
Motivating Example

Java Program

class C {

int x;
int y;

void m() {
x = x+y;

}

}

Specification

pre: true
post: x = x@pre + y

Proof Goal

o.x > 1, o.y > 1 `̀̀ 〈〈〈o.m();〉〉〉(o.x ∗ o.y > 1)

– p.4

Motivating Example

Java Program

class C {

int x;
int y;

void m() {
x = x+y;

}

}

Specification

pre: true
post: x = x@pre + y

Proof Goal

o.x > 1, o.y > 1 `̀̀ 〈〈〈o.m();〉〉〉(o.x ∗ o.y > 1)

– p.4

Motivating Example

Java Program

class C {

int x;
int y;

void m() {
x = x+y;

}

}

Specification

pre: true
post: x = x@pre + y

Proof Goal

o.x > 1, o.y > 1 `̀̀ 〈〈〈o.m();〉〉〉(o.x ∗ o.y > 1)

– p.4

Rule for Method Invocation

Rule

Γ `̀̀ PRE Γ@pre, POST `̀̀ φ

Γ `̀̀ 〈〈〈m();〉〉〉φ

Application to Example

pre: true
post: x = x@pre + y

. . . `̀̀ true
o.x@pre > 1, o.y@pre > 1,
o.x = o.x@pre + o.y `̀̀ o.x ∗ o.y > 1

o.x > 1, o.y > 1 `̀̀ 〈〈〈o.m();〉〉〉(o.x ∗ o.y > 1)

– p.5

Rule for Method Invocation

Rule

Γ `̀̀ PRE Γ@pre, POST `̀̀ φ

Γ `̀̀ 〈〈〈m();〉〉〉φ

Application to Example

pre: true
post: x = x@pre + y

. . . `̀̀ true
o.x@pre > 1, o.y@pre > 1,
o.x = o.x@pre + o.y `̀̀ o.x ∗ o.y > 1

o.x > 1, o.y > 1 `̀̀ 〈〈〈o.m();〉〉〉(o.x ∗ o.y > 1)

– p.5

Rule for Method Invocation

Rule

Γ `̀̀ PRE Γ@pre, POST `̀̀ φ

Γ `̀̀ 〈〈〈m();〉〉〉φ

Application to Example

pre: true
post: x = x@pre + y

. . . `̀̀ true
o.x@pre > 1, o.y@pre > 1,
o.x = o.x@pre + o.y `̀̀ o.x ∗ o.y > 1

o.x > 1, o.y > 1 `̀̀ 〈〈〈o.m();〉〉〉(o.x ∗ o.y > 1)

– p.5

Improved Specification

Specification

pre: true
post: x = x@pre + y and

y = y@pre

Rule Application

. . . `̀̀ true

o.x@pre > 1, o.y@pre > 1,
o.x = o.x@pre + o.y,

o.y = o.y@pre `̀̀ o.x ∗ o.y > 1

o.x > 1, o.y > 1 `̀̀ 〈〈〈o.m();〉〉〉(o.x ∗ o.y > 1)

– p.6

Improved Specification

Specification

pre: true
post: x = x@pre + y and

y = y@pre

Rule Application

. . . `̀̀ true

o.x@pre > 1, o.y@pre > 1,
o.x = o.x@pre + o.y,

o.y = o.y@pre `̀̀ o.x ∗ o.y > 1

o.x > 1, o.y > 1 `̀̀ 〈〈〈o.m();〉〉〉(o.x ∗ o.y > 1)

– p.6

Improved Specification

Specification

pre: true
post: x = x@pre + y and

y = y@pre

Rule Application

. . . `̀̀ true

o.x@pre > 1, o.y@pre > 1,
o.x = o.x@pre + o.y,

o.y = o.y@pre `̀̀ o.x ∗ o.y > 1

o.x > 1, o.y > 1 `̀̀ 〈〈〈o.m();〉〉〉(o.x ∗ o.y > 1)

– p.6

But . . . No Solution in General

Java Program

class C {

int x;
int y;

C next;

void m() {
x = x+y;

}

}

Specification

pre: true
post: x = x@pre + y and

y = y@pre and
next = next@pre and
next.next = next.next@pre and
next.next.next = next.next.next@pre
and . . . and . . .

– p.7

But . . . No Solution in General

Java Program

class C {

int x;
int y;

C next;

void m() {
x = x+y;

}

}

Specification

pre: true
post: x = x@pre + y and

y = y@pre and
next = next@pre and
next.next = next.next@pre and
next.next.next = next.next.next@pre
and . . . and . . .

– p.7

Modification Conditions

Java Program

class C {

int x;
int y;

void m() {
x = x+y;

}

}

Specification

pre: true
post: x = x@pre + y
modifies: x

– p.8

Modification Conditions

Java Program

class C {

int x;
int y;

void m() {
x = x+y;

}

}

Specification

pre: true
post: x = x@pre + y
modifies: x

– p.8

Modification Conditions

What is needed?

Syntax

Precise semantics

Methods for checking modification conditions

Methods for using modification conditions
(rules for verification calculus)

– p.9

Syntax

List of expressions of the form

expr.attr

where expr evaluates to a single object

– p.10

What If Location Changes?

What if location (not its value) changes?

x = y;
x.a = 1;

modifies: x, x.a, y.a
︸ ︷︷ ︸

?

Answer

modifies: x, y.a (and x.a if x=y in pre-state)

Modification conditions talk about the location
that an expression refers to in the pre-state

– p.11

What If Location Changes?

What if location (not its value) changes?

x = y;
x.a = 1;

modifies: x, x.a, y.a
︸ ︷︷ ︸

?

Answer

modifies: x, y.a (and x.a if x=y in pre-state)

Modification conditions talk about the location
that an expression refers to in the pre-state

– p.11

Further Questions

What if the location is not allocated in the pre-state?

It is still modified

What if the method does not terminate?

Nothing is modified

What about temporal/intermediate changes?

Do not matter

– p.12

Further Questions

What if the location is not allocated in the pre-state?

It is still modified

What if the method does not terminate?

Nothing is modified

What about temporal/intermediate changes?

Do not matter

– p.12

Further Questions

What if the location is not allocated in the pre-state?

It is still modified

What if the method does not terminate?

Nothing is modified

What about temporal/intermediate changes?

Do not matter

– p.12

Modifies Conditions: Formal Definition

Pre-state

After binding parameters and self/this,
before execution of the method body

Post-state

After (abrupt or normal) termination of the method

Modified location

A location L is modified by running the method in a state s if

the method terminates when started in s

there is an expression that refers to L in the pre-state
(not a local variable)

the values of L in the pre- and the post-state differ

– p.13

Modifies Conditions: Formal Definition

Pre-state

After binding parameters and self/this,
before execution of the method body

Post-state

After (abrupt or normal) termination of the method

Modified location

A location L is modified by running the method in a state s if

the method terminates when started in s

there is an expression that refers to L in the pre-state
(not a local variable)

the values of L in the pre- and the post-state differ

– p.13

Modifies Conditions: Formal Definition

Pre-state

After binding parameters and self/this,
before execution of the method body

Post-state

After (abrupt or normal) termination of the method

Modified location

A location L is modified by running the method in a state s if

the method terminates when started in s

there is an expression that refers to L in the pre-state
(not a local variable)

the values of L in the pre- and the post-state differ
– p.13

Modifies Conditions: Formal Definition

Modified expression

An expression is modified by starting the method in a state s

if it refers in s to a location that is modified

Modification condition

If there is a state s such that some location L is modified by starting
the method in s,

then the modification clause must contain an expression
referring to L in s.

– p.14

Modifies Conditions: Formal Definition

Modified expression

An expression is modified by starting the method in a state s

if it refers in s to a location that is modified

Modification condition

If there is a state s such that some location L is modified by starting
the method in s,

then the modification clause must contain an expression
referring to L in s.

– p.14

A New Rule for Method Invocation

New rule (2nd version)

Γ `̀̀ PRE Γ, UPOST `̀̀ Uφ

Γ `̀̀ 〈〈〈m();〉〉〉φ

U :

{{{ a@pre := a
mod := mod@post

︸ ︷︷ ︸

new var

}}}

Application to Example

pre: true
post: x = x@pre + y
modifies: x

{{{ x@pre := x
x := x@post }}}

. . . `̀̀ true
o.x > 1, o.y > 1,

o.x@post = o.x + o.y `̀̀ o.x@post ∗ o.y > 1

o.x > 1, o.y > 1 `̀̀ 〈〈〈o.m();〉〉〉(o.x ∗ o.y > 1)

– p.15

A New Rule for Method Invocation

New rule (2nd version)

Γ `̀̀ PRE Γ, UPOST `̀̀ Uφ

Γ `̀̀ 〈〈〈m();〉〉〉φ

U :

{{{ a@pre := a
mod := mod@post

︸ ︷︷ ︸

new var

}}}

Application to Example

pre: true
post: x = x@pre + y
modifies: x

{{{ x@pre := x
x := x@post }}}

. . . `̀̀ true
o.x > 1, o.y > 1,

o.x@post = o.x + o.y `̀̀ o.x@post ∗ o.y > 1

o.x > 1, o.y > 1 `̀̀ 〈〈〈o.m();〉〉〉(o.x ∗ o.y > 1)

– p.15

A New Rule for Method Invocation

New rule (2nd version)

Γ `̀̀ PRE Γ, UPOST `̀̀ Uφ

Γ `̀̀ 〈〈〈m();〉〉〉φ

U :

{{{ a@pre := a
mod := mod@post

︸ ︷︷ ︸

new var

}}}

Application to Example

pre: true
post: x = x@pre + y
modifies: x

{{{ x@pre := x
x := x@post }}}

. . . `̀̀ true
o.x > 1, o.y > 1,

o.x@post = o.x + o.y `̀̀ o.x@post ∗ o.y > 1

o.x > 1, o.y > 1 `̀̀ 〈〈〈o.m();〉〉〉(o.x ∗ o.y > 1)

– p.15

A New Rule for Method Invocation

New rule (2nd version)

Γ `̀̀ PRE Γ, UPOST `̀̀ Uφ

Γ `̀̀ 〈〈〈m();〉〉〉φ

U :

{{{ a@pre := a
mod := mod@post

︸ ︷︷ ︸

new var

}}}

Application to Example

pre: true
post: x = x@pre + y
modifies: x

{{{ x@pre := x
x := x@post }}}

. . . `̀̀ true
o.x > 1, o.y > 1,

o.x@post = o.x + o.y `̀̀ o.x@post ∗ o.y > 1

o.x > 1, o.y > 1 `̀̀ 〈〈〈o.m();〉〉〉(o.x ∗ o.y > 1)

– p.15

Checking Modification Conditions

Problematic programs

x = y; x.a = 1; modifies: x, y.a

n++; a[n] = 1; modifies: n, a[n+1]

CHASE static checker

Extends ESC/Java to check modification clauses in JML

Neither sound nor complete

– p.16

Checking Modification Conditions

Problematic programs

x = y; x.a = 1; modifies: x, y.a

n++; a[n] = 1; modifies: n, a[n+1]

CHASE static checker

Extends ESC/Java to check modification clauses in JML

Neither sound nor complete

– p.16

More Expressive Modification Conditions

Extended language for modification conditions

o.∗ all attributes of o

reachable(o) all objects reachable from o

reachable(o,next) all objects reachable from o via next

etc.

+ more expressivity

– harder to check

– harder to define rule

– p.17

More Expressive Modification Conditions

Extended language for modification conditions

o.∗ all attributes of o

reachable(o) all objects reachable from o

reachable(o,next) all objects reachable from o via next

etc.

+ more expressivity

– harder to check

– harder to define rule

– p.17

	Motivating Example
	Rule for Method Invocation
	Improved Specification
	But ldots No Solution in General
	Modification Conditions
	Modification Conditions
	Syntax
	What If Location Changes?
	Further Questions
	Modifies Conditions: Formal Definition
	Modifies Conditions: Formal Definition
	A New Rule for Method Invocation
	Checking Modification Conditions
	More Expressive Modification Conditions

