
More Formal Semantics of Java Types

Range of primitive integer types in Java

Type Range Bits

byte [−128, 127] 8

short [−32768, 32767] 16

int [−2147483648, 2147483647] 32

long [−263, 263− 1] 64
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Examples

Valid for Java integer semantics
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= 0
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General Problem revisited

semantic gap between Z and Java integers

defining a JavaDL semantics for Java integers that. . .

is a correct data refinement of Z Req. 1

reflects Java integer semantics Req. 2
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General Problem revisited

semantic gap between Z and Java integers

defining a JavaDL semantics for Java integers that. . .

is a correct data refinement of Z Req. 1

reflects Java integer semantics Req. 2

3 approaches

Semantics Description Req. 1 Req. 2

SOCL corresponds to semantics of Z
√

X

SJava corresponds to Java semantics X
√

SKeY combination of SOCL and SJava
√ √
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Semantics SOCL

SOCL assigns Java integers semantics of Z

Req. 1 trivially fulfilled

Req. 2 violated, incorrect programs can be “verified”

Example:

|=SOCL ∀ 	  int.〈 � � 	 � ��� 〉 � .
=

	

+Z 1

but for 	 .
=

� ��
�

�� �

program not correct
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Semantics SJava

SJava assigns Java integers the semantics defined in Java Language

Specification

Req. 1 violated

several abstract states mapped onto one concrete state

Req. 2 trivially fulfilled

No incorrect programs can be verified, but

violation of Req. 1 leads to “incidentally” correct programs!
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Our Approach

Approach

types byte, short, int, long have semantics SJava

additional virtual types arithByte, arithShort, �� � � � � � � , and

arithLong (called “arithmetical types”) with following semantics:
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Semantics SKeY

Semantics SKeY of arithByte, arithShort, �� � � � � � � , arithLong

Range: infinite (Z)

Operations, e.g. � on �� � � � � � � :

� : �� � � � � � � × �� � � � � � � → �� � � � � � �

3 cases:
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� : �� � � � � � � × �� � � � � � � → �� � � � � � �

3 cases:

both args. and result are in valid range (e.g. 2� 3 .
= 5)

“normal” case

both args. are in valid range but result is not (e.g.

� ��
�

�� �� 1 .
= ?)

overflow case, not specified

an arg. is not in valid range (e.g. ( � ��
�

�� �

+Z 1)� 1 .
=

� ��
�

�� �

+Z 2)

cannot happen during execution, only in logic
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Reason for Underspecification

property provable in our calculus =⇒
property independent of actual implementation of overflow case
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Reason for Underspecification

property provable in our calculus =⇒
property independent of actual implementation of overflow case

Main theorem

If

(i) |=SKeY Γ → 〈p〉ψ

(ii) s |=SKeY Γ

(iii) s is a real state (i.e. all arith. variables in valid range)

then

(a) no overflow occurs in p ′ when started in s′

(b) p ′ terminates in state where property ψ holds.
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A Sequent Calculus

Generation of pre-conditions that no overflow occurs built into calculus

rules

Example: Rule for multiplication on arithmetical types

define predicate inT(·): inT( 	) iff

� ��

_T ≤ 	 ≤ � ��

_T

1. Γ , in �

1 (

	)∧ in �

2 (

�)→ in � ( 	 ∗ �) ` { � ← 	 ∗ �}〈〉φ

2. Γ , in �

1 (

	), in �

2 (

�), ¬in � ( 	 ∗ �) ` 〈 � � � � � � �� �� � 	, �,

	 � 	 
� 〉φ

Γ ` 〈 � � 	 � �� 〉φ
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Software Development

Software development following our approach:

Specification: use of OCL type INTEGER

Implementation: use of arithmetical types (e. g. �� � � � � � �)

Verification: if all proof obligations are provable in our calculus

specified properties hold

no overflow occurs

arithmetical types can safely be replaced by corresponding Java

types
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