
Introduction to OCL

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

– p.1



OCL

Object Constraint Language

• Part of the UML standard.

• Formal Specification Language. Precise semantics.

• (Quite) easy to read syntax.

• Why? Because UML is not enough!

– p.2



OCL

Object Constraint Language

• Part of the UML standard.

• Formal Specification Language. Precise semantics.

• (Quite) easy to read syntax.

• Why? Because UML is not enough!

– p.2



OCL

Object Constraint Language

• Part of the UML standard.

• Formal Specification Language. Precise semantics.

• (Quite) easy to read syntax.

• Why? Because UML is not enough!

– p.2



OCL

Object Constraint Language

• Part of the UML standard.

• Formal Specification Language. Precise semantics.

• (Quite) easy to read syntax.

• Why? Because UML is not enough!

– p.2



UML is not enough. . .

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

• Possible number of owners a car can have

• Required age of car owners

• Requirement that a person may own at most one black car

– p.3



Some OCL examples I

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:

context Vehicle
inv: self. owner. age >= 18

“A car owner must be at least 18 years old”:
context Car
inv: self.owner.age >= 18

– p.4



Some OCL examples I

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:
context Vehicle
inv: self. owner. age >= 18

“A car owner must be at least 18 years old”:
context Car
inv: self.owner.age >= 18

– p.4



Some OCL examples I

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:
context Vehicle
inv: self. owner. age >= 18

“A car owner must be at least 18 years old”:
context Car
inv: self.owner.age >= 18

– p.4



Some OCL examples I

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:
context Vehicle
inv: self. owner. age >= 18

“A car owner must be at least 18 years old”:
context Car
inv: self.owner.age >= 18

– p.4



Some OCL examples I

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:
context Vehicle
inv: self. owner. age >= 18

“A car owner must be at least 18 years old”:
context Car
inv: self.owner.age >= 18

– p.4



Some OCL examples I

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:
context Vehicle
inv: self. owner. age >= 18

“A car owner must be at least 18 years old”:
context Car
inv: self.owner.age >= 18

– p.4



Some OCL examples I

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:
context Vehicle
inv: self. owner. age >= 18

What does this mean, instead?
context Person
inv: self.age >= 18

“A car owner must be at least 18 years old”:
context Car
inv: self.owner.age >= 18

– p.4



Some OCL examples I

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:
context Vehicle
inv: self. owner. age >= 18

“A car owner must be at least 18 years old”:
context Car
inv: self.owner.age >= 18

– p.4



Some OCL examples II

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

“Nobody has more than 3 vehicles”:

“All cars of a person are black”:

context Person
inv: self.fleet–>forAll(v | v.colour = #black)

“Nobody has more than 3 black vehicles”:
context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3

– p.5



Some OCL examples II

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

“Nobody has more than 3 vehicles”:
context Person
inv: self.fleet–>size <= 3

or change multiplicity

“All cars of a person are black”:

context Person
inv: self.fleet–>forAll(v | v.colour = #black)

“Nobody has more than 3 black vehicles”:
context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3

– p.5



Some OCL examples II

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

“All cars of a person are black”:

context Person
inv: self.fleet–>forAll(v | v.colour = #black)

“Nobody has more than 3 black vehicles”:
context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3

– p.5



Some OCL examples II

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

“All cars of a person are black”:

context Person
inv: self.fleet–>forAll(v | v.colour = #black)

“Nobody has more than 3 black vehicles”:
context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3

– p.5



Some OCL examples II

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

“All cars of a person are black”:

context Person
inv: self.fleet–>forAll(v | v.colour = #black)

“Nobody has more than 3 black vehicles”:

context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3

– p.5



Some OCL examples II

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

“All cars of a person are black”:

context Person
inv: self.fleet–>forAll(v | v.colour = #black)

“Nobody has more than 3 black vehicles”:
context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3

– p.5



Some OCL examples III — iterate

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

What does this mean?
context Person
inv: self.fleet–>iterate(v; acc:Integer=0

| if (v.colour=#black)
then acc + 1 else acc endif) <=3

– p.6



Some OCL examples IV — oclIsKindOf

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

context Person
inv: age<18 implies self.fleet–>forAll(v | not v.oclIsKindOf(Car))

“A person younger than 18 owns no cars.”

“self” can be omitted.

Logical Junctors: and, or, not, implies, if. . . then. . . else. . . endif, =

– p.7



Some OCL examples IV — oclIsKindOf

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

context Person
inv: age<18 implies self.fleet–>forAll(v | not v.oclIsKindOf(Car))

“A person younger than 18 owns no cars.”

“self” can be omitted.

Logical Junctors: and, or, not, implies, if. . . then. . . else. . . endif, =

– p.7



Some OCL examples IV — oclIsKindOf

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

context Person
inv: age<18 implies self.fleet–>forAll(v | not v.oclIsKindOf(Car))

“A person younger than 18 owns no cars.”

“self” can be omitted.

Logical Junctors: and, or, not, implies, if. . . then. . . else. . . endif, =

– p.7



Some OCL examples IV — oclIsKindOf

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

context Person
inv: age<18 implies self.fleet–>forAll(v | not v.oclIsKindOf(Car))

“A person younger than 18 owns no cars.”

“self” can be omitted.

Logical Junctors: and, or, not, implies, if. . . then. . . else. . . endif, =

– p.7



Some OCL examples V — allInstances

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

context Car
inv: Car.allInstances()->exists(c | c.colour=#red)

“There is a red car.”

– p.8



Some OCL examples V — allInstances

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

context Car
inv: Car.allInstances()->exists(c | c.colour=#red)

“There is a red car.”

– p.8



OCL pre-/post conditions — Examples

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

So far only considered class invariants.

OCL can also specify operations:

“Calling getName() delivers the value of the attribute name.”

context Person::getName()
post: result = name

– p.9



OCL pre-/post conditions — Examples

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

So far only considered class invariants.

OCL can also specify operations:

“Calling getName() delivers the value of the attribute name.”

context Person::getName()
post: result = name

– p.9



OCL pre-/post conditions — Examples

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

So far only considered class invariants.

OCL can also specify operations:

“If setAge(. . . ) is called with a non-negative argument then the

argument becomes the new value of the attribute age.”

context Person::setAge(newAge:int)
pre: newAge >= 0
post: self.age = newAge

“Calling getName() delivers the value of the attribute name.”

context Person::getName()
post: result = name

– p.9



OCL pre-/post conditions — Examples

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

So far only considered class invariants.

OCL can also specify operations:

“Calling birthday() increments the age of a person by 1.”

context Person::birthday()
post: self.age = self.age@pre + 1

“Calling getName() delivers the value of the attribute name.”

context Person::getName()
post: result = name

– p.9



OCL pre-/post conditions — Examples

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

So far only considered class invariants.

OCL can also specify operations:

“Calling getName() delivers the value of the attribute name.”

context Person::getName()
post: result = name

– p.9



Queries

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

Special to OCL are operations with a �query� stereotype:

Only these operations can be used within an OCL expression.

“Calling getName() delivers the value of the attribute name.”

context Person
inv: self.getName() = name

– p.10



Queries

Person

name:String

age:int

�query�

getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

�enumeration�

Colour

black():Colour

white():Colour

red():Colour

Car Bike

1 0..*

ownershipowner fleet

Special to OCL are operations with a �query� stereotype:

Only these operations can be used within an OCL expression.

“Calling getName() delivers the value of the attribute name.”

context Person
inv: self.getName() = name

– p.10



OCL Basics

• OCL is used to specify invariants of objects and

pre- and post conditions of operations. Makes UML (class)

diagrams more precise.

• OCL expressions use vocabulary of UML class diagram.

• OCL attribute accesses “navigate” through UML class diagram.

• “context” specifies about which elements we are talking.

• “self” indicates the current object. “result” the return value.

– p.11



OCL Basics

• OCL is used to specify invariants of objects and

pre- and post conditions of operations. Makes UML (class)

diagrams more precise.

• OCL expressions use vocabulary of UML class diagram.

• OCL attribute accesses “navigate” through UML class diagram.

• “context” specifies about which elements we are talking.

• “self” indicates the current object. “result” the return value.

– p.11



OCL Basics

• OCL is used to specify invariants of objects and

pre- and post conditions of operations. Makes UML (class)

diagrams more precise.

• OCL expressions use vocabulary of UML class diagram.

• OCL attribute accesses “navigate” through UML class diagram.

• “context” specifies about which elements we are talking.

• “self” indicates the current object. “result” the return value.

– p.11



OCL Basics

• OCL is used to specify invariants of objects and

pre- and post conditions of operations. Makes UML (class)

diagrams more precise.

• OCL expressions use vocabulary of UML class diagram.

• OCL attribute accesses “navigate” through UML class diagram.

• “context” specifies about which elements we are talking.

• “self” indicates the current object. “result” the return value.

– p.11



OCL Basics

• OCL is used to specify invariants of objects and

pre- and post conditions of operations. Makes UML (class)

diagrams more precise.

• OCL expressions use vocabulary of UML class diagram.

• OCL attribute accesses “navigate” through UML class diagram.

• “context” specifies about which elements we are talking.

• “self” indicates the current object. “result” the return value.

– p.11



OCL Basics (cont.)

• OCL can talk about collections (here: sets).

Operations on collections: –>

Example operations: select, forAll, iterate

• “iterate” can simulate all other operations on collections.

• Queries (= side-effect-free operations) can be used in OCL

expressions.

• In operations, “. . . @pre” refers to the pre-state of an attribute or

query.

– p.12



OCL Basics (cont.)

• OCL can talk about collections (here: sets).

Operations on collections: –>

Example operations: select, forAll, iterate

• “iterate” can simulate all other operations on collections.

• Queries (= side-effect-free operations) can be used in OCL

expressions.

• In operations, “. . . @pre” refers to the pre-state of an attribute or

query.

– p.12



OCL Basics (cont.)

• OCL can talk about collections (here: sets).

Operations on collections: –>

Example operations: select, forAll, iterate

• “iterate” can simulate all other operations on collections.

• Queries (= side-effect-free operations) can be used in OCL

expressions.

• In operations, “. . . @pre” refers to the pre-state of an attribute or

query.

– p.12



OCL in TogetherCC/KeY

TogetherCC cannot process OCL constraints. It is however possible to

specify textual invariants and pre- and post conditions.

With the KeY extensions to TogetherCC syntax (type) checks of OCL

constraints are possible.

– p.13



System state

(represented by a UML object diagram)

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �
context Person
inv: self.fleet–>forAll(v | v.colour = #black) 4
context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3 �
inv: Car.allInstances()–>exists(c | c.colour=#red) 4

– p.14



System state

(represented by a UML object diagram)

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �
context Person
inv: self.fleet–>forAll(v | v.colour = #black) 4
context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3 �
inv: Car.allInstances()–>exists(c | c.colour=#red) 4

– p.14



System state

(represented by a UML object diagram)

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18

�
context Person
inv: self.fleet–>forAll(v | v.colour = #black) 4
context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3 �
inv: Car.allInstances()–>exists(c | c.colour=#red) 4

– p.14



System state

(represented by a UML object diagram)

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �

context Person
inv: self.fleet–>forAll(v | v.colour = #black) 4
context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3 �
inv: Car.allInstances()–>exists(c | c.colour=#red) 4

– p.14



System state

(represented by a UML object diagram)

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �
context Person
inv: self.fleet–>forAll(v | v.colour = #black)

4
context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3 �
inv: Car.allInstances()–>exists(c | c.colour=#red) 4

– p.14



System state

(represented by a UML object diagram)

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �
context Person
inv: self.fleet–>forAll(v | v.colour = #black) 4

context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3 �
inv: Car.allInstances()–>exists(c | c.colour=#red) 4

– p.14



System state

(represented by a UML object diagram)

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �
context Person
inv: self.fleet–>forAll(v | v.colour = #black) 4
context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3

�
inv: Car.allInstances()–>exists(c | c.colour=#red) 4

– p.14



System state

(represented by a UML object diagram)

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �
context Person
inv: self.fleet–>forAll(v | v.colour = #black) 4
context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3 �

inv: Car.allInstances()–>exists(c | c.colour=#red) 4

– p.14



System state

(represented by a UML object diagram)

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �
context Person
inv: self.fleet–>forAll(v | v.colour = #black) 4
context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3 �
inv: Car.allInstances()–>exists(c | c.colour=#red)

4

– p.14



System state

(represented by a UML object diagram)

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �
context Person
inv: self.fleet–>forAll(v | v.colour = #black) 4
context Person
inv: self.fleet–>select(v | v.colour = #black)–>size <= 3 �
inv: Car.allInstances()–>exists(c | c.colour=#red) 4

– p.14



System State

(represented by a UML object diagram)

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Person::getName()
post: result = name ?

– p.15



System State

(represented by a UML object diagram)

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Person::getName()
post: result = name ?

– p.15



System State

Given a UML class diagram, a system state (snapshot) is defined by

• a UML object diagram (for the class diagram), giving

• the set of existing instances,

• attribute-value-assignments

• instances of associations (“links”)

• an interpretation for operations,

• (standard) interpretation for predefined primitive data types

(e.g. Integer, String,. . . )

– p.16



System State

Given a UML class diagram, a system state (snapshot) is defined by

• a UML object diagram (for the class diagram), giving

• the set of existing instances,

• attribute-value-assignments

• instances of associations (“links”)

• an interpretation for operations,

• (standard) interpretation for predefined primitive data types

(e.g. Integer, String,. . . )

– p.16



System State

Given a UML class diagram, a system state (snapshot) is defined by

• a UML object diagram (for the class diagram), giving

• the set of existing instances,

• attribute-value-assignments

• instances of associations (“links”)

• an interpretation for operations,

• (standard) interpretation for predefined primitive data types

(e.g. Integer, String,. . . )

– p.16



System State

Given a UML class diagram, a system state (snapshot) is defined by

• a UML object diagram (for the class diagram), giving

• the set of existing instances,

• attribute-value-assignments

• instances of associations (“links”)

• an interpretation for operations,

• (standard) interpretation for predefined primitive data types

(e.g. Integer, String,. . . )

– p.16



System State

Given a UML class diagram, a system state (snapshot) is defined by

• a UML object diagram (for the class diagram), giving

• the set of existing instances,

• attribute-value-assignments

• instances of associations (“links”)

• an interpretation for operations,

• (standard) interpretation for predefined primitive data types

(e.g. Integer, String,. . . )

– p.16



System State

Given a UML class diagram, a system state (snapshot) is defined by

• a UML object diagram (for the class diagram), giving

• the set of existing instances,

• attribute-value-assignments

• instances of associations (“links”)

• an interpretation for operations,

• (standard) interpretation for predefined primitive data types

(e.g. Integer, String,. . . )

– p.16



System State

• OCL Constraints are satisfied by certain system states.

• Given an implementation of a class diagram, a sequence of system

states is reached.

• The interesting question is: How can we check that constraints are

satisfied in all system states that are reached by an

implementation?

Answer in three weeks.

– p.17



System State

• OCL Constraints are satisfied by certain system states.

• Given an implementation of a class diagram, a sequence of system

states is reached.

• The interesting question is: How can we check that constraints are

satisfied in all system states that are reached by an

implementation?

Answer in three weeks.

– p.17



System State

• OCL Constraints are satisfied by certain system states.

• Given an implementation of a class diagram, a sequence of system

states is reached.

• The interesting question is: How can we check that constraints are

satisfied in all system states that are reached by an

implementation?

Answer in three weeks.

– p.17



System State

• OCL Constraints are satisfied by certain system states.

• Given an implementation of a class diagram, a sequence of system

states is reached.

• The interesting question is: How can we check that constraints are

satisfied in all system states that are reached by an

implementation?

Answer in three weeks.

– p.17



Literature

P. Schmitt:

Skriptum „Formale Spezifikationssprachen“

Jos Warmer and Anneke Kleppe:

The Object Constraint Language: Precise Modelling with UML

UML 1.5 OCL Specification.

�� � �� � ��� � � � �	 
 � �� 
 �� 
 ��� � ��� �� � � � �� � � ��� � �� �� � � � � � � �� �

UML 2.0 OCL Revised submission to OMG.

�� � �� � ��� � � � �	 
 � �� 
 �� 
 ��� � ��� �� � � � �� � � ��� � �� �� � � � � � � �� �

– p.18

http://i12www.ira.uka.de/studium.htm
http://www.ira.uka.de/I3V_HTML/BIB_TITEL/BIB_TITEL_EXEMPLAR_BEZ/10030835.htm
http://www.omg.org/cgi-bin/apps/doc?formal/03-03-13.pdf
http://www.omg.org/cgi-bin/apps/doc?ad/03-01-07.pdf

	
	OCL
	UML is not enoughldots 
	Some OCL examples I
	Some OCL examples II
	Some OCL examples III --- iterate
	Some OCL examples IV --- oclIsKindOf
	Some OCL examples V --- allInstances
	OCL pre-/post conditions --- Examples 
	Queries 
	OCL Basics
	OCL Basics (cont.)
	OCL in TogetherCC/KeY 
	System state
	System State
	System State
	System State
	Literature

