logic: Syntax

Additional special symbols

“,” “∀” “∃”

Object variables

Var = {x0, x1, . . .}

Signature

Triple Σ = 〈FΣ, PΣ, αΣ〉 consisting of

set FΣ of functions symbols

set PΣ of predicate symbols

function αΣ : FΣ ∪ PΣ→ N

assigning aritys to function and predicate symbols

B. Beckert: Formal Verification of Software – p.8

Predicate Logic: Syntax

Additional special symbols

“,” “∀” “∃”

Object variables

Var = {x0, x1, . . .}

Signature

Triple Σ = 〈FΣ, PΣ, αΣ〉 consisting of

set FΣ of functions symbols

set PΣ of predicate symbols

function αΣ : FΣ ∪ PΣ→ N

assigning aritys to function and predicate symbols

B. Beckert: Formal Verification of Software – p.8

Predicate Logic: Syntax

Additional special symbols

“,” “∀” “∃”

Object variables

Var = {x0, x1, . . .}

Signature

Triple Σ = 〈FΣ, PΣ, αΣ〉 consisting of

set FΣ of functions symbols

set PΣ of predicate symbols

function αΣ : FΣ ∪ PΣ→ N

assigning aritys to function and predicate symbols

B. Beckert: Formal Verification of Software – p.8

Predicate Logic: Syntax

Terms

variables x ∈ Var are terms

if f ∈ FΣ, αΣ(f) = n, and t1, . . . , tn terms, then f (t1, . . . , tn) is a term

Atoms

If p ∈ PΣ, αΣ(p) = n, and t1, . . . , tn terms, then p(t1, . . . , tn) is an atom

B. Beckert: Formal Verification of Software – p.9

Predicate Logic: Syntax

Terms

variables x ∈ Var are terms

if f ∈ FΣ, αΣ(f) = n, and t1, . . . , tn terms, then f (t1, . . . , tn) is a term

Atoms

If p ∈ PΣ, αΣ(p) = n, and t1, . . . , tn terms, then p(t1, . . . , tn) is an atom

B. Beckert: Formal Verification of Software – p.9

Predicate Logic: Syntax

Formulas

Atoms are formulas

If A, B are formulas, x ∈ Var, then

¬A, (A∧ B), (A∨ B), (A→ B), (A↔ B), ∀xA, ∃xA

are formulas

Literals

If A is an atom, then A and ¬A are literals

B. Beckert: Formal Verification of Software – p.10

Predicate Logic: Syntax

Formulas

Atoms are formulas

If A, B are formulas, x ∈ Var, then

¬A, (A∧ B), (A∨ B), (A→ B), (A↔ B), ∀xA, ∃xA

are formulas

Literals

If A is an atom, then A and ¬A are literals

B. Beckert: Formal Verification of Software – p.10

Example

Signature

Σ≤ = 〈{0, a, b, f},{in_iv, leq}, α〉

with

α(0) = α(a) = α(b) = 0

α(f) = 1

α(leq) = 2

α(in_iv) = 3 (in interval)

Formula

φ = ¬ leq(y, x)
︸ ︷︷ ︸

Atom

→ ∃z (¬leq(z, x)∧¬leq(y, z))
︸ ︷︷ ︸

Scope of ∃z

B. Beckert: Formal Verification of Software – p.11

Example

Signature

Σ≤ = 〈{0, a, b, f},{in_iv, leq}, α〉

with

α(0) = α(a) = α(b) = 0

α(f) = 1

α(leq) = 2

α(in_iv) = 3 (in interval)

Formula

φ = ¬ leq(y, x)
︸ ︷︷ ︸

Atom

→ ∃z (¬leq(z, x)∧¬leq(y, z))
︸ ︷︷ ︸

Scope of ∃z

B. Beckert: Formal Verification of Software – p.11

Predicate Logic: Unified Notation

Extension of unified notation for propositional logic

Universal formulas Type γ

∀xA ¬∃xA

Existential formulas Type δ

¬∀xA ∃xA

B. Beckert: Formal Verification of Software – p.12

Predicate Logic: Unified Notation

Extension of unified notation for propositional logic

Universal formulas Type γ

∀xA ¬∃xA

Existential formulas Type δ

¬∀xA ∃xA

B. Beckert: Formal Verification of Software – p.12

Predicate Logic: Unified Notation

γ- and δ-formulas and their corresponding “logical” sub-formulas

γ γ1(x)

∀xA(x) A(x)

¬∃xA(x) ¬A(x)

δ δ1(x)

¬∀xA(x) ¬A(x)

∃xA(x) A(x)

B. Beckert: Formal Verification of Software – p.13

Predicate Logic: Semantics

Interpretation

A pair D = 〈D, I〉 where

D an arbitrary non-empty set, the universe

I an interpretation function

for f ∈ FΣ: I(f) : Dα(f) → D

for p ∈ PΣ: I(p) : Dα(p)→ {true, false}

Variable assignment

A function λ : Var→ D

B. Beckert: Formal Verification of Software – p.14

Predicate Logic: Semantics

Interpretation

A pair D = 〈D, I〉 where

D an arbitrary non-empty set, the universe

I an interpretation function

for f ∈ FΣ: I(f) : Dα(f) → D

for p ∈ PΣ: I(p) : Dα(p)→ {true, false}

Variable assignment

A function λ : Var→ D

B. Beckert: Formal Verification of Software – p.14

Predicate Logic: Semantics

Valuation

Extension of interpretation and variable assignment to formulas

valD ,λ(x) = λ(x) for x ∈ Var

valD ,λ(f (t1, . . . , tn)) = I(f)(valD ,λ(t1), . . . ,valD ,λ(tn))

valD ,λ(p(t1, . . . , tn)) = I(p)(valD ,λ(t1), . . . ,valD ,λ(tn))

valD ,λ(∀xA) =

true if valD ,λd
x
(A) = true for all d ∈ D

false otherwise

valD ,λ(∃xA) =

true if valD ,λd
x
(A) = true for some d ∈ D

false otherwise

valD ,λ defined for propositional operators in the same way as valI .

B. Beckert: Formal Verification of Software – p.15

Predicate Logic: Semantics

Valuation

Extension of interpretation and variable assignment to formulas

valD ,λ(x) = λ(x) for x ∈ Var

valD ,λ(f (t1, . . . , tn)) = I(f)(valD ,λ(t1), . . . ,valD ,λ(tn))

valD ,λ(p(t1, . . . , tn)) = I(p)(valD ,λ(t1), . . . ,valD ,λ(tn))

valD ,λ(∀xA) =

true if valD ,λd
x
(A) = true for all d ∈ D

false otherwise

valD ,λ(∃xA) =

true if valD ,λd
x
(A) = true for some d ∈ D

false otherwise

valD ,λ defined for propositional operators in the same way as valI .
B. Beckert: Formal Verification of Software – p.15

Predicate Logic: Semantics

Example

D = R

I(0) = 0

I(a) = −1

I(b) = 1

I(f) =

R→ R

x 7→ x2

I(leq) = true iff x ≤R y

I(in_iv) = true iff x ∈ [a, b]

B. Beckert: Formal Verification of Software – p.16

Predicate Logic: Semantics

Model

An interpretation D is model of a set Φ of formulas iff

valD ,λ(A) = true for all λ and all A ∈ Φ.

Notation: D � Φ

Satisfiable

Φ ist satisfiable iff there are

an interpretation D and a variable assignment λ s.t.

valD ,λ(A) = true for all A ∈ Φ

Validity

A is valid iff

all interpretations are a model of A

B. Beckert: Formal Verification of Software – p.17

Predicate Logic: Semantics

Model

An interpretation D is model of a set Φ of formulas iff

valD ,λ(A) = true for all λ and all A ∈ Φ.

Notation: D � Φ

Satisfiable

Φ ist satisfiable iff there are

an interpretation D and a variable assignment λ s.t.

valD ,λ(A) = true for all A ∈ Φ

Validity

A is valid iff

all interpretations are a model of A

B. Beckert: Formal Verification of Software – p.17

Predicate Logic: Semantics

Model

An interpretation D is model of a set Φ of formulas iff

valD ,λ(A) = true for all λ and all A ∈ Φ.

Notation: D � Φ

Satisfiable

Φ ist satisfiable iff there are

an interpretation D and a variable assignment λ s.t.

valD ,λ(A) = true for all A ∈ Φ

Validity

A is valid iff

all interpretations are a model of A
B. Beckert: Formal Verification of Software – p.17

Predicate Logic: Semantics

Consequence

A formula A is a consequence of Φ iff

all models of Φ are models of A as well

Notation: Φ � A

Equivalent formulas

Two formulas are equivalent iff

they are consequences of each other

Satisfiability equivalent formulas

Two formulas are satisfiability equivalent iff

they are either both satisfiable or both unsatisfiable

B. Beckert: Formal Verification of Software – p.18

Predicate Logic: Semantics

Consequence

A formula A is a consequence of Φ iff

all models of Φ are models of A as well

Notation: Φ � A

Equivalent formulas

Two formulas are equivalent iff

they are consequences of each other

Satisfiability equivalent formulas

Two formulas are satisfiability equivalent iff

they are either both satisfiable or both unsatisfiable

B. Beckert: Formal Verification of Software – p.18

Predicate Logic: Semantics

Consequence

A formula A is a consequence of Φ iff

all models of Φ are models of A as well

Notation: Φ � A

Equivalent formulas

Two formulas are equivalent iff

they are consequences of each other

Satisfiability equivalent formulas

Two formulas are satisfiability equivalent iff

they are either both satisfiable or both unsatisfiable

B. Beckert: Formal Verification of Software – p.18

Substitutions

Substitution

Function σ : Var→ Term

Written as: {x1← t1, . . . , xn← tn}

where σ(x) =

ti if x = xi for 1 ≤ i ≤ n

x otherwise

Extension to terms and formulas

By replacing all free occurrences of variables x by σ(x)

B. Beckert: Formal Verification of Software – p.19

Substitutions

Substitution

Function σ : Var→ Term

Written as: {x1← t1, . . . , xn← tn}

where σ(x) =

ti if x = xi for 1 ≤ i ≤ n

x otherwise

Extension to terms and formulas

By replacing all free occurrences of variables x by σ(x)

B. Beckert: Formal Verification of Software – p.19

Substitutions

Example:

φ = ¬leq(y, x)→ ∃z(¬leq(z, x)∧¬leq(y, z))

σ = {x← a, y← w, z← c}

φσ = ¬leq(w, a)→ ∃z(¬leq(z, a)∧¬leq(w, z))

Note

Substitution forbidden in cases such as:

φ as above and σ = {y← f (z)}

B. Beckert: Formal Verification of Software – p.20

Substitutions

Example:

φ = ¬leq(y, x)→ ∃z(¬leq(z, x)∧¬leq(y, z))

σ = {x← a, y← w, z← c}

φσ = ¬leq(w, a)→ ∃z(¬leq(z, a)∧¬leq(w, z))

Note

Substitution forbidden in cases such as:

φ as above and σ = {y← f (z)}

B. Beckert: Formal Verification of Software – p.20

Typed Signatures

Definition

A typed Signature is a tuple

Σ = (S,≤, F, P, α),

where

S is a finite set of types (or sorts)

≤ is a partial ordering on S

F, P are sets of function and predicate symbols (as before)

α : F∪ P→ S∗ assigns argument and domain types
to function and predicate symbols

B. Beckert: Formal Verification of Software – p.21

Typed Signatures

The function α

α(f) = Z1 . . . ZnZ′ means:

f is a symbol for functions assigning to n-tuples of elements

of type Z1 . . . Zn an element of type Z′

α(p) = Z1, . . . , Zn means:

p is a symbol for relations on n-tuples of elements

of types Z1, . . . , Zn

Variables are typed as well

For each type Z ∈ S there is an infinite set of variables of type Z

B. Beckert: Formal Verification of Software – p.22

Typed Signatures

The function α

α(f) = Z1 . . . ZnZ′ means:

f is a symbol for functions assigning to n-tuples of elements

of type Z1 . . . Zn an element of type Z′

α(p) = Z1, . . . , Zn means:

p is a symbol for relations on n-tuples of elements

of types Z1, . . . , Zn

Variables are typed as well

For each type Z ∈ S there is an infinite set of variables of type Z

B. Beckert: Formal Verification of Software – p.22

Typed Signatures: Terms

If x is a variable of type Z, then x is a term of type Z

If

– t1, . . . , tn are terms of types Y1, . . . , Yn

– f is a functions symbol with α(f) = Z1 · · ·ZnZ′

– Yi ≤ Zi for all 1 ≤ i ≤ n

then f (t1, . . . , tn) is a term of type Z′.

B. Beckert: Formal Verification of Software – p.23

Typed Signatures: Formulas

If

– t1, . . . , tn are terms with types Y1, . . . , Yn
– p is a predicate symbol α(p) = Z1 · · ·Zn
– Yi ≤ Zi for all 1 ≤ i ≤ n

then p(t1, . . . , tn) is a typed (or well-sorted) formula

If t, s are terms of sorts X and Y with X ≤ Y or Y ≤ X,
then t .

= s is a typed formula

If A, B are typed formulas, then so are

¬A (A∧ B) (A ∨ B) (A→ B)

If A is a typed formula and x is a typed variable, then

∀xA ∃xA

are typed formulas

B. Beckert: Formal Verification of Software – p.24

Typed Signatures: Formulas

If

– t1, . . . , tn are terms with types Y1, . . . , Yn
– p is a predicate symbol α(p) = Z1 · · ·Zn
– Yi ≤ Zi for all 1 ≤ i ≤ n

then p(t1, . . . , tn) is a typed (or well-sorted) formula

If t, s are terms of sorts X and Y with X ≤ Y or Y ≤ X,
then t .

= s is a typed formula

If A, B are typed formulas, then so are

¬A (A∧ B) (A ∨ B) (A→ B)

If A is a typed formula and x is a typed variable, then

∀xA ∃xA

are typed formulas

B. Beckert: Formal Verification of Software – p.24

Typed Signatures: Formulas

If

– t1, . . . , tn are terms with types Y1, . . . , Yn
– p is a predicate symbol α(p) = Z1 · · ·Zn
– Yi ≤ Zi for all 1 ≤ i ≤ n

then p(t1, . . . , tn) is a typed (or well-sorted) formula

If t, s are terms of sorts X and Y with X ≤ Y or Y ≤ X,
then t .

= s is a typed formula

If A, B are typed formulas, then so are

¬A (A∧ B) (A ∨ B) (A→ B)

If A is a typed formula and x is a typed variable, then

∀xA ∃xA

are typed formulas

B. Beckert: Formal Verification of Software – p.24

Typed Signatures: Formulas

If

– t1, . . . , tn are terms with types Y1, . . . , Yn
– p is a predicate symbol α(p) = Z1 · · ·Zn
– Yi ≤ Zi for all 1 ≤ i ≤ n

then p(t1, . . . , tn) is a typed (or well-sorted) formula

If t, s are terms of sorts X and Y with X ≤ Y or Y ≤ X,
then t .

= s is a typed formula

If A, B are typed formulas, then so are

¬A (A∧ B) (A ∨ B) (A→ B)

If A is a typed formula and x is a typed variable, then

∀xA ∃xA

are typed formulas
B. Beckert: Formal Verification of Software – p.24

Typed Interpretations

Given a signature Σ = (S,≤, F, P, α)

Interpretation

A pair (D, I) such that

{DZ | Z ∈ S} is a family of non-empty sets with

– D =
S

{DZ | Z ∈ S}
– DZ1 ⊆ DZ2 if Z1 ≤ Z2

I(f) : DZ1 × · · · × DZn → DZ′ if α(f) = Z1 · · ·ZnZ′

I(p) ⊆ DZ1 × · · · × DZn if α(p) = Z1 · · ·Zn

B. Beckert: Formal Verification of Software – p.25

Typed Substitutions

Typed substitution

A substitution is well-sorted if for each variable x,

the type of the term σ(x) is a sub-type of the type of x

B. Beckert: Formal Verification of Software – p.26

Special Type Structures

A type structure (S,≤) is

discrete,

in case Z1 ≤ Z2 only if Z1 = Z2

a tree structure,

in case U ≤ Z1 and U ≤ Z2 implies Z2 ≤ Z1 oder Z1 ≤ Z2

a lattice,

in case that for any two sorts Z1, Z2 there is an infimum U, i.e.

– U ≤ Z1 and U ≤ Z2

– W ≤ U for every sort W ∈ S with W ≤ Z1 and W ≤ Z2

B. Beckert: Formal Verification of Software – p.27

Special Type Structures

A type structure (S,≤) is

discrete,

in case Z1 ≤ Z2 only if Z1 = Z2

a tree structure,

in case U ≤ Z1 and U ≤ Z2 implies Z2 ≤ Z1 oder Z1 ≤ Z2

a lattice,

in case that for any two sorts Z1, Z2 there is an infimum U, i.e.

– U ≤ Z1 and U ≤ Z2

– W ≤ U for every sort W ∈ S with W ≤ Z1 and W ≤ Z2

B. Beckert: Formal Verification of Software – p.27

Special Type Structures

A type structure (S,≤) is

discrete,

in case Z1 ≤ Z2 only if Z1 = Z2

a tree structure,

in case U ≤ Z1 and U ≤ Z2 implies Z2 ≤ Z1 oder Z1 ≤ Z2

a lattice,

in case that for any two sorts Z1, Z2 there is an infimum U, i.e.

– U ≤ Z1 and U ≤ Z2

– W ≤ U for every sort W ∈ S with W ≤ Z1 and W ≤ Z2

B. Beckert: Formal Verification of Software – p.27

	
	Propositional Logic: Syntax
	Propositional Logic: Unified Notation
	Propositional Logic: Unified Notation
	Propositional Logic: Semantics
	Propositional Logic: Semantics
	Propositional Logic: Semantics
	Predicate Logic: Syntax
	Predicate Logic: Syntax
	Predicate Logic: Syntax
	Example
	Predicate Logic: Unified Notation
	Predicate Logic: Unified Notation
	Predicate Logic: Semantics
	Predicate Logic: Semantics
	Predicate Logic: Semantics
	Predicate Logic: Semantics
	Predicate Logic: Semantics
	Substitutions
	Substitutions
	Typed Signatures
	Typed Signatures
	Typed Signatures: Terms
	Typed Signatures: Formulas
	Typed Interpretations
	Typed Substitutions
	Special Type Structures

