
More Formal Semantics of Java Types

Range of primitive integer types in Java

Type Range Bits

byte [−128, 127] 8

short [−32768, 32767] 16

int [−2147483648, 2147483647] 32

long [−263, 263− 1] 64

IFM 2004–Canterbury – p.9

Examples

Valid for Java integer semantics

� ��
�

�� �� 1 .
=

� ��
�

�� �

� ��
�

�� �� (−1) .= � ��
�

�� �

∃ 	�
 � ��� �

. 	 6 .= 0∧ � 6 .= 0∧ 	 � � .
= 0

IFM 2004–Canterbury – p.10

Examples

Valid for Java integer semantics

� ��
�

�� �� 1 .
=

� ��
�

�� �

� ��
�

�� �� (−1) .= � ��
�

�� �

∃ 	�
 � ��� �

. 	 6 .= 0∧ � 6 .= 0∧ 	 � � .
= 0

Not valid for Java integer semantics

∀ 	 ��� �

.∃ � ��� �

. � > 	

IFM 2004–Canterbury – p.10

Examples

Valid for Java integer semantics

� ��
�

�� �� 1 .
=

� ��
�

�� �

� ��
�

�� �� (−1) .= � ��
�

�� �

∃ 	�
 � ��� �

. 	 6 .= 0∧ � 6 .= 0∧ 	 � � .
= 0

Not valid for Java integer semantics

∀ 	 ��� �

.∃ � ��� �

. � > 	

Not a sound rewrite rules for Java integer semantics

	 � �

> �� �

;

	 > �

IFM 2004–Canterbury – p.10

General Problem revisited

semantic gap between Z and Java integers

defining a JavaDL semantics for Java integers that. . .

is a correct data refinement of Z Req. 1

reflects Java integer semantics Req. 2

IFM 2004–Canterbury – p.11

General Problem revisited

semantic gap between Z and Java integers

defining a JavaDL semantics for Java integers that. . .

is a correct data refinement of Z Req. 1

reflects Java integer semantics Req. 2

3 approaches

Semantics Description Req. 1 Req. 2

SOCL corresponds to semantics of Z
√

X

SJava corresponds to Java semantics X
√

SKeY combination of SOCL and SJava
√ √

IFM 2004–Canterbury – p.11

Semantics SOCL

SOCL assigns Java integers semantics of Z

Req. 1 trivially fulfilled

Req. 2 violated, incorrect programs can be “verified”

Example:

|=SOCL ∀ 	 int.〈 � � 	 � ��� 〉 � .
=

	

+Z 1

but for 	 .
=

� ��
�

�� �

program not correct

IFM 2004–Canterbury – p.12

Semantics SJava

SJava assigns Java integers the semantics defined in Java Language

Specification

Req. 1 violated

several abstract states mapped onto one concrete state

Req. 2 trivially fulfilled

No incorrect programs can be verified, but

violation of Req. 1 leads to “incidentally” correct programs!

IFM 2004–Canterbury – p.13

Our Approach

Approach

types byte, short, int, long have semantics SJava

additional virtual types arithByte, arithShort, �� � � � � � � , and

arithLong (called “arithmetical types”) with following semantics:

IFM 2004–Canterbury – p.17

Our Approach

Approach

types byte, short, int, long have semantics SJava

additional virtual types arithByte, arithShort, �� � � � � � � , and

arithLong (called “arithmetical types”) with following semantics:

arithmetical types have infinite range

operators are underspecified:

Semantics as in Z but semantics unspecified if

both arguments are in valid range but result is not.

IFM 2004–Canterbury – p.17

Our Approach

Approach

types byte, short, int, long have semantics SJava

additional virtual types arithByte, arithShort, �� � � � � � � , and

arithLong (called “arithmetical types”) with following semantics:

arithmetical types have infinite range

operators are underspecified:

Semantics as in Z but semantics unspecified if

both arguments are in valid range but result is not.

−∞ +∞
0

� ��

T

� ��

T

IFM 2004–Canterbury – p.17

Semantics SKeY

Semantics SKeY of arithByte, arithShort, �� � � � � � � , arithLong

Range: infinite (Z)

Operations, e.g. � on �� � � � � � � :

� : �� � � � � � � × �� � � � � � � → �� � � � � � �

3 cases:

IFM 2004–Canterbury – p.18

Semantics SKeY

Semantics SKeY of arithByte, arithShort, �� � � � � � � , arithLong

Range: infinite (Z)

Operations, e.g. � on �� � � � � � � :

� : �� � � � � � � × �� � � � � � � → �� � � � � � �

3 cases:

both args. and result are in valid range (e.g. 2� 3 .
= 5)

“normal” case

IFM 2004–Canterbury – p.18

Semantics SKeY

Semantics SKeY of arithByte, arithShort, �� � � � � � � , arithLong

Range: infinite (Z)

Operations, e.g. � on �� � � � � � � :

� : �� � � � � � � × �� � � � � � � → �� � � � � � �

3 cases:

both args. and result are in valid range (e.g. 2� 3 .
= 5)

“normal” case

both args. are in valid range but result is not (e.g.

� ��
�

�� �� 1 .
= ?)

overflow case, not specified

IFM 2004–Canterbury – p.18

Semantics SKeY

Semantics SKeY of arithByte, arithShort, �� � � � � � � , arithLong

Range: infinite (Z)

Operations, e.g. � on �� � � � � � � :

� : �� � � � � � � × �� � � � � � � → �� � � � � � �

3 cases:

both args. and result are in valid range (e.g. 2� 3 .
= 5)

“normal” case

both args. are in valid range but result is not (e.g.

� ��
�

�� �� 1 .
= ?)

overflow case, not specified

an arg. is not in valid range (e.g. (� ��
�

�� �

+Z 1)� 1 .
=

� ��
�

�� �

+Z 2)

cannot happen during execution, only in logic

IFM 2004–Canterbury – p.18

Reason for Underspecification

property provable in our calculus =⇒
property independent of actual implementation of overflow case

IFM 2004–Canterbury – p.19

Reason for Underspecification

property provable in our calculus =⇒
property independent of actual implementation of overflow case

Main theorem

If

(i) |=SKeY Γ → 〈p〉ψ

(ii) s |=SKeY Γ

(iii) s is a real state (i.e. all arith. variables in valid range)

then

(a) no overflow occurs in p ′ when started in s′

(b) p ′ terminates in state where property ψ holds.

IFM 2004–Canterbury – p.19

A Sequent Calculus

Generation of pre-conditions that no overflow occurs built into calculus

rules

Example: Rule for multiplication on arithmetical types

define predicate inT(·): inT() iff

� ��

_T ≤ 	 ≤ � ��

_T

1. Γ , in �

1 (

)∧ in �

2 (

�)→ in � (∗ �) ` { � ← 	 ∗ �}〈〉φ

2. Γ , in �

1 (

), in �

2 (

�), ¬in � (∗ �) ` 〈 � � � � � � �� �� � 	, �,

	 � 	
� 〉φ

Γ ` 〈 � � 	 � �� 〉φ

IFM 2004–Canterbury – p.20

Software Development

Software development following our approach:

Specification: use of OCL type INTEGER

Implementation: use of arithmetical types (e. g. �� � � � � � �)

Verification: if all proof obligations are provable in our calculus

specified properties hold

no overflow occurs

arithmetical types can safely be replaced by corresponding Java

types

IFM 2004–Canterbury – p.21

	More Formal Semantics of java Types
	Examples
	General Problem revisited
	Semantics semanticsa
	Semantics semanticsb
	Our Approach
	Semantics semanticsc
	Reason for Underspecification
	A Sequent Calculus
	Software Development

