
Entropy Loss and Output Predictability in the
Libgcrypt PRNG

CVE-2016-6313

Felix Dörre
Karlsruhe Institute of Technology, Germany

felix.doerre@student.kit.edu

Vladimir Klebanov
Karlsruhe Institute of Technology, Germany

klebanov@kit.edu

In the following we describe a design flaw in the mixing
function of the Libgcrypt PRNG. Due to the flaw, mixing
the full entropy pool reduces the stored entropy amount by
at least 20 bytes. Furthermore, the flaw makes a part of the
PRNG output completely predictable. This bug exists since
1998 in all GnuPG and Libgcrypt versions and is tracked as
CVE-2016-6313. A release fixing the problem is available as
of 2016-08-17.

We discovered the flaw with the help of the Entropo-
scope tool developed by us and described in [1].

1. THE MIXING FUNCTION
The mixing function in question is mix_pool in random-

csprng.c. It is supposed to perturb the content of the en-
tropy pool while maintaining its entropy content. The lat-
ter requirement (freedom from entropy loss) means formally
that the mixing function ought to be injective, i.e., transform
distinct pools into distinct pools. For an in-depth discussion
of this property, we refer to [1].

It remains to note that the length L of the entropy pool is
30 · 20 = 600 bytes in the default configuration. A comment
in the source states that the Libgcrypt PRNG is modeled
after a proposal by Gutmann [2].

Original Proposal by Gutmann.
Figure 1 shows the original proposal for a mixing function

presented in [2]. The mixing function operates in cycles. The
top rectangle represents the entropy pool at the beginning of
the (first) cycle, while the bottom rectangle shows the pool
at the end of the cycle. A 20-byte hash of a sliding window
first covering bytes [0,84) in the pool is computed and the
result is used to overwrite the bytes [20,40). After that, the
sliding window is shifted right by 20 bytes and the next cycle
commences. If a part of the sliding window extends beyond
the end of the pool, it is wrapped around. The function
terminates when all bytes in the pool have been rewritten
(i.e., after 30 cycles).

Implementation in Libgcrypt.
There are two relevant differences between the proposal

in [2] and the Libgcrypt implementation. The more gen-
eral difference is that the Libgcrypt sliding window has a
“hole” (Figure 2b). The hash here is computed from the
bytes [0, 20) ∪ [40, 84). The bytes [20,40), shown as hatched
in the figure, are no longer part of the hash input. The more
particular difference is that the first cycle (Figure 2a) devi-
ates from the other cycles (Figure 2b). Here, the hash is
computed from the bytes [L− 20, L) ∪ [0, 44).

Later on, we show that the hole in the sliding window
decreases the security of the PRNG.

Properties of the Libgcrypt Mixing Function.

Proposition 1. The pool is the only (effective) reservoir
of entropy.

We could identify only two potential threats to this claim
in the code:

• There is a small auxiliary entropy buffer (physically
trailing the pool) used in the hash calculation, but
its content is completely overwritten by data from the
pool at the beginning of each cycle.

• The hash context is reused between cycles and con-
tains a 20-byte chaining buffer. Yet, we note that the
buffer’s content at the end of a cycle is identical with
the output of the hash function. The hash function
output from cycle i, in its turn, is stored in the pool
and fed into the hash function in cycle i + 1, after the
sliding window shifts right. The chaining buffer, thus,
injects no additional entropy into each hash operation
beyond what is already contained in the pool.

Corollary 2. Each cycle i, thus, induces a mathemat-
ical function fi transforming a pool into another pool. The
whole mixing function is a composition of such cycle func-
tions:

mix_pool = f30 ◦ . . . ◦ f1 .

2. ENTROPY LOSS

Proposition 3. Consider an entropy pool containing L
bytes of data with an entropy of L bytes. After an application
the Libgcrypt mixing function, the entropy content of the pool
is at most L− 20 bytes.

Proof. It is clear that the mixing function can only be
injective, if every cycle function fi is injective.

Yet, for any 2 6 i 6 30, the corresponding cycle func-
tion fi as implemented in Libgcrypt (Figure 2b) is not in-
jective. For example, any two pools differing (only) in the
byte range [20,40) will produce the same pool after apply-
ing f2.



20+20+44

20

successive

hashes

hash

Figure 1: Mixing function proposed in [2]

44 20

20

2 1

hash

(a) first cycle

20 44

20

successive

hashes

hash

(b) second and following cycles

Figure 2: Mixing function in Libgcrypt

3. OUTPUT PREDICTABILITY
In general, an entropy loss makes it easier for an attacker

to brute-force the PRNG state. In this particular case, the
entropy loss manifested itself also in trivial partial output
predictability.

Proposition 4. When the Libgcrypt PRNG generates L
bytes of output1, the last 20 bytes are trivially predictable
from the first L− 20 bytes.

Proof. The PRNG produces output by deriving a so-
called key pool of length L from the main entropy pool (in
a way irrelevant here), mixing it, and returning its content
to the client. Due to the design of the mixing function, the
bytes [L−20, L) of the key pool (and thus of the output) are
obtained by hashing the bytes [L−40, L−20)∪ [0, 44). The
hash context chaining buffer at this point coincides with the
bytes [L− 40, L− 20), as explained above. We note that all
of the bytes in that range are contained in the first L − 20
bytes of the key pool and thus output.

In other words, by taking the bytes [L−40, L−20)∪[0, 44)
of the output, and hashing them with the hash context
chaining buffer set to bytes [L − 40, L − 20), an attacker
can perfectly predict the bytes [L − 20, L) of the output.
Simple proof-of-concept code confirms our finding.

4. CONCLUSION AND AFTERMATH
We have reported the bug to Werner Koch, the author and

maintainer of Libgcrypt. We would like to thank Werner for
a productive discussion. Bugfix releases are available as of
2016-08-172. Each mixing cycle now hashes a contiguous 64-
byte region of the pool, maintaining injectivity of the mixing
function.

Please note that this document makes no claims about the
effect of the flaw on the security of generated keys or other
artifacts.

5. REFERENCES
[1] F. Dörre and V. Klebanov. Practical detection of

entropy loss in pseudo-random number generators. In
Proceedings, CCS, 2016. To appear.

[2] P. Gutmann. Software generation of practically strong
random numbers. In USENIX Security, 1998.

1For simplicity, we assume that an L-multiple of bytes were
generated previously.
2https://lists.gnupg.org/pipermail/gnupg-announce/
2016q3/000395.html


