Range of primitive integer types in Java

Туре	Range	Bits
byte	[-128, 127]	8
short	[-32768, 32767]	16
int	[-2147483648, 2147483647]	32
long	$[-2^{63}, 2^{63} - 1]$	64

Valid for Java integer semantics

 $\texttt{MAX_INT+1} \doteq \texttt{MIN_INT}$

 $\texttt{MIN_INT}*(-1) \doteq \texttt{MIN_INT}$

```
\exists x, y: int. x \neq 0 \land y \neq 0 \land x * y \doteq 0
```


Valid for Java integer semantics

 $\texttt{MAX_INT+1} \doteq \texttt{MIN_INT}$

 $\texttt{MIN_INT}*(-1) \doteq \texttt{MIN_INT}$

 $\exists \texttt{x,y:int.x} \neq 0 \land \texttt{y} \neq 0 \land \texttt{x*y} \doteq 0$

Not valid for Java integer semantics

$$\forall \mathtt{x:int.} \exists \mathtt{y:int.} \mathtt{y} > \mathtt{x}$$

Valid for Java integer semantics

 $\texttt{MAX_INT+1} \doteq \texttt{MIN_INT}$

 $\text{MIN_INT}*(-1) \doteq \text{MIN_INT}$

```
\exists \mathtt{x}, \mathtt{y}: \mathtt{int}. \mathtt{x} \neq 0 \land \mathtt{y} \neq 0 \land \mathtt{x} \ast \mathtt{y} \doteq 0
```

Not valid for Java integer semantics

$$\forall \mathtt{x:int.} \exists \mathtt{y:int.} \mathtt{y} > \mathtt{x}$$

Not a sound rewrite rules for Java integer semantics

$$x+1 > y+1 \quad \rightsquigarrow \quad x > y$$

General Problem revisited

- \checkmark semantic gap between \mathbb{Z} and Java integers
- defining a JavaDL semantics for Java integers that...
 - is a correct data refinement of \mathbb{Z} Req. 1
 - reflects Java integer semantics
 Req. 2

IFM 2004–Canterbury – p.11

General Problem revisited

- \checkmark semantic gap between \mathbb{Z} and Java integers
- defining a JavaDL semantics for Java integers that...
 - \bullet is a correct data refinement of \mathbb{Z} **Req. 1 Req. 2**
 - reflects Java integer semantics

3 approaches

Semantics	Description	Req. 1	Req. 2
S_{OCL}	corresponds to semantics of $\mathbb Z$	\checkmark	X
S Java	corresponds to Java semantics	X	\checkmark
S _{KeY}	combination of S _{OCL} and S _{Java}	\checkmark	\checkmark

 \mathcal{S}_{OCL} assigns Java integers semantics of $\mathbb Z$

- Req. 1 trivially fulfilled
- Req. 2 violated, incorrect programs can be "verified"

Example:

$$\models_{\mathcal{S}_{OCL}} \forall \mathtt{x:int.} \langle \mathtt{y=x+1;} \rangle \mathtt{y} \doteq \mathtt{x} +_{\mathbb{Z}} 1$$

but for $x \doteq MAX_{INT}$ program not correct

 S_{Java} assigns Java integers the semantics defined in Java Language Specification

Req. 1 violated

several abstract states mapped onto one concrete state

Req. 2 trivially fulfilled

No incorrect programs can be verified, but

violation of Req. 1 leads to "incidentally" correct programs!

Approach

- **types** byte, short, int, long have semantics S_{Java}
- additional virtual types arithByte, arithShort, arithInt, and arithLong (called "arithmetical types") with following semantics:

Approach

- **types** byte, short, int, long have semantics S_{lava}
- additional virtual types arithByte, arithShort, arithInt, and arithLong (called "arithmetical types") with following semantics:
 - arithmetical types have infinite range
 - operators are underspecified:

Semantics as in $\mathbb Z$ but semantics unspecified if

both arguments are in valid range but result is not.

Approach

- **types** byte, short, int, long have semantics S_{lava}
- additional virtual types arithByte, arithShort, arithInt, and arithLong (called "arithmetical types") with following semantics:
 - arithmetical types have infinite range
 - operators are underspecified:

Semantics as in ${\mathbb Z}$ but semantics unspecified if

both arguments are in valid range but result is not.

Range: infinite (\mathbb{Z})

Operations, e.g. + **on** arithInt:

+: arithInt \times arithInt \rightarrow arithInt

3 cases:

Range: infinite (\mathbb{Z})

Operations, e.g. + **on** arithInt:

+: arithInt imes arithInt o arithInt

3 cases:

both args. and result are in valid range (e.g. $2+3 \doteq 5$)

"normal" case

Range: infinite (\mathbb{Z})

Operations, e.g. + **on** arithInt:

+: arithInt imes arithInt o arithInt

3 cases:

both args. and result are in valid range (e.g. $2+3 \doteq 5$)

"normal" case

• both args. are in valid range but result is not (e.g. MAX_INT+1 \doteq ?)

overflow case, not specified

Range: infinite (\mathbb{Z})

Operations, e.g. + **on** arithInt:

+: arithInt imes arithInt o arithInt

3 cases:

both args. and result are in valid range (e.g. $2+3 \doteq 5$)

"normal" case

s both args. are in valid range but result is not (e.g. MAX_INT+1 \doteq ?)

overflow case, not specified

• an arg. is not in valid range (e.g. (MAX_INT +_Z 1)+1 \doteq MAX_INT +_Z 2)

cannot happen during execution, only in logic

property provable in our calculus \implies

property independent of actual implementation of overflow case

property provable in our calculus \implies

property independent of actual implementation of overflow case

Main theorem

lf

(i)
$$\models_{\mathcal{S}_{KeY}} \Gamma \to \langle p \rangle \psi$$

(ii) $s \models_{\mathcal{S}_{KeY}} \Gamma$

(iii) *s* is a real state (i.e. all arith. variables in valid range) then

(a) no overflow occurs in p^\prime when started in s^\prime

(b) p' terminates in state where property ψ holds.

Generation of pre-conditions that no overflow occurs built into calculus rules

Example: Rule for multiplication on arithmetical types

define predicate $in_{T}(\cdot)$: $in_{T}(x)$ iff $MIN_{T} \leq x \leq MAX_{T}$

1.
$$\Gamma$$
, $in_{T_1}(\mathbf{x}) \wedge in_{T_2}(\mathbf{y}) \rightarrow in_{T}(\mathbf{x} * \mathbf{y}) \vdash \{\mathbf{z} \leftarrow \mathbf{x} * \mathbf{y}\} \langle \rangle \phi$

2. Γ , $in_{T_1}(x)$, $in_{T_2}(y)$, $\neg in_T(x * y) \vdash \langle z = overflow(x, y, "*"); \rangle \phi$

 $\Gamma \vdash \langle z = x * y; \rangle \phi$

Software development following our approach:

- **Specification:** use of OCL type INTEGER
- Implementation: use of arithmetical types (e.g. arithInt)
- Verification: if all proof obligations are provable in our calculus
 - specified properties hold
 - no overflow occurs
- arithmetical types can safely be replaced by corresponding Java types