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Abstract

We present a verification system for a variant of Hoare-logic that supports proving program correctness by
forward symbolic execution. No explicit weakening rules are needed and first-order reasoning is automated.
The system is suitable for teaching program verification, because the student can concentrate on reasoning
about programs following their natural control flow and proofs are machine-checked.
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1 Introduction

An introduction to formal program verification is part of many courses and text

books about Formal Methods (for example, [23,15]). Most of these use a variant

of Hoare logic [13] or weakest precondition calculus [7] for a small imperative pro-

gramming language. Teaching formal program verification on this basis comes with

a number of challenges:

• Because of the assignment rule, one needs to compute explicitly weakest precon-

ditions and, therefore, reasons backward through the target program. This is

unnatural. The composition rule leads also often to backward reasoning in order

to compute intermediate states.

• Even small proofs are tedious to do by hand and one tends to forget “trivial”

assumptions such as upper/lower bounds. We found several by-hand proofs in

lecture notes on program verification that could not be machine-checked, because

of too weak preconditions or invariants.

• Checking first-order conditions is a distraction and requires to introduce first-

order inference rules.
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The last two points could be easily addressed by a verification tool containing

a sufficiently powerful first-order reasoner as an “oracle” to be invoked whenever

program-free verification conditions are reached. Surprisingly, there seems to be

no easy-to-use Hoare-style verification tool on the market serving that purpose.

There are a number of verification systems for imperative languages used in research

[24,18,17,22,2,5,4], but none of them is suitable for teaching purposes.

In this paper we present a verification system for a version of Hoare-calculus

that addresses the problems described above: it is usable with minimal effort, it

contains a clean separation between program and first-order rules, and it features

a first-order reasoner tailored to verification tasks that can be presented as an

oracle. We also address the first point: our program logic enables forward symbolic

execution while still being based on a weakest precondition calculus. The technical

device used to achieve this is an explicit notion of symbolic program states. We

show that this introduces only minimal overhead, but has substantial advantages

from a pedagogical view. The system is freely available and easy to install. 2 Our

implementation is based on the KeY tool [4], one of the most powerful verification

systems for Java.

Finally, as an extension of the Hoare-calculus for partial correctness, we imple-

mented two more variants: one for total correctness and one for a limited form

of worst-case execution time WCET reasoning. These are briefly presented in the

appendix, Sect. A.8.

2 Background

2.1 Target Programming Language

We use a simple imperative while programming language:

Program ::=
(

Statement
)

?

Statement ::= EmptyStatement | AssignmentStatement |

CompoundStatement | ConditionalStatement |

LoopStatement

EmptyStatement ::= ’;’

AssignmentStatement ::= Location = Expression’;’

CompoundStatement ::= StatementStatement

ConditionalStatement ::= if ’(’BooleanExp’)’

’{’Statement’}’ else ’{’Statement’}’

LoopStatement ::= while’(’BooleanExp’)’ ’{’Statement’}’

Expression ::= BooleanExp | IntExp

BooleanExp ::= IntExp ComparisonOp IntExp | IntExp == IntExp |

BooleanExp BooleanOp BooleanExp | !BooleanExp |

Location | true | false
IntExp ::= IntExp IntOp IntExp | Z | Location

ComparisonOp ::= < | <= | >= | >

BooleanOp ::= & | | | == IntOp ::= * | / | % | + | -

2 From http://www.key-project.org/download/hoare/ , including all examples discussed in this article.
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Locations are simply program variables. In general, they could be more complex

structures, such as array or field accesses, but we will not discuss this here. 3 Loca-

tions and expressions are typed. There are two incomparable types called boolean
and int. The type int denotes the mathematical integers Z, not a finite integer

type like in most real world languages like Java. Note that equality is overloaded.

The grammar above is simplified in the sense that the real grammar uses common

precedence rules for the different operators and allows of course parenthesised ex-

pressions. Obviously, the programming language defined here is a syntactic subset

of the imperative fragment of Java [10].

2.2 First-Order Logic

In order to specify programs we use typed first-order logic. The only types al-

lowed are boolean and int. Terms and formulas of first-order logic are defined as

usual, with one notable exception: expressions of the programming language are

also permitted as terms. This is ok, because expressions are side-effect free. Atomic

formulas are either user-defined predicates or the special rigid equality symbol
.
=

which takes arbitrary terms as arguments. See the appendix for concrete formula

syntax.

Program variables are (despite their name) not modelled as first-order variables

but as constants (0-ary functions). Therefore, it is not possible to quantify over pro-

gram variables. Further, we distinguish between rigid and non-rigid (or flexible)

symbols. The difference is that rigid symbols are evaluated by a classical interpreta-

tion function and variable assignment. Their value is fixed and cannot be changed

by a program. Uninterpreted rigid constants are often used to specify initial and

final values of program variables. The availability of rigid functions and constants

makes it easy to capture and refer to earlier program states and initial values.

In contrast, the value of non-rigid symbols depends on the current state in

which they are evaluated. Non-rigid symbols can be changed by programs. In the

presented logic the only non-rigid symbols are program variables.

Some useful conventions: program variables are typeset in typewriter font, log-

ical variables in italic. When we specify a program π we assume that all program

variables of π are contained in the first-order signature with their correct type.

The semantics of first-order formulas is interpreted over fixed domain models.

Specifically, all boolean terms are interpreted over {true,false} and all integer

terms over Z. Built-in function symbols are listed in the appendix. Apart from

that, all semantic notions such as satisfiability, model, validity, etc., are completely

standard, see, for example, [8].

2.3 Hoare Calculus

Before we define our own version we present a standard version of Hoare calculus

[13]. As usual, the behaviour of programs is specified with Hoare triples:

{P}π {Q} (1)

3 The definitions given here are unsound in the presence of aliasing. General definitions of the concepts
involved are found in [4].
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Here, P and Q are closed first-order formulas and π is a program over locations

L = {l1, . . . , lm}. The meaning of a Hoare triple is as follows: for each model M of

P , if π is started with initial values ik = M(lk) (1 ≤ k ≤ m) and if π terminates

with final values fk, then Mf1,...,fm

l1,...,lm
is a model of Q.

We can paraphrase this in a slightly more informal, but more intuitive, manner:

for a given program π over locations {l1, . . . , lm}, let us call an assignment of values

lk = vk (1 ≤ k ≤ m) the state s of π. What the Hoare triple then says is that if we

start π in any state satisfying the precondition P , if π terminates, then we end up

in a final state that satisfies postcondition Q.

The standard Hoare rules are displayed in Fig. 1. We employ the following

conventions for schematic variables occurring in the rules: e is an expression, b is a

boolean expression, x is a program variable, s,s1,s2 are statements. P,Q,R, I are

closed first-order formulas.

assignment

{P{x/e}} x=e; {P}

composition

{P} s1 {R} {R} s2 {Q}

{P} s1 s2 {Q}
skip

{P} ; {P}

conditional

{P & b
.
= true} s1 {Q} {P & b

.
= false} s2 {Q}

{P}if(b){s1}else{s2} {Q}

loop

{I & b
.
= true} s {I}

{I}while(b){s} {I & b
.
= false}

weakeningLeft

P −> Q {Q} s {R}

{P} s {R}
weakeningRight

{P} s {Q} Q −> R

{P} s {R}

oracle

P
(P any valid first-order formula)

Fig. 1. Rules of standard Hoare calculus.

3 Hoare Logic with Updates

The standard formulation of Hoare logic in Fig. 1 has a number of drawbacks in

usability that are particularly problematic when used for teaching purposes:

• Because of the assignment rule, one needs to compute explicit weakest precondi-

tions and, therefore, reasons backward through the target program.

• The compositional rule splits the proof and requires to have the intermediate

state available.

• Weakening must be used before applying the rules for conditionals/loops. It

would be better to delay weakening until first-order verification conditions are

reached and let it be dealt with by an automated theorem prover.
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• It is not easy to associate a node in a Hoare proof tree with a computation state

of the target program.

We overcome these problems by introducing an explicit notation that describes

finite parts of symbolic program states. This allows us to recast Hoare logic as

forward symbolic execution.

3.1 State Updates

A (state) update is an expression of the form Location := FOLTerm. Actually, this

is only the most simple form of an update, called atomic update. Complex updates

are defined inductively: if U and V are updates, then so are U , V (sequential update),

and U || V (parallel update). 4

The more important of these is the parallel update. Consider a parallel update

of the form U = l1 := t1|| · · · ||lm := tm. Assume that we are in a computation state

s. Then the update takes us into a state sU such that:

sU(l) =







s(l) if l 6∈ {l1, . . . , lm}

tk if l = lk and l 6∈ {lk+1, . . . , lm}
(2)

In words: the value of the locations occurring in U are overwritten with the

right-hand side of the respective update. The second condition in the second clause

ensures that the right-most update in U “wins” if the same location occurs more

than once on the left-hand side in U . Apart from that, all updates are executed in

parallel. Updates are similar to a preamble or fixture as used in unit testing [19]:

a piece of code that gets you into a certain state. There is, however, a difference

between updates and code: the right-hand side of an update may contain any first-

order term, not merely program expressions. This feature is often used to initialise

a program with “arbitrary, but fixed” values.

The significance of parallel updates lies in the following property, formally proven

in Lemma 3.2 below. Let us call two updates U and V equivalent if sU = sV for any

state s.

Lemma 3.1 For each update U there exists a parallel update V that has the form

l1 := t1 || · · · || lm := tm such U and V are equivalent.

3.2 Hoare Triples with Update

We allow to write an update U in front of any program like this: [U ]π. If we are in

state s the meaning is that the program is started in state sU . Within Hoare logic

we use updates as follows:

{P} [U ]π {Q} (3)

where, P , Q, and π are as above, and U is an update over the signature of P and

π. We enclose updates in square brackets to increase readability. Either one of U

and π can be empty. The meaning of this Hoare triple with update is as follows: if s

4 There are further kinds of updates [21,4], but we do not need these here.
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is any state satisfying the precondition P and we start π in sU , then, if π terminates,

we end up in a final state that satisfies postcondition Q.

3.3 Hoare-Style Calculus with Updates

In Fig. 2 we state the rules of a Hoare calculus with updates that has some new

features compared to standard Hoare calculus of Fig. 1:

• Composition is turned into left-to-right symbolic execution.

• Weakening is pushed below application of program rules and becomes part of

first-order verification condition checking.

• We employ updates for handling assignments.

One advantage of weakest precondition calculation [7] as well as backward-execu-

tion style Hoare calculus is that an assignment can be computed by simple substi-

tution and no renaming of old variables is necessary. The price to be paid for that

is the not very intuitive backward-execution of programs. The KeY program logic

uses updates to achieve weakest precondition computation with forward symbolic

execution. In our eyes, this is a major pedagogical advantage: not only follows pro-

gram rule application the natural execution flow in imperative programs, but the

whole prove process is also compatible with established paradigms such as symbolic

debugging.

In the KeY logic as well as in the present version of Hoare logic the rules have

a “local” flavour in the sense that each judgement (node) in the proof tree relates

to a symbolic state during program execution.

We use the same conventions for schematic variables as above, but in addition,

let U be an update and s is either a statement or the empty string. The rules are

depicted in Fig. 2. Let us briefly discuss each of them.

The assignment rule becomes easy: assignments are directly turned into updates.

In our simple language, expressions have no side effects, so we do not need to

introduce temporary variables to capture expression evaluation: we can directly turn

e into the right-hand side of an update and later evaluate the semantic denotation.

The same holds for guards. Because we moved composition of substitutions into

updates, we can now evaluate programs left-to-right. The weakest precondition

calculation is hidden in the update rules (see Fig. 3 below).

There is one new rule called exit that is applied when a program is fully symbol-

ically executed. At this point, the update is applied which computes the weakest

precondition of the symbolic program state U with respect to the postcondition Q.

Then it is checked whether the given precondition implies the weakest precondition.

The premise of the exit rule (as well as the left-most premise of the loop rule) are

first-order verification conditions. This is indicated by a turnstile in order to make

clear that we left the language of Hoare triples.

The conditional rule simply adds the guard expression as branch condition to

the precondition. Of course, we must evaluate the guard in the current state U . As

said above, this formulation requires expressions to have no side effects. It has the

advantage that path conditions can easily be read off each proof node.
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assignment

{P} [U , x := e] s {Q}

{P} [U ] x=e;s {Q}

exit

⊢ P −> U(Q)

{P} [U ] {Q}
skip

{P} [U ] s {Q}

{P} [U ] ;s {Q}

conditional

{P & U(b
.
= true)} [U ] s1;s {Q} {P & U(b

.
= false)} [U ] s2;s {Q}

{P} [U ]if(b){s1}else{s2}s {Q}

loop

⊢ P −> U(I) {I & b
.
= true} [] s1 {I} {I & b

.
= false} [] s {Q}

{P} [U ]while(b){s1}s {Q}

Fig. 2. Rules of Hoare calculus with updates.

The loop rule is a standard invariant rule. We exploit again that expressions

have no side effects, but also that we have no reference types. The chosen formula-

tion stresses the analogies to the conditional rule. The first premise says that the

precondition must be strong enough to ensure that the invariant holds after reach-

ing the state at the beginning of the loop. In the second premise we are not allowed

to use P , because P might have been affected by executing U . In addition, we

must reset the update to the empty one. In other words, started in any state where

the loop invariant and condition hold the invariant must hold again after execution

of the loop body. In practise, one uses as a starting point for the invariant those

parts of P that are unaffected by U . In those parts that are modified, one typically

generalises a suitable term and adds that to the invariant.

3.4 Rules for Updates

We still need rules that handle our explicit state updates. Specifically, we need

to (i) turn sequential into parallel updates (Lemma 3.1) and (ii) apply updates to

terms, formulas, and other updates. For the first task we use a Lemma from [20]

(in specialised form):

Lemma 3.2 For any updates U and x := t the updates U , x := t and U || x := U(t)

are equivalent.

The resulting rule is depicted with the various update application rules in Fig. 3.

These are rewrite rules that can be applied whenever they match. We use the same

schematic variables as before and, in addition, t is a first-order term, P is a parallel

update of the form l1 := t1|| · · · ||lm := tm, y is a logical variable, F is an n-ary

function or predicate symbol, 2 is a propositional connective, and λ is a quantifier.

On top left is the rule that turns sequential into parallel updates. The second

row contains rules for applying updates to program and logical variables. Note the

similarity between the rule for program variables and (2) on p. 5. Logical variables

are rigid and never changed by the updates. The third and fourth row contain rules

for complex terms and for formulas. These are merely homomorphism rules. In

quantified formulas, again, logical variables cannot be affected, but as they may
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U , x := t =⇒ U || x := U(t)

P(x) =⇒







x if l 6∈ {l1, . . . , lm}

tk if x = lk and l 6∈ {lk+1, . . . , lm}
U(y) =⇒ y

U(F (t1, . . . , tn)) =⇒ F (U(t1), . . . ,U(tn)) U(P2Q) =⇒ U(P )2U(Q)

U(λy. P ) =⇒ λy. U(P ), y 6∈ free(U)

Fig. 3. Rewrite rules for update computation.

occur in updates one has to ensure that no name clashes occur (free(U) returns the

set of logical variables not bound in U). On the whole it becomes clear that update

application is basically substitution of program variables with their new values.

In fact, if we define standard substitution formally as rewrite rules, we need

only two rules less! One of the additional rules is closely related to composition of

substitutions. In the end we only have a very slight overhead due to the distinction

between logical and program variables. Note that there is no rule to apply updates

to programs. They accumulate until symbolic execution of the underlying program

terminates.

4 Using KeY-Hoare

We illustrate how the system is used by proving correctness of a small program

countdown that decreases a counter to 0:while (timer>0) {

timer = timer -1;

}

All variables are integers. Provided that the starting value of timer is non-

negative, the program always terminates with the value of timer being 0. Let

startValue be a rigid constant that captures an arbitrary initial value of timer. A

suitable precondition is startValue >= 0. The postcondition can be stated simply

as timer = 0. (Concrete formula syntax is defined in the appendix.) The initial

Hoare triple with updates reads as follows:

{startValue >= 0} [timer := startValue] countdown{timer = 0}

A file with an initial Hoare triple as proof obligation (in a simple format described

in the appendix) is loaded to the KeY-Hoare system. Then the user can select a

rule from Fig. 2 offered in a popup-menu after moving the mouse pointer over a

Hoare triple and clicking (see screenshot below). There is exactly one applicable

rule for each program construct and the system offers exactly this rule: the user

experiences statement-wise symbolic execution of the target program. The only

non-trivial interaction is to supply an invariant in a dialogue box that opens when

the loop rule is applied. The invariant timer >= 0 is sufficient.
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Whenever first-order verifi-

cation conditions are reached,

the system offers a rule Update

Simplification that applies the

update rules from Fig. 3 auto-

matically. At this point, the

user can opt to push the green

Go button . Then the built-in

first-order theorem prover tries

to establish validity automati-

cally. For simple problems dis-

cussed in the introductory courses, such as countdown, this works quite well. If no

proof is found, typically, the invariant or the specification (or the code!) is too weak

or simply wrong. Inspecting the open goals usually gives a good hint. The system

allows the student to follow symbolic execution of the program and to concentrate

on getting invariants and specification right. First-order reasoning is left to the

system. It is possible to inspect and undo previous proof steps as well as to save

and load proofs.

5 Related Work

The tutoring tool for Hoare Calculus ITS, described and evaluated in [9], does not

realise a reasoning system or proof checker. Students can fill out missing Hoare

triples in two different notations. ITS checks whether related triples in the different

notations have the same denotation and it determines the order in which triples

were filled in to see whether students used forward or backward reasoning. Another

educational tool for Hoare Calculus is J-Algo [16], a general modular framework

that allows to visualise algorithms and comes with a module for the Hoare Calculus.

While there is support for stepwise construction of a syntactically valid Hoare proof

tableau, the lack of a reasoning system does not allow to obtain machine checked

proofs. Our state updates are closely related to generalised substitutions used by

the B method [1] and to Abstract State Machines [6]. A full discussion is contained

in [21]. There are versions of Hoare logic that use the assignment rule from dynamic

logic [11] in which case forward symbolic execution can be realised, however, at

the price of introducing existentially quantified variables that hold the result of

intermediate states. This is complicated to explain and difficult to use.

6 Conclusion, Future Work

We presented a verification system for a variant of Hoare-logic that supports proving

by forward symbolic execution. No explicit weakening rule is needed and first-order

reasoning is automated. The system is suitable for teaching program verification,

because the student can concentrate on reasoning about programs following their

natural control flow and proofs are machine-checked. The KeY-Hoare tool is freely

available and can be easily installed (see Appendix). It is based on a state-of-art

verification system for Java [4]. The KeY-Hoare tool is currently used in the course

9
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Program Verification intended for Bachelors in their final year at Chalmers Univer-

sity. 5 Course materials including slides, examples, exercises, and exam questions

are available from the authors.

At the moment, the GUI of the KeY-Hoare tool contains several elements that

are inherited from the full Java version and are not useful in the more specialised

context. It should be cleaned up and simplified. The current version of KeY-Hoare

does not support arrays as Java arrays are too complicated for an introductory

course. It would be easy, however, to implement value-type arrays and we plan to

do this soon. In a similar vein, we will also add static method calls. All this is very

easy, because it can be derived from simplifying corresponding Java constructs.
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KeY System 1.0 (deduction component). In F. Pfenning, editor, Proc. 21st Conference on Automated
Deduction (CADE), Bremen, Germany, volume 4603 of LNCS, pages 379–384. Springer-Verlag, 2007.
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A A Brief Reference Manual for KeY-Hoare

A.1 Installation and Running

KeY-Hoare is available from http://www.key-project.org/download/hoare/. Be-

sides compilation from the source code, we offer a pre-compiled bytecode version

and installation via Java Web start technology. Detailed installation instructions

can be found on the website. Here, we briefly describe the Web Start installation.

Java Web Start is included in all recent JDK and JRE distributions of Java. It

provides a simple way to run and install Java applications similar to applets.

Most browsers already know how to handle Java Web Start URLs; if not, one

needs to associate the file type jnlp with the application javaws. After that a click

on the Web Start link of the KeY website loads and starts KeY-Hoare. 6 One can

use Web Start also from the command line:

javaws http://www.key-project.org/download/hoare/download/webstart/KeY-Hoare.jnlp

After the first start one can start KeY-Hoare offline by simply executing javaws

(Java 6: javaws -viewer) and selecting the KeY-Hoare entry in the list of available

applications.

A.2 Formula Syntax

The following predicate symbols are predefined: >, >=, <, <=, =. The following

function symbols are predefined: +, -, *, /, %. All have their usual signature and

meaning and are supported by the automated theorem prover module of KeY-

Hoare. For modulo we use the definition a % b = a-(a/b)*b. As a consequence,

0 % b = 0 and a % 0 is undefined. Infix notation and the usual precedence rules

are supported.

The concrete syntax of propositional connectives is !, &, |, ->, <-> with obvious

meaning. First-order quantified formulas are written as follows:

QuantifiedFormula ::= Quantifier Type LogicalVariable; FOLFormula

Quantifier ::= \forall | \exists
Example A.1 The following formula expresses that any common divisor x of the

integers a and b is as well a divisor of the integer r.\forall int x; ((x > 0 & a % x = 0 & b % x = 0) -> r % x = 0))

A.3 Input file format

An input file for KeY-Hoare must have either .key or .proof as file extension.

By convention .key files contain only the problem specification, i.e., the program

together with its specification. In contrast .proof files include proofs (or proof

attempts) and are created when saving a proof.

A grammar for input files is given in Fig. A.2. An example that illustrates the

format is in Fig. A.1. An input file consists of three sections:

6 It is also necessary to accept a certificate issued by the KeY project.
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Hähnle & Bubel\funtions {int startVal;

}\programVariables {int timer;

}\hoare {

{ startVal >= 0 }

[timer := startVal]\[{ while (timer>0) {

timer = timer -1;

}

}\℄
{

timer = 0

}

}

Fig. A.1. Input file for the countdown example.

(i) The section starting with keyword \functions declares all required rigid func-

tion symbols used, for example, to assign input program variables to an ar-

bitrary but fixed value as described in Section 3.1. In Fig. A.1 this section

declares an integer constant startValue used as initial value for the program

variable timer.

(ii) The section starting with keyword \programVariables declares all program

variables used in the program. Local variables declarations within the program

are not allowed. Multiple declarations are permitted.

(iii) The section starting with keyword \hoare contains the Hoare triple with up-

dates to be proven valid, i.e., it contains the program and its specification. As

is illustrated in Fig. A.1, the initial update usually contains an assignment of

fixed but arbitrary logical values to the input variables of the program.

A.4 Loading Problems

After starting KeY-Hoare (see Sect. A.1) the prover window becomes visible (the

screenshot on p. 8 is displayed in enlarged form in Fig. A.3). The prover window

consists of a menu- and toolbar, a status line and a central part split into a left and

a right pane. The upper left pane displays a list of all loaded problems. The lower

left pane offers different tabs for proof navigation or strategy settings. The right

pane displays the currently selected subgoal or an inner proof node.

Before we explain the various subpanes in more detail, the first task is to load

13
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InputFile ::= Functions? ProgramVariables? HoareTriple?

Functions ::= \funtions ’{’FunctionDeclaration∗’}’

FunctionDeclaration ::= Type Name
(

’(’ Type
(

’,’Type
)∗
’)’

)

?’;’

ProgramVariables ::= \programVariables ’{’ProgramVariableDeclaration ∗’}’

ProgramVariableDeclaration ::= Type Name
(

’,’ Name
)∗
’;’

HoareTriple ::=
( \hoare | \hoareTotal | \hoareET )

’{’

PreCondition Update Program PostCondition

’}’

PreCondition ::= FOLFormula

Update ::= ’[’
(

AssignmentPair
(

||AssignmentPair
)∗)

? ’]’

AssignmentPair ::= Name ’:=’ FOLTerm

Program ::= ’\[{’ WhileProgram ’}\℄’
PostCondition ::= FOLFormula

Type ::= int | boolean
Name ::= character sequence not starting with a number

Fig. A.2. Input file grammar

a problem file. This can be done either by selecting Load in the File menu or by

clicking on the icon in the toolbar ( reloads the most recently loaded problem).

In the file dialogue window that pops up the users can choose one of the examples

provided (e.g., countdown.key) or their own files.

After the file has been loaded the right pane of the prover window displays the

Hoare triple as specified in the input file. The proof tab in the left pane should

display the proof tree consisting of a single node. The first time during a KeY-

Hoare session when a problem file is loaded the system loads a number of libraries

which takes a few seconds.

A.5 Proving

First a few words on the various parts of the prover window. The upper part of the

left pane displays all loaded problems. The lower part provides some useful tabs:

The Proof tab shows the constructed proof tree. A left click on a node updates

the right pane with the node’s content (a Hoare triple with updates). Using a

right click offers a number of actions like pruning, searching, etc.

The Goals tab lists all open goals, i.e., the leaves of the proof tree that remain

to be justified.

The Proof Search Strategy tab allows to tune automated proof search. The

strategy for KeY-Hoare only allows to adjust the maximal number of rule applica-
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Fig. A.3. Screen shot of KeY-Hoare system.

tions before an interactive step is required, and (de-)activation of the autoresume

mode.

All other tabs are not important for KeY-Hoare and will be removed in future

versions.

The right pane displays the content of a proof node in two different modes

depending on whether the node is (a) an inner node or a leave justified by an axiom

or (b) it represents an open proof goal.

(a) Inner Node View is used for inner nodes of the proof tree. It highlights the

formula which had been in focus at time of rule application as well as possible

necessary side formulas. The applied rule is listed on the bottom of the view.

(b) Goal View is used when an open goal is selected. This view shows the Hoare

triple to be proven and allows the user to apply rules. Moving the mouse cursor

over the expressions within the node highlights the smallest enclosing term or

formula at the current position. A left click creates a popup window showing all

applicable rules for the currently highlighted formula or term.

A.6 Example

The following paragraphs describe in detail how to prove the Countdown example.

We assume the problem has been loaded and no other interactions were performed.

The maximal allowed number of automatic rule applications in the proof search

strategy tab should be high enough. Setting it to 5000 is amply sufficient for this

and most other examples.

The right pane displays the Hoare triple as specified in the input file. The first

statement in the program section of the triple is a while statement. Thus the loop

invariant rule is the first one to be applied. We move the mouse cursor on top of
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the update such that update, program and postcondition all are highlighted. A

left click lists all applicable rules. We select rule Loop Invariant which asks us

subsequently for the loop invariant to use. In the dialogue box that pops up we are

asked to enter a loop invariant, in the example timer >= 0 is suitable.

After entering the loop invariant and confirming our choice by pressing OK,

the proof view (left pane) shows the effect of the rule application: the proof has

been split up into three branches labelled Invariant Initially Valid, Preserves

Invariant and Use Case, respectively. By default, KeY selects the first proof goal

Invariant Initially Valid. As mentioned in Sect. 2 this goal is purely first-order

which is why it is preceded by a turnstile |-. First-order reasoning is handled as a

black box and we do not manually apply any more rules, but start the automatic

proof search strategy. We move the mouse on the turnstile such that the complete se-

quent is highlighted. A left click and selecting Apply rules automatically here

closes this branch without further interaction. 7

The Preserves Invariant case of the proof branch comes next. The shown

Hoare triple formalises exactly that if the loop invariant and condition hold before

executing the loop body then after its execution the invariant must hold again. Note

that any context information has been removed: the update in front of the program

is empty and the pre- and postconditions consist only of the loop guard and the

supplied invariant. It is instructive to study this behaviour in detail by comparing

the current proof node with the previous one where the invariant rule was applied.

To this end, we navigate upwards in the proof tree and select the closest node above

marked with . This icon is used to mark all nodes where the user applied a rule

interactively.

Back to the open goal: to prove the preservation property the assignment rule

must be applied. We move the mouse to a position such that update, program and

postcondition are highlighted and apply the assignment rule. After application

of this rule only the empty program remains which is removed by applying the

exit rule. This leaves us again with a pure first-order problem that is proven

automatically as described for the Invariant Initially Valid branch above.

To close the final open goal it remains to be shown that starting in a state where

the loop invariant holds, but not the loop condition, the execution of the remaining

program leads to a state where the postcondition of the initial proof obligation

holds, provided that the program terminates at all. In the countdown example the

remaining program is empty. Applying the exit rule results in a pure first-order

problem that can be solved by invoking the automatic strategies. This finishes the

proof.

A.7 Automation

A few remarks on automation. Up to now the required interactive steps consisted

of manual application of program rules and invocations of the strategies to simpli-

fy/prove pure first-order problems. In order to avoid to start the strategies manually

one can activate the autoresume mode. This will invoke the strategies on all open

7 In case the maximal number of allowed rule applications was set too low, one can simply restart the
strategy as described before.
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goals after each manual rule application and simplify them as far as possible. In

standard mode they will not apply program rules.

While performing a proof it is possible to save the current state at any time and

to load it afterwards. For this one has to select File | Save in the file menu and

enter a file name ending with .proof.

A.8 Total Correctness

In the previous sections we concentrated on partial correctness proofs. Often one

is also interested to ensure that a program terminates. Partial correctness plus ter-

mination is called total correctness and it is supported by KeY-Hoare. In addition,

we provide a calculus to reason about simple worst-case execution time (WCET)

properties [12]. This section introduces both calculi in brief.

To specify a total correctness problem, the only necessary change to an input file

is the problem section tag \hoareTotal instead of \hoare for partial correctness

(and \hoareET for WCET reasoning).

The calculus rules for total correctness are identical to those presented in Sect. 3,

Fig. 2 except for the loop invariant rule. The new version of the loop invariant rule

is given in Fig. A.4. In order to ensure that a while loop terminates one has to

provide a term dec which decreases strictly monotonic after each execution of the

loop body, but stays non-negative. The first branch of the while rule ensures that

the given term is initially greater or equal to zero. Whereas the second branch

checks that after each loop iteration dec is strictly smaller than before, but still

non-negative. In order to access the old value of dec it introduces an unused rigid

function of the decs old value.

loopT

⊢ P −> U(I & dec >= 0)

{I & b
.
= true & oldDec

.
= dec} [] s1 {I & dec >= 0 & dec < oldDec}

{I & b
.
= false} [] s {Q}

{P} [U ]while(b){s1}s {Q}

where old is a new function symbol of arity size(fv(dec)) (fv(dec) denotes the set

of free logical variables in dec)

Fig. A.4. Loop invariant rule for total correctness

The total correctness proof for the countdown example of Sect. A.6 is similar to

the partial one, except that the loop invariant rule now requires to enter term dec.

Choosing simply timer as decreasing term allows to close the proof following the

steps described for the partial correctness proof.

The calculus to reason about WCET requires more changes. The complete

calculus is presented in Fig. A.5.

The principle idea of the calculus is taken from [14]. When symbolically execut-

ing a statement an implicit counter is increased by one. In addition, the branching

(guard evaluation) for conditional and loop statements costs also one time unit.

The countdown example serves once more to illustrate this approach. The input

file enriched with an WCET specification is given in Fig. A.6.

17
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assignmentET

{P} [U , x := e, eT := eT + 1] s {Q}

{P} [U ] x=e;s {Q}

skipET

{P} [U , eT := eT + 1] s {Q}

{P} [U ] ;s {Q}
exitET

⊢ P −> U(Q)

{P} [U ] {Q}

conditionalET

{P & U(b
.
= true)} [U , eT := eT + 1] s1;s {Q}

{P & U(b
.
= false)} [U , eT := eT + 1] s2;s {Q}

{P} [U ]if(b){s1}else{s2}s {Q}

loopET

⊢ P −> U(I & dec >= 0)

{I & b
.
= true & oldDec

.
= dec}

[eT := eT + 1]{s1}{I & dec >= 0 & dec < oldDec}

{I & b
.
= false} [eT := eT + 1] s {Q}

{P} [U ]while(b){s1}s {Q}

where

• old is a new function symbol of arity size(fv(dec)) (fv(dec) denotes the set of

free logical variables in dec)

• eT stands for the special program variable executionTime which does not occur

elsewhere

Fig. A.5. Loop invariant rule for execution time reasoning

The functional part of the specification is left unchanged from the correctness

specification. The execution-time related part of the requirements are simply added

as a conjunction. In the precondition one has to state which value the execu-

tion time counter shall have initially. Usually, one requires that the value of the

executionTime counter is initially either equal to a fixed non-negative, but un-

known value or, as in the example, simply zero.

The postcondition typically specifies the exact number of execution steps (as

done here) or an upper bound of the expected execution time. The countdown

algorithm is expected to require 2 ∗ startVal+ 1 time units until completion. This

number stems from startVal loop iterations where each iteration costs 2 time

units (loop condition evaluation and decreasing the timer variable) and the final

loop condition evaluation which evaluates to false.

The proof itself is similar to the previous countdown proofs. Only the invariant

needs to be refined to

timer>=0 & executionTime = 2*(startVal-timer)

The decrease term can be chosen as before (i.e., simply: timer). Afterwards the

proof can then be closed in the same way as before.

Note 1 Limitation of the current WCET implementation: It is not possible to
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KeY\funtions { int startVal; }\programVariables { int timer; }\hoareET {

{ startVal >= 0 & executionTime = 0}

[timer := startVal]\[{ while (timer>0) {

timer = timer -1;

}

}\℄
{ timer = 0 & executionTime = 2*startVal + 1}

}

KeY

Fig. A.6. Example countdown with additional execution time specifications.

specify that execution time grows with, for example, a linear factor depending on

the program input. This would require to use the concept of meta variables used in

the full version of the KeY tool [3]. Automated proof search with meta variables

and their theoretical treatment belongs to the advanced concepts of KeY. Apart from

that, the implementation symbolic WCET estimates is straightforward.
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