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Abstract. In this paper, we present our approach on testing a particular veri-
fication system that is industrially used to generate mathematical proofs of the
correctness of C programs.
Normally, the tools used in such a verification process are seldomly verified nor
thoroughly tested, and their correctness is taken for granted. Our approach to
obtain assurance in such tools does not rely on the knowledge of their internal
details and enables regular users of these tools to write test cases for them. Those
tests are then assessed using our domain-specific axiomatization coverage that
measures the impact of the axiomatization, which is an integral component of the
verification process. Furthermore, we explore several sources of test cases, as the
risk of constructing buggy test cases is high due to the input domain’s complexity.
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1 Introduction

Employing formal methods in the software development process is a viable, if some-
times deemed as costly, way to enhance the quality of the resulting product. One of the
possibilities to use formal methods is in the verification phase of software development,
supplementing the testing effort by formal software verification. Through formal verifi-
cation, one obtains a mathematical proof that the program is correct with respect to its
given specification.

The benefit of such a correctness proof is most apparent with safety-critical soft-
ware. Additionally, in a certification process with high requirements on software qual-
ity and associated evidence of former (for example, in CC EAL 7+ or the upcoming
DO178-C standard), these correctness proofs would be a valuable resource. To use the
correctness proof in some certification process, the tool that was employed to generate
the proof has itself to be validated in some cases.

Unfortunately, this is often not the case with existing software verification tools. As
a user of these tools, internal details or even the source code of the tools are often not
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available to be able to verify that the tool is working correctly—even if access to the
source code is possible, lack of resources impede the application of formal methods to
the tools themselves, due to the complexity of the tools.

In this paper we propose a different approach to obtain assurance in the correctness
of the software verification tools, namely by testing. Our method does not rely on the
knowledge of internal details of the verification tool and enables regular users of these
tools to write test cases for them.

This paper is structured as follows. First, our subject under test, the verification
system VCC, is presented in Section 2 with details on the toolchain and verification
methodology. Then, in Section 3, the theoretical aspects of testing verifying compil-
ers are investigated. In the subsequent sections, the theoretical results are applied to
the subject under test. For this, a suitable technique for testing VCC is chosen in Sec-
tion 4, where we define the domain-specific axiomatization coverage as our test metric,
and explore several sources for test cases. Finally, the results of the testing process are
presented and assessed in Section 5.

2 A Typical Verifying Compiler

For the rest of this paper, we have chosen the VCC tool [9,10], developed by Microsoft
Research, as the verification system to be tested. This tool is developed in the context
of the Verisoft XT project where it is successfully used within two subprojects to verify
functional properties of system software.

VCC is chosen here as a particular instance of formal software verification tools that
follow the “verifying compiler” paradigm. While the tool description in the following
is concerned with the details of VCC, the design and architecture of VCC is similar to
other tools in this area, for example Caduceus or Krakatoa, so the testing methodology
of our paper is not restricted to this particular setup. VCC is being developed as an
industrial-oriented verification environment for low-level concurrent system code writ-
ten in C. It takes a program that is annotated with function contracts, state assertions,
and type invariants, and attempts to prove the correctness of these annotations.

In the following we will give a short overview on the verification workflow and
give a description of the internal architecture of the VCC tool. The particular elements
of the VCC specification language and methodology are not contained in this section,
but described together with the examples presented later on, as far as needed. For a
thorough introduction into the VCC methodology, see [9].

2.1 The VCC Workflow

To verify whether a program fulfills certain functional properties using VCC, the in-
tended properties are first formulated with the help of the VCC specification language,
such as method contracts or invariants on data types. This specification language is sim-
ilar to those found in ESC/Java2 [11], Spec#, and HAVOC [8]. As in all these systems,
the program’s specification is stored as inline source code annotations. These annota-
tions are invisible to a normal C compiler (making use of the C preprocessor features)
but are analyzed by VCC within the verification process.



Invoking VCC on an annotated C source file has one of the following outcomes: (a)
VCC reports that the program fulfills its specification as given by the annotations or (b)
VCC could not prove that the program meets the specification. The latter case may have
several reasons (for example, not enough system resources for the prover, a bug in the
software or specification)—for each of the error sources, there are appropriate tools in
the VCC package to inspect and debug these errors.

2.2 Architecture of the VCC-Toolchain

To prove that a program meets its specification, the VCC tool internally makes use of a
toolchain of three tools: from the annotated C code, with the help of VCC’s compiler,
a representation in an intermediate, imperative programming language with embedded
specification constructs (called BoogiePL [17]) is generated. This BoogiePL represen-
tation is then further processed by the Boogie tool into proof obligations. These are
then proven or refuted by the Z3 theorem prover—leading to either the statement that
the original program meets its specification, or, if the proof obligations are refuted, to a
counterexample.

In the following, we will give a short overview on each of these steps and compo-
nents in the toolchain.
VCC’s compiler The VCC compiler is build by using the Common Compiler Infras-
tructure (CCI)3. Annotated C programs are read and turned into CCI’s internal repre-
sentation to perform typical tasks of a regular C compiler, such as name resolution, and
type and error checks. Next, the fully resolved input program is subject to several trans-
formations: (1) simplifying the source, (2) adding proof obligations that result from the
methodology, and (3) finally generating Boogie code.
Boogie When a C program is analyzed and found to be valid, it is translated into a Boo-
gie program that encodes the input program according to the employed formalization
of C. Boogie is an intermediate verification language and a verification system that acts
as a layer on which program verifiers for other languages can be built upon. It is used
by a number of software verification tools including Spec# and Havoc.

Before the Boogie program is fed to the Boogie program verifier, which translates
it into a sequence of verification conditions, the prelude is added, which is an axiom-
atization of the C intrinsic memory model, object ownership, type state and arithmetic
operations. Then, the verification conditions are passed to an automated theorem prover
to be proven or refuted.
Z3 Z3 [12] is a first-order theorem prover that checks whether a set of formulae is satis-
fiable in the built-in theories. Those cover, for example, the equality over free function
and predicate symbols, real and integer arithmetic, and bit-vectors.

3 Validation of Verification Environments
3.1 Software Validation

To check whether a software system meets its specification and fulfills its intended
purpose, a plethora of techniques (for example, deductive verification, static analysis,
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and white-/black-box testing) can be applied. In this work, we have chosen to use black-
box testing as a cost-effective procedure to establish assurance that our target, VCC,
works correctly.

In general, functional conformance testing is classified as a black-box approach
when an external tester can only observe the outputs generated by the implementa-
tion upon the receipt of inputs, without any information about the internal design of an
implementation. Conformance is the relation between a specification and an implemen-
tation, and the relation is valid if the implementation does not present behaviors that
are not allowed by the specification. If the implementation is given as a black box, only
its observable behavior would be able to be tested against the required behaviors by the
specification.

Towards black-box testing of verification systems, we considered the following ap-
proaches to be applicable. Error guessing is an ad-hoc approach mostly based on experi-
ence. Equivalence Partitioning can be applied when the domain of each input parameter
of a function is structured into equivalence classes. Boundary Value Analysis assumes
that errors tend to occur near extreme values because typical programming errors—for
example, wrong termination conditions for loops—are often related to these boundaries.
Model-driven testing [2] was not considered applicable because of the very costly pro-
cess of constructing a model for large systems. This is the case for verification systems,
where the input and output data is tightly coupled to the behavior specifications of the
verification system.

3.2 Validation Techniques for Verification Systems

When it comes to identifying the components of the verification system that are to be
validated, we identified two major obstacles. The first one was the complexity of the
toolchain. Verification systems are usually large software systems: they are composed
of complex parsers for the input languages, mechanisms to rewrite the input into proof
obligations, and possibly problem solvers and other tools. The second obstacle was the
complexity of the supported languages. Automatic verification systems usually support
a programming language that is annotated with elements from a specification language.
This results in the complex interaction of elements from both languages.

The complexity of the toolchain can be countered by testing the components indi-
vidually, if possible. A structured divide-and-conquer approach towards the interaction
of language elements cannot be defined as straightforward. This is due to the rather un-
structured input domain of a verification system; each test is not simply a combination
of some values for a function to be tested, but an entire C program including annota-
tions. Some structures within the domain can be achieved by defining some orders over
the individual language elements, or by aggregating elements, such as “arithmetic op-
erators” and “memory model specific operators”, to domains. Based on these domains,
test cases can be created systematically by using the combinatorial testing approach.
Once a thorough test is performed, combinatorial testing offers an easy and intuitive
evaluation of the testing process itself: based on the structured approach, the coverage
on n-wise coverage combinations can be computed, and these numbers can help to build
trust in the tool.



Related Work In principle, instead of using our testing approach, parts of the verifi-
cation tools available could be formally verified by using either the verification tools
themselves or others. There have been several efforts to develop completely certified
program verifiers, e.g., in the Bali project [21], the LOOP project [15], and in the Mo-
bius project [4]. Several times, tricky verification examples were proposed to test verifi-
cation tools ([14]), and furthermore, components of Java verification tools were verified
([1]). One example of such a soundness proof conducted is the verification of the rewrite
rules of Caveat’s4 integrated theorem prover by using PVS5. In addition, though, also
all combinations of C’s syntactic constructs were tested. Due to our limited resources,
a comparable approach could not be realized in our scenario.

In their discussion on whether verification systems and calculi have to be verified
in general, Beckert and Klebanov [6] argued that in practice, a more powerful and suf-
ficiently correct system may be used in favor of a less powerful but correct system.
Although they considered the verification of the tools or its components as important,
they advised the developers of verification systems to test more frequently.

A less labor-intensive method than (cross-)verifying parts of the verification sys-
tems would be conducting (cross-)validation of the components by comparative testing.
However, the question is whether such a comparable (verification) system exists. For
the part of programming language, regular compilers may be used as sources for com-
parative statements on the parsability of source code, but finding several verification
systems with similar features that are able to produce comparable outputs from the
same source code is a problem.

Regarding the annotation languages that are commonly used, we observed the rela-
tive similarity between languages such as Java Modeling Language [7], the ANSI/ISO C
Specification language (ACSL)6, and Microsoft’s variants. With possible convergence
of specification languages in the future, we expect the number of comparable verifi-
cations systems to increase. Thus the creation of verification-specific test cases will
become more desirable because of their increased reusability.

Concentrating on the theorem provers that are used in the last stage of VCC to
discharge verification conditions, different approaches are capable of building trust in
them. For example, cross-validation can be used, based on established problem libraries
such as the well-known TPTP library7. Alternatively, the results can be validated by
using proof checkers. One example of such a system is the Formally Verified Proof
Checker that was implemented in ML and even formally verified by using HOL88 [22].

An interesting application of conformance testing is the official validation test suite
for FIPS C (a dialect of C).8 In order to determine the coverage on the language stan-
dard of a test suite, the language standard itself was implemented in a so-called model

4 CEA-LIST: The Caveat Tool. 3 May 2010 http://www-list.cea.fr/labos/gb/
LSL/caveat/index.html

5 SRI International: PVS. 3 May 2010 http://www.csl.sri.com/projects/pvs/
6 CEA-LIST/INRIA-Sacley: ACSL. 3 May 2010 http://frama-c.com/acsl.html
7 Geoff Sutcliffe, Christian Suttner: The TPTP Problem Library for Automated Theorem Prov-
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8 Derek Jones: Who Guards the Guardians? 3 May 2010 http://www.knosof.co.uk/
whoguard.html
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implementation, i.e., an actual compiler based on the language description. Statements
of the model implementation were then mapped back to the standard, allowing the au-
thors to show that all of the requirements in the standard were implemented. With this
approach, statement coverage w.r.t. this model implementation thus relates to coverage
of the language standard elements. In the end, a statement coverage of 84% of the model
implementation was achieved by a comprehensive test suite, demonstrating that the test
suite checks a substantial portion of the C programming language.

4 Testing of VCC

To effectively apply software testing to VCC, we have to first identify the important
quality attributes of the subject under test. These attributes can then be used to derive or
select useful metrics in order to assess the quality of testing. Then, we discuss several
possible sources for test cases in order to apply the concept of cross-validation to verifi-
cation environment testing. It has to be noted that our approach is only weakly related to
“regular” compiler testing, as our focus is not on the parsing capabilities and automatic
error corrections, but on VCC’s design goal, i.e., the ability to fully automatically prove
a program’s correctness.

4.1 Test Objective

In the following we concentrate on the soundness of verification systems. The discus-
sion of Beckert et al. [5] on the completeness of verifying compilers is related to this
definition, in which they distinguished between different types of annotations. For ex-
ample, it can be the case that a program is correct with respect to its requirement spec-
ification, but the toolchain is unable to prove it. The reason for this is the missing aux-
iliary annotations that would have guided the theorem prover to the correctness proof.
In the following, the term annotations is used to cover all the requirement specification
annotations and the auxiliary annotations of a program.

From VCC’s point of view, there is no way of differentiating a test case that is sup-
posed to succeed from one that is supposed to fail. It is important to remember that we
are not in the situation of verifying annotated programs, but of observing VCC’s verifi-
cation attempts on annotated programs. This leaves us with the following classification
of test cases: (1) successful cases, where the outcome of a verification attempt equals
the expected outcome, and (2) failing cases, where the outcome of a verification attempt
does not equal the expected outcome. Hence, a test case for a verification system con-
sists of an annotated program and some expected output. The verification system itself
is not part of the test case; components such as the axiomatization remain unchanged
for the testing process.

4.2 Testing with Respect to the Axiomatization

As already mentioned in Section 2.2, VCC’s prelude contains an axiomatization of C
written in Boogie. And within the multi-stage verification process, it has a significant
impact on the outcome. Furthermore, the prelude is accessible to a human analyst, both
on the code level and on the level of understanding the effects of the prelude’s elements.



Based on the importance and its accessibility, we chose to test VCC with respect to
the prelude, that is, to observe the impact of the prelude on the verification process.
Alternatives will be discussed in Section 4.3.

The prelude itself is a Boogie program. In general, a Boogie program consists of a
theory that is used to encode the semantics of the source language, and an imperative
part [3]. A theory is composed of type declarations (keyword: type), symbol declara-
tions (const, function), and axioms (axiom). The imperative part of a Boogie program
consists of global variable declarations (var), procedure headers (procedures), and pro-
cedure implementations (implementations). The size of the prelude in our case is about
2900 lines of code—for easier maintenance and improved legibility the prelude is fur-
ther structured into sections concerning different language- and specification features.
Later on, we will modify the structure of the prelude.

4.3 Coverage Measurement

In the following, we describe our approach chosen to determine the impact of the ax-
iomatization used. The idea is to determine the subset of elements of the original prelude
that is used by the test case. It is checked whether or not an element of the prelude is
needed by comparing the original output of VCC with the result when the selected ele-
ment is left away. If the element can be left away, it is discarded for the given test case
and the process is iterated until no more elements can be left away. Note that, in gen-
eral, the minimal set of prelude elements for a given program is not uniquely defined.
Depending on the generated proof obligations, different sets of prelude elements may
be needed9 and thus the selection strategy when reducing the prelude matters.

Based on our approach, the straightforward definition of axiomatization coverage
follows:

Definition 1. Given a verification environment v, its specification s , the complete ax-
iomatization consisting of m elements, a test case t, and a corresponding minimized
axiomatization avst with nvst elements. Then the axiomatization coverage is defined as
Cov(v, s, t) = nvst/m. For a set of test cases T = t1, . . . , tn and corresponding min-
imized axiomatizations a1, . . . , an, the coverage is defined as Cov(v, s, T ) = na/m
where

⋃
n ai has na distinct elements.

Tests that need rather many elements of the axiomatization can be regarded as strong
tests; on the other hand, tests that requires only a rather small number of elements can
also be regarded as strong because the verification task itself may be very complex.
However, the latter kind of test strength addresses the problem of “the difficulty of
verification”, rather than “the interaction of the prelude’s elements”, in which we are
actually interested.

Discussion and Alternatives In his work, Littlefair [19] examined the relation be-
tween the consideration of quality in software engineering and software metrics. Based

9 e.g., consider the proof obligation a ∨ b: either all elements needed to prove a are needed or
all relevant elements for b



on his observations and on Weyuker’s proposed conditions for useful measures of soft-
ware complexity [24], the usefulness of our own measurement can be evaluated—
exemplarily, we discuss two conditions.10 One of the conditions requires that “there
exist programs P and Q such that |P | 6= |Q|”. This requirement motivates that for
a measure to have any value at all, it has to enable some discrimination between dif-
ferent programs. Axiomatization coverage fulfills this requirement. Another condition
requires that “For all programs P and Q, and the program P ;Q, which is obtained
by combining P and Q, |P | + |Q| ≤ |P ;Q|”. The justification for this property is
the notion that the interaction between parts of a program may introduce complexity,
additional to that present in the components. Hence, the amount of added complex-
ity may only be non-negative. Axiomatization coverage does not fulfill this require-
ment: due to significant overlap in the minimized preludes needed by two programs,
|P | + |Q| ≤ |P ;Q| usually does not hold. Despite not fulfilling several of Weyuker’s
conditions11, our definition of axiomatization coverage has the advantage that test cases
can easily be compared because the result of the coverage computation is a single num-
ber. While allowing for a quick classification of test cases into comprehensive test cases
and test cases with limited scope, it does not take into consideration which elements of
the prelude are needed.

Alternative 1. As the first alternative, we suggest to count the number of the covered
equivalence classes of “language feature”, for example, (1) array indexed with negative
value vs. array indexed with the value 0, (2) unwrapping an object that is not wrapped
vs. unwrapping a wrapped object. In spite of its obvious benefits attributed to the strong
relationship to the boundary value analysis, we do not expect it to be measured easily if
automatically at all, as it is not clear what a language feature is.

Alternative 2. Going away from the axiomatization coverage and back to the idea of
covering language features, a metric can be used that counts the language features used
by a test case. In fact, this can be refined by counting the features of the programming
language and the features of the annotation language separately. Based on combinatorial
testing, an extension of this metric would be the use of the number of “t-wise language
feature element combinations” that are covered by a test case. After testing, a high value
of this extended metric would allow for a high trustworthiness in the subject under test,
as data reported in several studies ([23,20,16]) show that software failures in a variety
of domains were caused by the combinations of several conditions.

Alternative 3. Similarly to the last alternative, and by adapting the derived metric
LOC/COM (lines of code per line of comments, interpretable as maintainability), it is
possible to use LOA/LOC , where LOA is the number of lines of annotations needed.
Thus, it is possible to estimate how many annotations are needed to verify a given code
block. A high ratio may indicate code that is difficult to verify, while a low ratio may
indicate easily verifiable code.

Further alternatives are imaginable, but as the way of defining the metric gets more
complicated, it becomes less conclusive how to actually interpret the results. In general,

10 In Weyuker’s notation the letters P , Q, R represented distinct programs, and the result of the
adequacy measurement was signified by |P |, |Q|, |R|.

11 The discussion was omitted because these are all conditions based on the composition of pro-
grams, which cannot be fulfilled due to the overlap in necessary prelude elements.



it is very likely that a single metric is never able to be presentable as a single expression
for software quality because the objectives targeted by the models of software quality
tend to be multi-dimensional and hierarchical.

4.4 Sources of Test Cases

In the following, we address the issue of producing meaningful test cases, as the system-
atic creation of a large number of meaningful tests is not trivial. To reduce the impact
of erroneous test cases on the testing process, we obtain the test cases from three inde-
pendent sources, as a form of cross-validation.

At first, we explored the possibility of using the official C language standard. In the
next step, we analyzed existing C compiler test suites and investigated ways of adapting
those tests. Finally, tests from other verification systems were analyzed for their possible
adaption.

C Standard The C standard ISO/IEC 9899:201x, often called C1X, was selected to be
the first source of possible tests. Although it does not include tests, it specifies the form
and establishes the interpretation of C programs. The standard uses the Backus-Naur
form for the syntax and prose for the semantics and constraints.

Due to the implementation details of the VCC toolchain, two variations of the C
language had to be considered that deviate partially in language features supported
compared with C1X. For neither a comprehensive lists of the supported C language
features are available, leading to only partially usable C test cases.

In the following, we demonstrate how test cases can be constructed, based on the
sources of information on the supported C standards, based on the first paragraph of
C1X’s section 6.3.2.3 on pointers:

6.3.2.3 Pointers
A pointer to void may be converted to or from a pointer to any incomplete or object
type. A pointer to any incomplete or object type may be converted to a pointer to void
and back again; the result shall compare equal to the original pointer.[. . . ]

Based on the information gathered from the standard we created a single test file
for this paragraph. Exemplarily, we annotated the test file with as much information as
possible; that is, we have listed the motivational source for the tests, the links to supple-
mentary information, and we have quoted the sentences from the standard’s paragraph.
Thus, we achieve a strong link between the standard and the derived tests. An excerpt
of the full version, which was successfully verified by VCC in accordance with the
standard, is presented below:

1 //Scope: C1X 6.3.2.3 Pointers, p. 61f
2 #include "vcc.h"
3

4 void function6323_1(void) {
5 //object types:
6 char* b; [...]
7

8 //paragraph 1: 1. A pointer to void may be converted to or from a pointer to
9 //any incomplete or object type.

10 b = (char*)v; v = (void*)b; [...]
11

12 //paragraph 1: 2. A pointer to any incomplete or object type may be converted



13 //to a pointer to void and back again; the result shall compare
14 //equal to the original pointer.
15 assert(b == (char*)(void*)b); [...] }

C Compiler Test Suites With VCC being a special kind of compiler, the construction
of test cases using compiler test suites is a straightforward approach. Test suites that
check conformance to standards are often called validation suites, and those validation
suites are very influential. Several commercial validation suites are available on the
market (for example the ACE SuperTest or the Perennial ANSI C Validation Suite),
although for licensing reasons we chose to use the test suite of the GNU Compiler
Collection (GCC) version 4.4.012. The C compiler of GCC supports C90, and parts of
C99. The C specific part (about 12,000 files) of the GCC test suite contains generic tests
that are supposed to run on any target, and platform specific tests. Information on the
purposes of the tests is limited, thus complicating the analysis of the test cases.

In addition to verifying developer-defined functional properties, VCC implicitly
checks for undefined behavior, such as, null pointer dereferences, division by zero, over-
and underflow. It does so by automatically inserting additional assertions into the ver-
ification conditions, which precede the translated operation. Because of these checks,
non-annotated source code normally cannot be verified, despite the lack of explicitly
stated functional properties. Therefore, minimal annotations have to be included, for
example, the definition of writes and reads clauses.

We used an iterative approach to adapt files from the GCC test suite. First, we
checked whether Microsoft’s own C compiler can compile the source code without
warnings or errors. Then, minimal annotations were added, so that VCC verifies the
source code without warnings or errors. Finally, additional specification was added
based on comments and a close inspection of the C code, defining pre- and postcon-
ditions, as well as invariants to capture the functional properties of the program. This
step-wise approach is demonstrated in Figure 1. There, we used the information given
in the main function to construct the postcondition. In this function, another function
f is called first, and subsequently, the result of f is checked against what seems to be
the expected result of f, that is if (b != 9). If the expected result is not met, the
program stops abnormally, otherwise it stops normally. Both situations return different
exit codes, which are then interpreted by the test framework.

Verification Environments The motivation behind this approach is that the time in-
tensive task of creating interesting test cases for verification environments can be saved
by adapting existing test cases.

VCC. VCC version 2.1.20731.0 is deployed with a set of 400 test cases, addressing
specific domains, such as arrays, claims, or ghost code. Again, information on the tests’
purposes is very limited; however, some information on the background can be obtained
by an experienced user of VCC by reviewing the source code in combination with the
expected result. Out of the 400 test cases, 202 can be regarded as true positives, and 198
as true negatives. This surprisingly balanced ratio indicates that the developers of VCC
use a systematic testing approach to test succeeding and failing verification.

12 GNU Compiler Collection: 4.4. 3 May 2010 http://gcc.gnu.org/gcc-4.4/
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1 #include "vcc2.h"
2 int b;
3

4 void f ()
5 writes(&b) //A
6 ensures(old(b)==0 ==> b==9) //B
7 ensures(old(b)!=0 ==> b==old(b)) //B
8 {
9 int i = 0;

10 if (b == 0)
11 do
12 invariant(0<=i && i<10) { //B
13 b = i;
14 i++;
15 } while (i < 10) ;
16 }

17 int main ()
18 writes(&b) //A
19 ensures(old(b)==0 //B
20 ==> result == 0)
21 ensures(old(b)!=0 && old(b)!=9 //B
22 ==> result == 1)
23 { f ();
24 if (b != 9) return 1;
25 return 0;
26 }

Fig. 1. Demonstrating the iterative adaption of the GCC test case files. The test case file
990604-1.c without any annotations is amended with minimal annotations (lines marked with
A), and with functional specifications (lines marked with B).

Spec#. The collection of verified algorithms from Leino and Monahan [18] contains
38 relatively complex real-life algorithms,13 such as an insertion sorting algorithm and
a minimal distance algorithm. The algorithms are written in C# and verified by Spec#.
Furthermore, the algorithms are relatively well documented.

Frama-C/Jessie. The Framework for Modular Analysis of C programs (Frama-C)14

is a set of program analyzers with Jessie as the deductive verification plug-in. Using the
Why back-end [13], automatic theorem provers can be used to perform fully automatic
verification. The C files are annotated by using ACSL (see Page 3), which is comparable
to VCC’s annotation language. Similar techniques are used to express, for example,
method contracts, invariants of loops and data structures, and ghost code. As of the
Frama-C release Beryllium 20090601, the distribution comes a set of 236 test case files
for the Jessie plug-in. Compared to the Spec# tests, the translation is slightly more
complex because the annotation language shares less common concepts with VCC’s
than Spec#’s. Still, the annotations can be very helpful, especially when invariants are
provided.

Comparison of the Sources During the exploration of the different sources for test
cases, we have made several observations. Based on these, the above-mentioned ap-
proaches can be compared both qualitatively and quantitatively.

The highest assurance level is given when the programming language standard is
used to derive test cases. However, this is the most labor-intensive approach. Further-
more, it may be difficult to determine if a failed test is caused by a misinterpretation of
the standard, or by an incorrect implementation inside the verification tool. Neverthe-
less, this approach may be useful when corner cases are needed.

An almost arbitrary number of test cases can be created by adopting C compiler
test suites, which is less labor-intensive than the standard-based one. However, the task
13 Rosemary Monahan: Verified Textbook Examples. 3 May 2010 http://www.
rosemarymonahan.com/specsharp/

14 CEA-LIST/INRIA-Sacley: Frama-C. 3 May 2010 http://frama-c.cea.fr
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remains very time consuming, and debugging may be difficult because the C compiler
and the verification tool may have different implementations of the C features.

The use of other verification tools as sources has the potential to offer substantial
support to find the annotations needed for full functional verification. But the number of
the transferable tests is relatively small, and it cannot be guaranteed that two different
verification tools are capable of verifying the same functional properties of a program.

4.5 Test Framework

We implemented a framework that allows for the automated execution and evaluation
of tests. This enables us to find errors in VCC, and to perform the regression testing
of VCC and of a code base. The framework has the benefit that it can be reused with-
out any changes at all if VCC supports further programming languages in the future.
Furthermore, it can be adapted with little effort to other fully automatic verification
environments, if the axiomatization used by these environments is externally modifi-
able. Support for interactive verification tools is not implemented, although it should be
possible to some extend using capture/replay tools.

5 Test Results

In the previous section, we have laid the basis for testing the Verifying C Compiler. The
theoretical background was investigated, a suitable test objective defined, and sources
for test cases were explored. In this section we present the results of the actual runs of
the test framework.

5.1 Prelude Coverage Results

Exemplarily, our test harness computed the axiomatization coverage that is achieved by
VCC’s own test suite. The used test suite contained 400 test cases, which were auto-
matically extracted from the test suite collection files of VCC 2.1.20731.0. The harness
determined the axiomatization coverage that is achieved on the axiomatization of VCC
version 2.1.20731.0, and for comparative reasons the coverage on the axiomatization
of VCC version 2.1.20908.0 (a version about 6 weeks further into development). The
earlier axiomatization contains a total of 858 elements, of which 575 where covered.
Out of these 858 elements, 186 of the 378 axioms were covered; the other elements are,
for example, type and constant definitions, and helper functions. To give the reader an
idea of how this axiomatization is organized: 1) the class of C language features con-
tains 432 elements, containing 212 axioms, of which 84 were covered, and 2) the class
of specification language features contains 426 elements, where 102 of the 166 axioms
were covered. Regarding the latter axiomatization, it contains 896 elements in total, of
which 509 were covered, and only 139 out of 384 axioms were covered.

Before the runs, we had expected that the number of covered elements would stay
roughly the same because features that were added to VCC (indicated by the 38 addi-
tional elements) could not be tested by the old test cases. However, the number declined
significantly from 575 to 509 elements. Investigations reveal that the reason for this is
that axioms and procedures were modified, for example, by removing requirements or



by adding predicates. These changes lead to the necessary inclusion of less elements,
which is observed in smaller minimized preludes. Based on the detailed information
from the test runs, it is possible to establish links between the different minimized pre-
ludes required by a test case and the changes made to VCC’s source code and prelude.
The old tests can still be regarded as relevant to testing VCC, however, they proved to
be less adequate to the newer version of VCC. This can be observed in the decline in
the overall coverage from 67.0% to 56.8%.

In subsequent tests, we were sometimes able to construct tests so that the use of
a specific axiom was triggered. When creating such tests, one has to deal with the
complex and not visible interaction between the elements and the dependencies among
themselves. Although, this approach could be used to systematically add tests to the test
suite, it becomes increasingly difficult to cover previously uncovered elements.

5.2 Issues Encountered

During our investigations, we encountered several issues. For example, we discovered
one bug in the axiomatization with regard to the ownership model. Furthermore, we
discovered one case of VCC being more lenient than Microsoft’s C compiler, as it did
not care about a missing semicolon after the declaration of a C structure. Among the
minor issues are the following: we discovered problems with the interaction of VCC’s
command-line parameters, and one problem with VCC’s model viewer showing out-
dated values. Regarding Boogie, we encountered an incompatibility with file names
starting with numbers, as they yielded Boogie identifiers with illegal characters, which
in return caused Boogie to report errors.

6 Conclusions

The way verification environments are currently tested is not very satisfying. Most of
the time, the tools are written by researchers, and as long as those environments are not
actually used for the verification of critical systems, there is no real demand for trust
in these systems. The Verifying C Compiler (VCC) is one of these tools that are being
used for the verification of industrial products. In this paper, we investigated systematic
approaches for the validation of verification systems. Once we had specified what it
means for a verification system to be correct, we were confronted with the generation
and assessment of test cases for VCC.

The input domain of such a system is the result of the manifold combination of ele-
ments from the C programming language and from the language of verification-specific
annotations. We reduced the risk of constructing incorrect test cases by choosing trust-
worthy sources, such as, the official C language standard ISO/IEC 9899:201x, the test
suite of the GNU Compiler Collection, and the test suites of the verification tools Spec#
and Frama-C/Jessie. While the standard offers the highest level of trust, the derivation
of test cases is the most labor-intensive one. Tests adapted from other verification tools
have the potential to offer substantial support to find the annotations needed for the
functional verification. But the number of those tests is relatively small, compared to
those available from the compiler test suite. The latter, however, does not contain any
annotations, which are not easy to come by.



When we investigated how the individual components of verification systems can
be tested and how the test cases can be assessed, we realized that the common approach
of measuring the percentage of the system’s executed code statements would not take
into account the special features of verification systems. Therefore, we defined axiom-
atization coverage as our domain-specific metric for VCC, in order to assess the test
cases and to observe the impact that the individual elements of the axiomatization have
on the verification process. Concerning the tests we performed, we noticed that VCC’s
own test suite requires only about 60% of the axiomatization. Based on this fact and
on further observations, we draw the following two conclusions: (1) The used part of
the axiomatization seems to correctly reflect the developers’ assumptions about how
the verification methodology is supposed to work, and (2) additional test cases should
be written to achieve a higher coverage. If it is not possible to trigger the use of the
prelude’s element, the importance of this element should be reconsidered.

In the future, we plan to investigate ways of automatically annotating original C
compiler test case files with as many annotations as possible. One way would be to stat-
ically analyze its abstract syntax tree (AST) and then modify it. An abstract syntax tree
is a tree representation of the syntactic structure of the source code, where each node of
the tree stands for a construct occurring in the source code. Once the AST is created, it
can be modified, and then the tree can be unparsed to obtain the refactored source of the
C program. Additionally, we plan to extend the experiments by determining the “regu-
lar code coverage” that is achieved by our set of tests. This will enable us to compare
our coverage approach with those established in the software testing community.
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