More Formal Semantics of Java Types Kgy

Range of primitive integer types in Java

Type Range Bits
byte | [—128,127] 8
short | [—32768,32767] 16
int | —2147483648,2147483647] | 32
long | [—2%,20% —1] 64

IFM 2004-Canterbury — p.9

Examples Kgy

Valid for Java integer semantics

MAX_INT+1 = MIN_INT
MIN_INT*(—1) = MIN_INT

Jx,y:int.x Z0Ay#O0Axxy =0

IFM 2004-Canterbury — p.10

Examples Kgy

Valid for Java integer semantics

MAX_INT+1 = MIN_INT
MIN_INT*(—1) = MIN_INT
Jx,y:int.x Z0Ay#O0Axxy =0

Not valid for Java integer semantics

Vx:int.dy:int.y > x

IFM 2004-Canterbury — p.10

Examples Kgy

Valid for Java integer semantics

MAX_INT+1 = MIN_INT

MIN_INT*(—1) = MIN_INT

Jx,y:int.x Z0Ay#O0Axxy =0
Not valid for Java integer semantics

Vx:int.dy:int.y > x

Not a sound rewrite rules for Java integer semantics

xt1 >y+t1 ~ x>y

IFM 2004-Canterbury — p.10

General Problem revisited Kg}’

& semantic gap between Z and Java integers
& defining a JavaDL semantics for Java integers that. ..

is a correct data refinement of Z Req. 1

» reflects Java integer semantics Req. 2

IFM 2004-Canterbury — p.11

General Problem revisited Kg}’

& semantic gap between Z and Java integers
& defining a JavaDL semantics for Java integers that. ..

is a correct data refinement of Z Req. 1

» reflects Java integer semantics Req. 2

3 approaches

Semantics Description Req.1 Req.?2
SocL corresponds to semantics of Z X
S Java corresponds to Java semantics X

SKey combination of Socr and Sy,

IFM 2004-Canterbury — p.11

Semantics Socy Kg}’

Socr assigns Java integers semantics of Z

s Req. 1 trivially fulfilled

& Req. 2 violated, incorrect programs can be “verified”

Example:

‘ZSOCL Vx: int.<y=x+1;>y =x+71

but for x = MAX_INT program not correct

IFM 2004-Canterbury — p.12

Semantics S Java Kgy

S1ava @SSIgNs Java integers the semantics defined in Java Language

Specification

& Req. 1 violated
several abstract states mapped onto one concrete state

s Req. 2 trivially fulfilled

No incorrect programs can be verified, but

violation of Req. 1 leads to “incidentally” correct programs!

IFM 2004-Canterbury — p.13

Our Approach KSZ

Approach

s types byte, short, int, long have semantics Sy,
& additional virtual types arithByte, arithShort, arithInt, and

arithLong (called “arithmetical types”) with following semantics:

IFM 2004-Canterbury — p.17

Our Approach Kgy

Approach

s types byte, short, int, long have semantics Sy,
& additional virtual types arithByte, arithShort, arithInt, and

arithLong (called “arithmetical types”) with following semantics:

o arithmetical types have infinite range
operators are underspecified:
Semantics as in Z but semantics unspecified if

both arguments are in valid range but result is not.

IFM 2004-Canterbury — p.17

Our Approach Kgy

Approach

s types byte, short, int, long have semantics Sy,
& additional virtual types arithByte, arithShort, arithInt, and

arithLong (called “arithmetical types”) with following semantics:

o arithmetical types have infinite range
operators are underspecified:
Semantics as in Z but semantics unspecified if

both arguments are in valid range but result is not.
A

IC
- |
OO = | |
MINT 0 M

IFM 2004-Canterbury — p.17

Semantics Sk Kg}’

Semantics Sg,y of arithByte, arithShort, arithInt, arithLong
Range: infinite (Z)
Operations, e.g. + on arithInt:

+ :arithInt X arithInt — arithInt

3 cases:

IFM 2004-Canterbury — p.18

Semantics Sk Kg}’

Semantics Sg,y of arithByte, arithShort, arithInt, arithLong
Range: infinite (Z)
Operations, e.g. + on arithInt:

+ :arithInt X arithInt — arithInt

3 cases:

& both args. and result are in valid range (e.g. 2+3 = 5)

“normal” case

IFM 2004-Canterbury — p.18

Semantics Sk Kﬁ)’

Semantics Sg,y of arithByte, arithShort, arithInt, arithLong
Range: infinite (Z)
Operations, e.g. + on arithInt:

+ :arithInt X arithInt — arithInt

3 cases:

& both args. and result are in valid range (e.g. 2+3 = 5)
“normal” case
& both args. are in valid range but result is not (e.g. MAX_INT+1 = ?)

overflow case, not specified

IFM 2004-Canterbury — p.18

Semantics Sk Kﬁ)’

Semantics Sg,y of arithByte, arithShort, arithInt, arithLong
Range: infinite (Z)
Operations, e.g. + on arithInt:

+ :arithInt X arithInt — arithInt

3 cases:

& both args. and result are in valid range (e.g. 2+3 = 5)
“normal’ case

& both args. are in valid range but result is not (e.g. MAX_INT+1 = ?)
overflow case, not specified

& an arg. is not in valid range (e.g. (MAX_INT 47 1)+1 = MAX_INT 4+ 2)

cannot happen during execution, only in logic

IFM 2004-Canterbury — p.18

Reason for Underspecifi cation Kg}’

property provable in our calculus —

property independent of actual implementation of overflow case

IFM 2004-Canterbury — p.19

Reason for Underspecifi cation Kg}’

property provable in our calculus —

property independent of actual implementation of overflow case

Main theorem

If
(I) ’:5[(@1/ I' — <p>¢
(i) s |:51<ey I

(il) s is areal state (i.e. all arith. variables in valid range)
then

(a) no overflow occurs in p’ when started in s’

(b) p’ terminates in state where property v holds.

IFM 2004-Canterbury — p.19

A Sequent Calculus KSZ

Generation of pre-conditions that no overflow occurs built into calculus

rules

Example: Rule for multiplication on arithmetical types

define predicate int(-): inp(x) iff MIN T <x<MAX T

1. I, ing, (x) Aing,(y) = inp(x xy) F {z —xxy} ()¢

2. I, ing (%), ing,(y), ~inr(x*y) F (z=overflow(x,y,"*");)¢

I <z=X*y; >¢

IFM 2004-Canterbury — p.20

Software development following our approach:

& Specification: use of OCL type INTEGER

& Implementation: use of arithmetical types (e.g. arithInt)

& Verification: if all proof obligations are provable in our calculus
specified properties hold
no overflow occurs

& arithmetical types can safely be replaced by corresponding Java

types

IFM 2004-Canterbury — p.21

	More Formal Semantics of java Types
	Examples
	General Problem revisited
	Semantics semanticsa
	Semantics semanticsb
	Our Approach
	Semantics semanticsc
	Reason for Underspecification
	A Sequent Calculus
	Software Development

