
Formal Verification of Software

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

Summer Term 2006

Formal Verification of Software – p.1



This Course / Web Page

Web page

All information relevant to this lecture can be found on the web page

www.uni-koblenz.de/˜beckert/Lehre/Verification

Make this a lively course

Ask questions!

Don’t fall asleep

Keep cool

Formal Verification of Software – p.2



This Course / Web Page

Web page

All information relevant to this lecture can be found on the web page

www.uni-koblenz.de/˜beckert/Lehre/Verification

Make this a lively course

Ask questions!

Don’t fall asleep

Keep cool

Formal Verification of Software – p.2



This Course / Web Page

Web page

All information relevant to this lecture can be found on the web page

www.uni-koblenz.de/˜beckert/Lehre/Verification

Make this a lively course

Ask questions!

Don’t fall asleep

Keep cool

Formal Verification of Software – p.2



This Course / Web Page

Web page

All information relevant to this lecture can be found on the web page

www.uni-koblenz.de/˜beckert/Lehre/Verification

Make this a lively course

Ask questions!

Don’t fall asleep

Keep cool

Formal Verification of Software – p.2



Contents

Why verification?
Advantages and disadvantage. Costs and gains.

Basics of deductive program verification:
Hoare Logic and Dynamic Logic

Deductive verification of object-oriented programming languages
(using Java as an example)

Formal Verification of Software – p.3



Contents

Why verification?
Advantages and disadvantage. Costs and gains.

Basics of deductive program verification:
Hoare Logic and Dynamic Logic

Deductive verification of object-oriented programming languages
(using Java as an example)

Formal Verification of Software – p.3



Contents

Why verification?
Advantages and disadvantage. Costs and gains.

Basics of deductive program verification:
Hoare Logic and Dynamic Logic

Deductive verification of object-oriented programming languages
(using Java as an example)

Formal Verification of Software – p.3



What are Formal Methodsn?

Software Development Methods

Analysis

Modelling (Specification)

Implementation

Validation (Verification, Testing)

. . . using . . .

Languages and notations with (mathematical) precise semantics

Logic-based techniques

Note

formal 6= theoretical

Formal Verification of Software – p.4



What are Formal Methodsn?

Software Development Methods

Analysis

Modelling (Specification)

Implementation

Validation (Verification, Testing)

. . . using . . .

Languages and notations with (mathematical) precise semantics

Logic-based techniques

Note

formal 6= theoretical

Formal Verification of Software – p.4



What are Formal Methodsn?

Software Development Methods

Analysis

Modelling (Specification)

Implementation

Validation (Verification, Testing)

. . . using . . .

Languages and notations with (mathematical) precise semantics

Logic-based techniques

Note

formal 6= theoretical

Formal Verification of Software – p.4



Why Formal Methods?

Quality: Important for . . .

Safety-critical applications (railway switches)

Security-critical applications (access control, electronic banking)

Financial reasons (phone cards)

Legal reasons (electronic signature, EAL6/7 in Common Criteria)

Productivity: Important for . . .

Obvious reasons

Formal Verification of Software – p.5



Why Formal Methods?

Quality: Important for . . .

Safety-critical applications (railway switches)

Security-critical applications (access control, electronic banking)

Financial reasons (phone cards)

Legal reasons (electronic signature, EAL6/7 in Common Criteria)

Productivity: Important for . . .

Obvious reasons

Formal Verification of Software – p.5



Why Formal Methods?

Quality through . . .

Better and more precise understanding of model and implementation

Better written software (modularisation, information hiding, . . . )

Error detection with runtime checks

Test case generation

Static analysis

Deductive verification

Formal Verification of Software – p.6



Why Formal Methods?

Productivity through

Error detection in early stages of development

Re-use of components (requires specification and validation)

Better documentation, maintenance

Test case generation

Knowledge about formal methods leads to
better software development

Formal Verification of Software – p.7



Testing

Run the system at chosen inputs and observe its behaviour

– Randomly chosen

– Intelligently chosen (by hand: expensive!)

– Automatically chosen (need formalized spec)

What about other inputs? (test coverage)

What about the observation? (test oracle)

Challenges can be addressed by/require formal methods

Formal Verification of Software – p.8



Testing

Run the system at chosen inputs and observe its behaviour

– Randomly chosen

– Intelligently chosen (by hand: expensive!)

– Automatically chosen (need formalized spec)

What about other inputs? (test coverage)

What about the observation? (test oracle)

Challenges can be addressed by/require formal methods

Formal Verification of Software – p.8



Testing

Run the system at chosen inputs and observe its behaviour

– Randomly chosen

– Intelligently chosen (by hand: expensive!)

– Automatically chosen (need formalized spec)

What about other inputs? (test coverage)

What about the observation? (test oracle)

Challenges can be addressed by/require formal methods

Formal Verification of Software – p.8



Testing

Run the system at chosen inputs and observe its behaviour

– Randomly chosen

– Intelligently chosen (by hand: expensive!)

– Automatically chosen (need formalized spec)

What about other inputs? (test coverage)

What about the observation? (test oracle)

Challenges can be addressed by/require formal methods

Formal Verification of Software – p.8



Favourable Development

Design and specification

Unified Modeling Language – UML

Graphical language for object-oriented modelling
Standard of Object Management Group (OMG)

Object Constraint Language – OCL

Formal textual assertion language
UML Substandard

Consolidation and documentation of design knowledge

Patterns, idioms, architectures, frameworks, etc.

Industrial implementation languages

Java, C#

Formal Verification of Software – p.9



Favourable Development

Design and specification

Unified Modeling Language – UML

Graphical language for object-oriented modelling
Standard of Object Management Group (OMG)

Object Constraint Language – OCL

Formal textual assertion language
UML Substandard

Consolidation and documentation of design knowledge

Patterns, idioms, architectures, frameworks, etc.

Industrial implementation languages

Java, C#

Formal Verification of Software – p.9



Favourable Development

Design and specification

Unified Modeling Language – UML

Graphical language for object-oriented modelling
Standard of Object Management Group (OMG)

Object Constraint Language – OCL

Formal textual assertion language
UML Substandard

Consolidation and documentation of design knowledge

Patterns, idioms, architectures, frameworks, etc.

Industrial implementation languages

Java, C#
Formal Verification of Software – p.9



Types of Requirements

Types of Requirements

functional requirements

communication, protocols

real-time requirements

memory use

security

robustness

etc.

Different Formal Methods

deductive verification

model checking

static analysis

run-time checks
(of formel specification)

Formal Verification of Software – p.10



Types of Requirements

Types of Requirements

functional requirements

communication, protocols

real-time requirements

memory use

security

robustness

etc.

Different Formal Methods

deductive verification

model checking

static analysis

run-time checks
(of formel specification)

Formal Verification of Software – p.10



Types of Requirements

Types of Requirements

functional requirements

communication, protocols

real-time requirements

memory use

security

robustness

etc.

Different Formal Methods

deductive verification

model checking

static analysis

run-time checks
(of formel specification)

Formal Verification of Software – p.10



Limitations of Formal Methods

Possible reasons for errors

Program is not correct (does not satisfy the specification)
Formal verification proves absence of this kind of error

Program is not adequate (error in specification)
Formal specification/verification avoid/find this kind of error

Error in operating system, compiler, hardware
Not avoided (unless compiler etc. specified/verified)

No full specification/verification

In general, it is neither useful nor feasable to fully specify and verify
large software systems. Then, formal methods are restricted to:

Important parts/modules

Important properties/requirements

Formal Verification of Software – p.11



Limitations of Formal Methods

Possible reasons for errors

Program is not correct (does not satisfy the specification)
Formal verification proves absence of this kind of error

Program is not adequate (error in specification)
Formal specification/verification avoid/find this kind of error

Error in operating system, compiler, hardware
Not avoided (unless compiler etc. specified/verified)

No full specification/verification

In general, it is neither useful nor feasable to fully specify and verify
large software systems. Then, formal methods are restricted to:

Important parts/modules

Important properties/requirements
Formal Verification of Software – p.11



The Main Point of Formal Methods is Not

To show “correctness” of entire systems
(What IS correctness? Always go for specific properties!)

To replace testing entirely

To replace good design practices

There is no silver bullet that lets you get away without

writing crystal clear requirements and good design, in

particular, Formal Methods aren’t one

Formal Verification of Software – p.12



But

Formal proof can replace many test cases

Formal methods can be used in automatic test case generation

Formal methods improve the quality of specifications

Formal Verification of Software – p.13



A Fundamental Fact

Formalisation of system requirements is hard

Formal Verification of Software – p.14



Difficulties in Creating Formal Models

Real

World
Abstraction

Formal

Execution

Model

Formal

Requirements

Specification

Formal

Model

wrong assumption

eg, timing

missing requirement

eg, stack overflow

misunderstood problem

eg, wrong integer model

Formal Verification of Software – p.15



Difficulties in Creating Formal Models

Real

World

Abstraction

Formal

Execution

Model

Formal

Requirements

Specification

Formal

Model

wrong assumption

eg, timing

missing requirement

eg, stack overflow

misunderstood problem

eg, wrong integer model

Formal Verification of Software – p.15



Difficulties in Creating Formal Models

Real

World

Abstraction

Formal

Execution

Model

Formal

Requirements

Specification

Formal

Model

wrong assumption

eg, timing

missing requirement

eg, stack overflow

misunderstood problem

eg, wrong integer model

Formal Verification of Software – p.15



Difficulties in Creating Formal Models

Real

World

Abstraction

Formal

Execution

Model

Formal

Requirements

Specification

Formal

Model

wrong assumption

eg, timing

missing requirement

eg, stack overflow

misunderstood problem

eg, wrong integer model

Formal Verification of Software – p.15



Another Fundamental Fact

Proving properties of systems can be hard

Formal Verification of Software – p.16



System Abstraction Level

Low level of abstraction

• Finitely many states

• Tedious to program, worse to maintain

• Automatic proofs are (in principle) possible

High level of abstraction

• Complex datatypes and control structures

• Easier to program

• Automatic proofs (in general) impossible!

Formal Verification of Software – p.17



Specification Abstraction Level

Low level of abstraction

• Finitely many cases

• Approximation, low precision

• Automatic proofs are (in principle) possible

High level of abstraction

• General properties

• High precision, tight modeling

• Automatic proofs (in general) impossible!

Formal Verification of Software – p.18



Main Approaches

High-level programs, High-level programs,

Complex properties Simple properties

Low-level programs, Low-level programs,

Complex properties Simple properties

Model

Checking

Formal Verification of Software – p.19



Main Approaches

High-level programs, High-level programs,

Complex properties Simple properties

Low-level programs, Low-level programs,

Complex properties Simple properties

Model

Checking

Formal Verification of Software – p.19



Main Approaches

KeY

System

High-level programs, High-level programs,

Complex properties Simple properties

Low-level programs, Low-level programs,

Complex properties Simple properties

Model

Checking

Formal Verification of Software – p.19



Proof Automation

“Automatic” Proof

• No interaction

• Sometimes help is required anyway

• Formal specification still “by hand”

“Semi-Automatic” Proof

• Interaction may be required

• Very often proof tool suggests proof rules

• Proof is checked by tool

Formal Verification of Software – p.20



SPIN at Bell Labs

Feature interaction for telephone call processing software

Tool works directly on C source code

Web interface to track properties

Work farmed out to large numbers of computers

Finds shortest possible error trace

18 months, 300 versions, 75 bugs found

Main burden: Defining meaningful properties

Formal Verification of Software – p.21



SLAM at Microsoft

Device drivers running in “kernel mode” should respect API

Third-party device drivers that do not respect APIs
responsible for 90% of Windows crashes

SLAM inspects C code, builds a finite state machine,
checks requirements

Being turned into a commercial tool right now

Formal Verification of Software – p.22



Future Trends

Design for formal verification

Combining automatic methods with theorem provers

Combining static analysis of programs
with automatic methods and with theorem provers

Combining test and formal verification

Integration of formal methods into SW development process

Integration of formal method tools into CASE tools

Formal Verification of Software – p.23



Formal Methods

Are (more and more) used in practice

Can shorten development time

Can push the limits of feasible complexity

Can increase product quality

Those responsible for software management should consider

formal methods, in particular, where safety-critical,

security-critical, and cost-intensive software is concerned

Formal Verification of Software – p.24



Formal Methods

Are (more and more) used in practice

Can shorten development time

Can push the limits of feasible complexity

Can increase product quality

Those responsible for software management should consider

formal methods, in particular, where safety-critical,

security-critical, and cost-intensive software is concerned

Formal Verification of Software – p.24


	
	This Course / Web Page
	Contents
	What are Formal Methodsn?
	Why Formal Methods?
	Why Formal Methods?
	Why Formal Methods?
	Testing
	Favourable Development
	Types of Requirements
	Limitations of Formal Methods
	The Main Point of Formal Methods is 	extbf {Not}
	But
	A Fundamental Fact
	Difficulties in Creating Formal Models
	Another Fundamental Fact
	System Abstraction Level
	Specification Abstraction Level
	Main Approaches
	Proof Automation
	SPIN at Bell Labs
	SLAM at Microsoft
	Future Trends
	Formal Methods

