
Regression Verification for Java
Using a Secure Information Flow Calculus

Bernhard Beckert
Karlsruhe Institute of Technology

beckert@kit.edu

Vladimir Klebanov
Karlsruhe Institute of Technology

klebanov@kit.edu

Mattias Ulbrich
Karlsruhe Institute of Technology

ulbrich@kit.edu

ABSTRACT
Regression verification and checking for illicit information
flow in programs are probably the two most prominent in-
stances of so-called relational program reasoning. Regres-
sion verification is concerned with proving that two pro-
grams behave either equally or differently in a formally spec-
ified manner; information-flow checking aims to establish
that an attacker cannot distinguish executions of a program
that vary in a part of the initial state designated as se-
cret. While the theoretical connections between the two
problems are well understood, there are also subtle but sig-
nificant pragmatic differences. This paper reports the re-
sults of an experiment to adapt a state-of-the-art deductive
information-flow verification system for Java to the problem
of regression verification.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs; D.2.4
[Software Engineering]: Software/Program Verification

Keywords
Regression verification; program equivalence; secure infor-
mation flow; formal methods

1. INTRODUCTION

Overview.
Over the last years, there has been a growing interest in

relational verification of programs, which reasons about the
relation between the behaviour of two programs or program
executions – instead of comparing a single program or pro-
gram execution to a more abstract specification. The main
advantage of relational verification over standard functional
verification is that there is no need to write and maintain
complex specifications. The effort for relational verification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
FTfJP’17th Workshop on Formal Techniques for Java-like Programs, July 07 2015,
Prague, Czech Republic
c©2015 ACM. ISBN 978-1-4503-3656-7/15/07...$15.00

DOI: http://dx.doi.org/10.1145/2786536.2786544.

mainly depends on the difference between the programs re-
spectively program executions and not on the overall size
and complexity of the program(s); one can thus exploit the
fact that differences are often local and only affect a small
portion of a program.

Relational verification can be used for various purposes.
An example is regression verification, in which two differ-
ent versions of a program are compared for the same input.
Another example is the verification of secure information
flow (SIF) properties, in which executions of the same pro-
gram are compared for different inputs.

While the theoretical connection between different kinds
of relational verification is well understood and relational
verification methods for different purposes have much in
common, there are also subtle but significant pragmatic dif-
ferences. So far, relational verification tools are typically
dedicated to a particular purpose.

Our contribution described in this paper is an experiment
where we make use of the similarities between different kinds
of relational verification. We have adapted a state-of-the-
art deductive information-flow verification system for Java
to the problem of regression verification. This is done by
reducing instances of regression verification problems to in-
stances of information-flow verification.

It turns out that by exploiting the close connection be-
tween the two problems, one can successfully transform the-
oretical concepts, techniques and tools for information-flow
verification into concepts, techniques and tools for regres-
sion verification. However, the experiment also shows that
the pragmatics of how to use the technology remain differ-
ent, and different heuristics and optimisations are needed
for scalable and efficient tool use.

Regression verification.
One of the main concerns during software evolution is to

prevent the introduction of unwanted behaviour, commonly
known as regressions, when implementing new features, fix-
ing defects, or during optimisation. Undetected regressions
can have severe consequences and incur high cost, in par-
ticular in late stages of development, or in software that
is already deployed. Currently, the main quality assurance
measure during software evolution is regression testing [1].
Regression testing uses a carefully crafted test suite to check
that a modified version of a program is equivalent to the
original one in relevant behavioural aspects.

Regression verification is a complementary approach that
attempts to achieve the same goals with techniques from for-
mal verification. This means establishing a formal proof of

equivalence of two program versions. In its basic form, we
are trying to prove that the two versions produce the same
output for all inputs. In more sophisticated scenarios, we
want to verify that the two versions are equivalent only on
some inputs (conditional equivalence) or differ in a formally
specified way (relational equivalence). Regression verifica-
tion is an attractive additional instrument of software qual-
ity assurance and is not intended to replace testing. On the
other hand, if regression verification is successful, it offers
guaranteed coverage without requiring additional expenses
to develop and maintain a test suite.

Secure information flow (SIF).
In complex software systems, one cannot easily tell how

the input data is processed and whether it flows into output
channels. At the same time, more and more data is brought
into the reach of software systems and can potentially flow
into dubious channels. The question that is raised by secure
information flow (SIF) properties of a program is whether
the output of a program depends on its secret inputs resp.
to what degree so. A typical example of an SIF property
is confidentiality: An attacker must not gain information
about secret data by inspection of public outputs: the latter
must be totally independent from the former. The survey
paper [18] gives an introduction into the area of language-
based SIF analyses.

Information flow is a relational property of a program. To
define this property, it is typically assumed that the program
has inputs and outputs that are either secret (also called
“high”) or public (also called “low”). The goal of an attacker
is to learn the secret input by observing the public output.
The attacker knows the source code of the program and can
control the public input. The degree of success that the
attacker can attain is the information flow of a program.
In particular, a program has no (illicit) information flow,
if its public input alone completely determines its public
output. Thus, for any given public input, nothing can be
discerned about the secret input, as the public output is
always constant.1

The KeY Tool and its logic.
We present the translation from regression verification to

SIF properties for the specification and verification frame-
work within the KeY system [5]. The core of KeY is a the-
orem prover for a program logic combining a variety of au-
tomated reasoning techniques that also allows for interac-
tive reasoning. KeY’s underlying program logic is Dynamic
Logic (DL) [11], a first order multi-modal logic. DL extends
first order logic (FOL) with two families of modal opera-
tors: 〈P〉 (“diamond”) and [P] (“box”) where P is a pro-
gram fragment. The formula 〈P〉φ expresses that the pro-
gram P terminates in a state in which φ holds, while [P]φ
does not demand termination. If φ is a FOL formula, 〈P 〉φ
corresponds to the weakest precondition of P w.r.t. φ; the
DL formula ψ → [P]φ corresponds to {ψ}P {φ} in Hoare
logic [13]. The program fragment inside the modal oper-
ators are code pieces in the Java programming language.
KeY fully supports the JavaCard language and most of the
language constructs available in full sequential Java.

1A full definition of information flow in terms of the input-
output function’s equivalence kernel can be found, e.g.,
in [14].

KeY allows the verification of Java programs against a
formal specification in the Java Modeling Language (JML),
a behavioural interface specification language for Java [15].
JML specifications formally define functional requirements
(like method pre- and postconditions or class invariants).
Loops that occur in program fragments can be handled in
KeY by unwinding or by abstraction (in which case a JML
loop invariant must be provided by the specifier).

Related work.
Various methods and tools both for regression verification

and SIF verification have been presented in the literature.
But most focus on their particular application for relational
verification, and they do not consider a cross-fertilisation.

For regression verification, Godlin and Strichman [9] pre-
sent an approach for automatic general-purpose regression
verification. The technique is implemented in the RVT tool
and supports a subset of ANSI C. Verdoolaege et al. [22]
have developed an automatic approach to prove equivalence
of static affine programs. It is implemented in the isa tool
for the static affine subset of ANSI C. Hawblitzel et al. [12]
have put forth the idea of mutual function summaries. This
concept is implemented in the equivalence checker SymDiff,
where the user supplies the mutual summary, and the veri-
fication conditions are discharged by Boogie. The BCVeri-
fier tool of Welsch and Poetzsch-Heffter allows to prove the
backwards compatibility of Java class libraries [23]. Fels-
ing et al. [8] present a method for proving the equivalence
of two related imperative integer programs, implemented in
the ReVe tool.

Several tools and approaches exist in the literature for
checking information-flow properties. Security type systems
are one of the most popular approaches. A prominent ex-
ample in this field is the JIF system [16]. Type system ap-
proaches are efficient, but sometimes also quite imprecise.
A further approach is checking the dependence graph of a
program for graph-theoretical reachability properties [10].
Though this technique is substantially different from type
system approaches, it is efficient and sometimes quite im-
precise, too. Further approaches use abstraction and ghost
code for explicit tracking of dependencies [6]. The most
popular approach in logic-based information flow analysis
is stating SIF with the help of self-composition [3, 4, 7] and
using off-the-shelf software verification systems to check for
it, as we do. Finally, SIF can be formalised in higher-order
logic, and higher-order theorem provers like Coq can be used
for checking SIF [17].

A general purpose relational verification calculus is pre-
sented by Barthe et al. [2]. The calculus is based on pure
program transformation; it offers rules to merge two pro-
grams into a single product program.

Structure of the paper.
Sect. 2 formally defines SIF (Sect. 2.2) and regression ver-

ification (Sect. 2.3) and how the latter can be reduced to
the former (Sect. 2.4). In Sect. 3 the reduction technique is
lifted to the Java language. We report on our experiences
with reusing the SIF calculus in Sect. 4.

2. FORMAL FOUNDATIONS

2.1 Programs and states
A program state is a logical structure assigning values to

program variables and reachable memory locations. We re-
fer to the set of all possible states for a given program as S.
Every syntactically valid program P describes a state tran-
sition relation ρP ⊆ S × S on program states. If the pro-
gram P started in state s terminates in state s′, then (and
only then) (s, s′) ∈ ρP (we call such a tuple an execution
of P). Relation ρP is fixed by the semantics of the program-
ming language. We only consider deterministic and termi-
nating programs P . This means that all state transition
relations ρP are actually total functions: for every initial
state, there is exactly one final state.

The restriction to deterministic programs is natural as se-
quential Java is a deterministic language. The analysis of
SIF properties presented in the following will compare the
poststates of terminating program executions. We there-
fore assume that all investigated methods are terminating
by design. For the verification of SIF properties of reactive
systems, other trace-based approaches may be better suited.
The termination is left to be shown using some other tech-
nique (e.g., functional KeY).

2.2 SIF by self-composition
It has already been mentioned that for SIF properties, a

distinction between secret and public data must exist. In
many language-based approaches, from all program vari-
ables V a subset L ⊆ V is marked as “low” (constituting
the public part of the state). Two states s1, s2 ∈ S are
called L-equivalent (we write s1 ≈L s2) if they evaluate all
variables in L equally (ls1 = ls2 for all l ∈ L). To be secure,
information must not flow from V \ L to L:

Definition 1 (Secure information flow). Let P be
a program, and L be a set of variables. The program P has
secure information flow w.r.t. to the (low) variables L if,
for any two executions of P (s1, t1) ∈ ρP , (s2, t2) ∈ ρP , the
assumption s1 ≈L s2 implies t1 ≈L t2.

This definition says that a secure program started in L-
equivalent states always terminates in L-equivalent states,
not leaking any information from V \L to L. The following
proof obligation encodes absence of illicit information flow
as a DL formula:(∧

l∈L

l@1 = l@2

)
→ [P]@1[P]@2

(∧
l∈L

l@1 = l@2

)
(1)

This formula uses two modalities [P] to evaluate two execu-
tions of P , a technique called self-composition [7]. The two
iterations must operate on different copies V1 and V2 of the
same variable set V . We use shorthand notation like l@1 for
a term denoting the value of l in state s1 (first copy), and
[P]@1 for symbolic execution of the program on V1.

2.3 Regression verification
Semantically, regression verification is less involved than

SIF. In its basic form, we require that the two programs P1

and P2 behave completely equivalently:

Definition 2 (Perfect program equivalence).
Two programs P1 and P2 are equivalent if their state tran-
sition relations ρP1 and ρP2 are the same.

The proof obligation for regression verification(∧
v∈V

v@1 = v@2

)
→ [P1]@1[P2]@2

(∧
v∈V

v@1 = v@2

)
(2)

is thus similar to (1) with the difference that (i) two dif-
ferent programs and (ii) all variables in V (not only L) are
considered.

To obtain notions of conditional and relational equiva-
lence, Def. 2 can be modified by allowing a condition under
which equality must hold or by replacing the requirement
that states are the “same” by another relation, respectively.
We will not look into that here further.

2.4 Regression verification as SIF
This section reports how regression verification (or pro-

gram equivalence) can be reduced to the problem of verify-
ing the absence of illicit information flow. Both problems are
relational in the sense that they are concerned with indis-
tinguishability of program executions: we pick two arbitrary
state transitions (s1/2, t1/2) in the following. The differences
between the two problems are as follows:

• For regression verification, two different programs P1

and P2 are compared, but the executions share the
same initial state (s1 = s2). Indistinguishability is
defined as equality of final states (t1 = t2).

• For SIF, the state transitions originate from the same
program P , but the initial states coincide only in their
non-secret part (s1 ≈L s2), and the final states are only
supposed to be indistinguishable in their non-secret
part (t1 ≈L t2).

To reduce the former problem to the latter, we synthesise
a new program Q as follows:

Q , if(h) { P1 } else { P2 } (3)

where h is a fresh boolean variable, which decides which of
P1 or P2 is to be executed. If h is a secret that an attacker
cannot learn by choosing the input for Q and observing its
output (both times not including h obviously), then the two
programs are equivalent.

Theorem 1. Let two code blocks P1 and P2 in an imper-
ative while language over the same variables be given and h

be a variable which does not occur in P1 and P2. Then: Q
as defined in (3) is non-interfering w.r.t. all variables but h
if and only if P1 and P2 are equivalent.

Termination is an issue with relational verification in gen-
eral. What is the status of the property if one of the two ex-
ecutions terminates and the other does not? Is information
leaked? Are the programs equivalent? In functional veri-
fication, termination is often ignored (partial correctness).
We will do likewise here and leave the orthogonal problem
of mutual termination unconsidered.

3. LIFTING TO JAVA
After the considerations in the last section that operated

on simplified languages (only program variables), we shall
now lift the specification and verification conditions to Java.
This means, in particular, that states now incorporate heaps.

//@ determines \result \by l1, l2;
int a(int h, int l1, int l2) { ... }

(a) No flow from h to \result

//@ determines \result \by \nothing;
int b(int h) { ... }

(b) No flow from h to \result

int x, y;
//@ determines x+y \by \itself;
void c(int h) { ... }

(c) No flow from h to x+y.

Figure 1: Examples of specifying information flow
in JML*

3.1 Specifying information flow with JML*
KeY already supports a language for specifying SIF as part

of its JML* extension of JML. This extension was originally
published in [20] though we refer the interested reader to
the more up-to-date information source [19].

The main instrument for specifying absence of illicit infor-
mation flow with JML* is a determines clause that can be
attached to method declarations. A determines clause reads
as follows:

//@ determines o1, . . . , om \by i1, . . . , in; (4)

in which the list of JML expressions o1, . . . , om specifies the
public output values and the expression list i1, . . . , im the
public input. The KeY concept of information flow is more
flexible than the scenario outlined in Sect. 2 as it is possible
to list expressions (rather than program variables) that take
the role of the public (“low”) input and output.

Example 1. The specification shown in Figure 1(a) says
that the return value of the method a() is completely deter-
mined by the method parameters l1 and l2. This means that
the method parameter h has no influence on it. There is no
information flow from h to the return value of a().

In the specification for b() in Figure 1(b) there are no
public input values (hence “\by \nothing”), yet the result is
public and must not depend on h. b() must return a constant
value regardless of the input state.

In Figure 1(c) the expression x+y makes up the public out-
put and input2. This means that the individual values of x

and y after the execution of c() may very well depend on h,
but their sum must be the same regardless of the value of h.

The definition of information flow security for a method
with a determines clause is an adaptation of Def. 1 to the
situation of Java. The notion of L-equivalence gives way
to two equivalences ≈i,≈o on the input and output states
based on the expressions in the determines clause.

Definition 3. (Secure information flow for deter-

mines clauses) If, for a list x1, . . . , xn of expressions, every
expression xi evaluates equally in two states s1, s2 ∈ S, we
call s1 and s2 equal w.r.t. x1, . . . , xn and write s1 ≈x s2.

A Java method m() with its determines clause according
to (4) has secure information flow with respect to that deter-
mines clause if, for any two executions (s1, t1), (s2, t2) ∈ ρm()
of m(), the assumption s1 ≈i s2 implies t1 ≈o t2.

2The notation \by \itself is an abbreviation for repeating
the same expressions.

In correspondence to the proof obligation for SIF in a
simple while language (1), the SIF proof obligation for a
Java method m() is(n∧

k=1

ik@1 = ik@2

)
→

[m(...)]@1[m(...)]@2

(m∧
k=1

ok@1 = ok@2

)
. (5)

The schema (5) captures the essential parts of the proof obli-
gation, while the formula created within the KeY calculus
is more complicated as the heap constructs call for more
encoding. Full details of the calculus can be found in [21].

3.2 Weaving Java programs
In this section we report how the program composition

from (3) can be extended such that two Java programs can
be woven into a single program. Showing non-interference
on the combined program entails equivalence for the two
original programs.

For the reasoning within the information flow calculus
that deals with the flow of one program, the two revisions
of the program must be merged into one single program.
Here, by “Java program,” we understand a collection of Java
classes. Like in (3), a synthetic variable h is employed to dis-
tinguish the control flow for the two original programs. It
determines the semantics of the woven program: By choos-
ing h to be true, the semantics of the original revision is
assumed, otherwise the program behaves like the second re-
vision.

The programs are woven in a method-by-method fash-
ion. Since we want to compare two related revisions of the
same program and not two unrelated different programs, a
syntactic resemblance between the class collections can be
assumed. We assume that the change in the program only
concerns the code within method bodies. In particular, that
means that all method signatures and return types are left
untouched in the course of the evolution step. It is also
possible to extend the presented approach to the case that
method signatures are modified. That makes the transla-
tion more technically involved but does not contribute to
the lessons to be learnt from the paper; that is why we leave
such changes aside here.

In its initial version, the weaving of two revisions of a Java
method happens by combining both method bodies into one.
To this end, every method receives an additional synthetic
boolean argument h. Within every combined method, an
artificial case distinction is added to distinguish between the
behaviours of the two programs. The semantics now depends
on the global variable h, which decides about the path and
thus the program version to be executed.

Example 2. A Java program contains a method comput-
ing the Gaussian triangular sum up to n. During code re-
vision, a developer changes the implementation, modifying
the range of the control variable x. The two versions (before
and after the revision) of the method are the following:

int triangle(int n) { int triangle(int n) {
int x = 0; int x = 1;
int sum = 0; int sum = 0;
while(x < n) { while(x <= n) {

sum += x + 1; sum += x;
x++; x++;

} }
return sum; return sum;

} }

A proof of equivalence of the two revisions is desired. Hence
the programs are woven into one which is then checked for
non-interference:

int triangle(boolean h, int n) {
if(h) { else {
int x = 0; int x = 1;
int sum = 0; int sum = 0;
while(x < n) { while(x <= n) {
sum += x + 1; sum += x;
x++; x++;

} }
return sum; return sum;

} }
}

By applying such a combining step to every method within
the program revisions P1 and P2, we receive a program Q
that contains all possible executions of P1 and P2. The value
of the parameter h decides which implementation is chosen.

However, a basic single program evolution step is usually
local and touches only on a very limited part of the code
base. Most of the existing code is retained as it was before
the modification. The weaving procedure described so far
would thus reduplicate much code without necessity.

One can do better and reuse shared code by pulling the
case distinction further into the method body. Apart from
the obvious effect that it shortens the resulting program, this
also eases reasoning since more code is shared and can be
treated more efficiently by the SIF verification techniques.
In the extreme, if a method is not touched at all by the revi-
sion, the case distinction can be dropped altogether and non-
interference needs not be proved since the woven method
makes no reference to the variable h and its result cannot
depend on it.

Example 2 (cont’d). Instead of the simple weaving
shown above, the two implementation of the triangular loop
can also be combined as follows yielding a semantically equiv-
alent method:

int triangle(boolean h, int n) {
int x = h ? 0 : 1;
int sum = 0;
while(h ? x < n : x <= n) {

sum += h ? x+1 : x;
x++;

}
return sum;

}

The case distinctions have been moved inside the code block
as far as possible to make the code changes as local as pos-
sible.

It is not only code sharing that can be achieved during
weaving. Partial loop unwinding, method inlining and clever
rearrangement plays also an important role in the process
of weaving programs. We shall not elaborate on this matter
here, but propose to follow the ideas we presented in an ear-
lier work [8]. A more general account of how two programs
can be woven into one is given by Barthe et al. in [2].

3.3 Relational annotations
With the woven program, proving equivalence now means

proving absence of illicit information flow. However, the
SIF property to be verified still needs to be defined: The re-
sult of a method shall not depend on the decision variable h

but it may, of course, depend on the other method param-
eters. This means that information may flow from all heap
locations and the original method parameters into all heap
locations and the method result. As a JML* SIF method
contract this is annotated as follows:

//@ determines \result,\heap \by \heap, p1, p2, ..., pn;

indicating that the result value and all values on the heap de-
pend on the values of the heap and the parameters p1, ..., pn
of the method. The only “high” part of the state here is the
decision variable h upon which the result is not to depend.

With the SIF method specification added to the source
code, we could proceed with the verification process. How-
ever, the program’s loops need special attention. In func-
tional verification, a loop invariant (with other annotations)
guides the verification engine into proving a program with
loops correct. Likewise we need a relational SIF loop anno-
tation. An annotation similar to the ones for methods can
be attached to loop statements in JML* to indicate how in-
formation flows from loop iteration to loop iteration. The
clause determines c1, . . . , cn for a loop lists (JML) expres-
sions ci that are independent of the secret in any loop it-
eration – and by induction throughout the entire loop. In
our case of regression verification that means these expres-
sions have the same values in the program states related to
P1 and P2 in every loop iteration:

∧
i=1..n c

s1
i = cs2i . They

thus serve as coupling invariants between the two programs.
Their shape is fixed to a conjunction of equalities between
the same terms evaluated in both states. Often, a functional
relationship between the program states exists but cannot
be expressed as equality of the same expression but of dif-
ferent terms t1 and t2. In the SIF framework of JML*, we
can express an equality between different terms by using
the ternary if-then-else operator and the decision variable h.
The expression h ? t1 : t2 evaluates to t1 in the first ex-
ecution and t2 in the second.

Example 2 (cont’d). The SIF contract for the above
method triangle is

//@ determines \result, \heap \by \heap, n;

and a SIF loop annotation which is sufficient to imply the
method contract is the following:

//@ determines n, sum, h ? x+1 : x \by \itself;

The latter implies that every iteration of both loops estab-
lishes n@1 = n@2 and x@1 + 1 = x@2.

3.4 Object creation
Two programs are usually considered equivalent if their

state transition functions are identical. If all program vari-
ables are of primitive data types, the comparison by identity
is a sensible requirement. For object references the situation
is different: The actual object identity (i.e., the memory lo-
cation at which an object resides) is not of relevance since
that can never be investigated by a Java program.3 In the
Java programming language, pointer arithmetic is not sup-
ported and references cannot be compared other than by the
== operator. Thus, the actual memory location of an object
is irrelevant; it is merely relevant how it compares to other
references. It is therefore sufficient to relax the equivalence

3Assuming that identity-revealing methods like Ob-
ject.hashCode() are not allowed for the moment.

requirement for object-oriented routines to termination in
isomorphic states. Two states are isomorphic if there exists
a permutation (automorphism) of the object identities such
that updating one state and all references to objects within
it with the permutation yields the other state. Details about
defining a theory for isomorphisms can be found in an earlier
work [4].

The SIF extension to JML* provides possibilities to ex-
plicitly state the isomorphism under which non-interference
is guaranteed. KeY supports proving such relaxed verifica-
tion conditions.

Example 3. The following two methods are not identical
since they do not produce the same results – but they are
equivalent up to object isomorphism.

class C { class C {
C x, y; C x, y;
void m() { void m() {
x = new C(); y = new C();
y = new C(); x = new C();

}} }}

4. LESSONS LEARNT
We have manually applied the transformation described

in Sect. 3 to reduce Java regression verification problems to
equivalent SIF problems, annotated the resulting code and
proved them using KeY. The set of tested programs contains
classes with one or two methods containing loops, recursion
and/or object creation. Some proofs required manual inter-
action.

The following observations could be made:

1. It works conceptually. It is possible to specify and
verify equivalence using an SIF calculus. Despite the
fact that the shape of coupling invariants is limited
(only conjunctions of equations, cf. Sect. 3.3), we ex-
perienced that relational properties could always be
expressed within this framework (potentially using if-
then-else expressions).

2. It works practically for small examples. Smaller ex-
amples (like the ones in this paper) can be proved us-
ing KeY’s SIF calculus. The proof space grows rather
large for relational proofs and automatic verification
may need a minute or so even for very small examples.
In case of a failed verification (e.g., due to a missing
annotation), analysis of open proof goals was difficult
because it is hard to tell logical entities from the two
program executions apart.

3. The pragmatics for regression verification and SIF are
different. When it comes to exception handling, we ex-
perienced a noticeable difference between equivalence
checking and SIF: For equivalence, behaviour should
also be retained in cases of abnormal termination. For
SIF (as it is handled in KeY), the exceptional case is
usually excluded by functional preconditions. One is
only interested in information flow in intended method
usage. This required us to annotate more functional
specifications and loop invariants (dealing with excep-
tions) than would actually be necessary. That is not a
limitation of the approach – but the calculus has been
trimmed towards its typical use case to make it more
effective.

As a conclusion one can say that reducing one relational
proof obligation (namely regression verification) to another
relation proof obligation (namely SIF) is possible but that,
for pragmatic reasons, a calculus that is tailored for the par-
ticular use case has advantages over one tailored for another
use case.

5. REFERENCES
[1] Ammann, P., and Offutt, J. Introduction to Software Testing,

first ed. Cambridge University Press, New York, NY, USA,
2008.

[2] Barthe, G., Crespo, J. M., and Kunz, C. Relational verification
using product programs. In FM 2011 (2011), vol. 6664 of
LNCS, Springer, pp. 200–214.

[3] Barthe, G., D’Argenio, P. R., and Rezk, T. Secure information
flow by self-composition. CSFW ’04, IEEE CS, pp. 100–115.

[4] Beckert, B., Bruns, D., Klebanov, V., Scheben, C., Schmitt,
P. H., and Ulbrich, M. Information flow in object-oriented
software. In LOPSTR 2013, Revised Selected Papers (2014),
vol. 8901 of LNCS, Springer, pp. 19–37.

[5] Beckert, B., Hähnle, R., and Schmitt, P. H., Eds. Verification
of Object-Oriented Software: The KeY Approach, vol. 4334 of
LNCS. Springer, 2007.

[6] Bubel, R., Hähnle, R., and Weiß, B. Abstract interpretation of
symbolic execution with explicit state updates. In FMCO
(2008), pp. 247–277.

[7] Darvas, Á., Hähnle, R., and Sands, D. A theorem proving
approach to analysis of secure information flow. In SPC 2005
(2005), vol. 3450 of LNCS, Springer, pp. 193–209.

[8] Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., and
Ulbrich, M. Automating regression verification. In ASE 2014
(2014), ACM, pp. 349–360.

[9] Godlin, B., and Strichman, O. Regression verification: proving
the equivalence of similar programs. JSTVR 23, 3 (2013),
241–258.

[10] Hammer, C., Krinke, J., and Snelting, G. Information flow
control for Java based on path conditions in dependence
graphs. In ISSSE (March 2006), IEEE, pp. 87–96.

[11] Harel, D., Kozen, D., and Tiuryn, J. Dynamic Logic. MIT
Press, 2000.

[12] Hawblitzel, C., Kawaguchi, M., Lahiri, S. K., and Rebêlo, H.
Towards modularly comparing programs using automated
theorem provers. In CADE-24 (2013), vol. 7898 of LNCS,
Springer, pp. 282–299.

[13] Hoare, C. A. R. An axiomatic basis for computer programming.
Communications of the ACM 12, 10 (Oct. 1969), 576–580.

[14] Klebanov, V. Precise quantitative information flow analysis – a
symbolic approach. Theoretical Computer Science 538, 0
(2014), 124–139.

[15] Leavens, G. T., Poll, E., Clifton, C., Cheon, Y., Ruby, C.,
Cok, D., Müller, P., Kiniry, J., Chalin, P., Zimmerman, D. M.,
and Dietl, W. JML Reference Manual, 2008.

[16] Myers, A. C. JFlow: Practical mostly-static information flow
control. In POPL (1999), pp. 228–241.

[17] Nanevski, A., Banerjee, A., and Garg, D. Verification of
information flow and access control policies with dependent
types. In SP (2011), pp. 165 –179.

[18] Sabelfeld, A., and Myers, A. C. Language-based
information-flow security. IEEE J. Sel. Areas Commun. 21, 1
(2003), 5–19.

[19] Scheben, C. Program-level Specification and Deductive
Verification of Security Properties. PhD thesis, Karlsruhe
Institute of Technology, 2014.

[20] Scheben, C., and Schmitt, P. H. Verification of information
flow properties of Java programs without approximations. In
FoVeOOS 2011, Revised Selected Papers (2011), vol. 7421 of
LNCS, Springer, pp. 232–249.

[21] Scheben, C., and Schmitt, P. H. Efficient self-composition for
weakest precondition calculi. In FM 2014 (2014), vol. 8442 of
LNCS, Springer, pp. 579–594.

[22] Verdoolaege, S., Janssens, G., and Bruynooghe, M.
Equivalence checking of static affine programs using widening
to handle recurrences. In CAV 2009 (2009), vol. 5643 of LNCS,
Springer, pp. 599–613.

[23] Welsch, Y., and Poetzsch-Heffter, A. Verifying backwards
compatibility of object-oriented libraries using Boogie. In
FTfJP 14 (2012), FTfJP ’12, ACM, pp. 35–41.

	Introduction
	Formal foundations
	Programs and states
	SIF by self-composition
	Regression verification
	Regression verification as SIF

	Lifting to Java
	Specifying information flow with JML*
	Weaving Java programs
	Relational annotations
	Object creation

	Lessons learnt
	References

