
Information Flow in Object-Oriented Software?

Bernhard Beckert, Daniel Bruns, Vladimir Klebanov, Christoph Scheben,
Peter H. Schmitt, and Mattias Ulbrich

Karlsruhe Institute of Technology (KIT), Dept. of Informatics
Am Fasanengarten 5, 76131 Karlsruhe, Germany

http://www.key-project.org/DeduSec/

Abstract. This paper contributes to the investigation of object-sensitive
information flow properties for sequential Java, i.e., properties that take
into account information leakage through objects, as opposed to primitive
values. We present two improvements to a popular object-sensitive non-
interference property. Both reduce the burden on analysis and monitoring
tools. We present a formalization of this property in a program logic
– JavaDL in our case – which allows using an existing tool without
requiring program modification. The third contribution is a novel fine-
grained specification methodology. In our approach, arbitrary JavaDL
terms (read ‘side-effect-free Java expressions’) may be assigned a security
level – in contrast to security labels being attached to fields and variables
only.

1 Introduction

The growing reliance of our daily lives on software systems of all kinds has
increased the demand for software quality assurance. A particular concern is
confidentiality of sensitive data: preventing information flow from secret (also
called high) sources to publicly observable (also called low) sinks. Methods for
specification and analysis of information flow play an important role in answering
these concerns. Since the pioneering papers [11,13,14,21], research in information
flow has grown considerably and diversified in numerous branches. This paper
follows a language-based approach dealing with programs at the code level
(instead of analyzing abstractions such as automata or process algebras). We
will use a semantic definition of information flow, as e.g., introduced in [20].
For the analysis of information flow properties, we use a program logic, along
the lines of [2, 12], as opposed to the use of security type systems or dedicated
analysis algorithms. Logical information flow analysis started out by investigating
simple imperative programming languages and later also targeted object-oriented
languages [1, 9, 28,32].

In imperative languages, sources and sinks are of primitive type. In an object
oriented context, it is natural to consider sources and sinks of object type, too. In
? This work was supported by the German National Science Foundation (DFG) under
project “Program-level Specification and Deductive Verification of Security Properties”
within priority programme 1496 “Reliably Secure Software Systems – RS3”.

http://www.key-project.org/DeduSec/
http://www.key-project.org/DeduSec/
www.spp-rs3.de

this case, the usual definition of secure information flow – if a system is started
in two low-equivalent states s1, s2 with all publicly observable values equal, then
it terminates in states s′1, s′2 where all observable values are equal – is too strong.
It has been replaced by object-sensitive secure information flow [3,6, 9, 17, 18, 28]
that has a modified notion of low-equivalence of states: if a system is started
in two states s1, s2 such that the observable values are related by a partial
isomorphism π, then it terminates in states s′1, s′2 where all observable values
are related by a partial isomorphism extending π.

A desirable outcome in developing logic-based information flow analyses is to
find formalizations that allow application of existing verification tools. An instance
of such reuse is [28], where the two runs of a program are encoded into a single
program, allowing specifying secure information flow with JML and verifying
it with the ESC/Java2 tool. The particular encoding, though, relies on ghost
fields and requires instrumenting the program under investigation with ghost
code. The first contribution of our paper is a formalization of object-sensitive
secure information flow in Dynamic Logic that does not require any changes
or additions to the investigated program. The KeY system [8] can be used to
discharge the ensuing proof obligations.

To avoid loss of precision, it is reasonable to encode the partial isomorphisms
of object-sensitive secure information flow explicitly in the logical formalization.
This, on the other hand, holds the disadvantage that a naive encoding either
increases the burden on the analysis or the burden on the user, the latter by
requiring additional annotations [28]. The second contribution of this paper
is an investigation into the concept of object-sensitive secure information flow
itself with the aim to find alternative but equivalent formulations such that the
partial isomorphisms can be restricted as much as possible. We prove (Lemma 4)
that restricting the partial isomorphism π in the pre-state to be the identity
still leads to an equivalent concept. We also show that additionally restricting
the partial isomorphism in the post-state to newly created objects leads to a
sufficient criterion for object-sensitive secure information flow (Thm. 2). Further
we show that compositionality, which is considered an indispensable prerequisite
for modular verification of information-flow properties and which holds for object-
sensitive secure information flow only under certain conditions, holds for the
sufficient criterion in general (Thm. 3). The main difference between the original
property and the sufficient criterion is that the criterion admits the attacker the
ability to distinguish between newly created objects and objects which already
existed in the pre-state. This leads to a slightly stronger property. All three
results hold the potential of significantly reducing the burden on analysis and
monitoring tools. They apply under the assumption that references in Java are
treated as opaque, as formalized by Postulate 1.

As a third contribution, we introduce a specification methodology where
security levels (high or low) are assigned to arbitrary JavaDL terms. The set of
publicly observable memory locations is thus state-dependent. This is in contrast
to the typical static labeling of fields or variables only, and permits fine-grained
specifications, which are especially useful for declassification.

2 Dynamic Logic for Java

In this section, we briefly review syntax and semantics of JavaDL, a Dynamic
Logic for Java, as far as needed in this paper. An in-depth account can be found
in [8,33]. JavaDL is an extension of classical typed first-order logic with equality
(the equality symbol is denoted by =̇), with which we assume the reader is
familiar. The following explanations only address particularities and the modal
extension.

The notion of a term in JavaDL is the same as in typed first-order logic.
We assume that, among others, constant and function symbols are available for
all local program variables, instance and static fields, this, result and method
parameters, and operations of Java primitive data types. In addition, we make
use of a special implicit program variable heap which stands for the current heap.

JavaDL formulas are inductively built up from atomic formulas using propo-
sitional operators and quantifiers, as usual. In addition

1. {a := t}φ is a JavaDL formula, where a is a term which refers to a location
(a program variable, a static or dynamic field, or an array entry), t is a
JavaDL term, and φ is a formula. {a := t} is called an update.

2. For a JavaDL formula φ and any sequential Java program α, both 〈α〉φ and
[α]φ are again JavaDL formulas.1

The basis JavaDL semantics is a structure D for typed first-order logic, called
the computation domain. D provides the interpretation of all state-independent
(sometimes also called rigid) function and predicate symbols. In our setup,
program variables are the only non-rigid symbols. The universe D of D is divided
into the interpretations TD for the types T occurring in the language. In particular,
we assume the existence of types Any , Obj , Heap, Field , Int with AnyD = D,
ObjD = the set of all objects, HeapD = the set of all heaps, FieldD = the set
of all fields, IntD = Z, SeqD = the set of all finite nested sequences of values
from D, and a subtype relation @ such that the Java reference type hierarchy
lies under Obj @ Any . Moreover, Heap, Field , and Obj are pairwise disjoint.

A state s is a function mapping all program variables to properly typed
values in D. By D + s we denote the first-order structure that interprets all,
rigid and non-rigid, symbols. In most cases D will be implicitly understood
and we write s instead of D + s. For any state s and term t without logical
variables, the evaluation ts is as usual. If t contains logical variables, a variable
assignment β is needed to evaluate the term to ts,β . In the following, we will
omit β whenever it is not essential. The (current) heap in a state s is completely
determined by heaps: the value (t.f)s of a field access expression t.f is obtained
by select(heaps, ts, cf). Here cf is a constant symbol representing the Java field f ,
select and its counterpart store are state-independent functions from the theory
of arrays, see [24,29].

1 The definition is in fact more liberal in that α need not be a compilable program.
Precisely which program sequences are allowed is explained in [8, Sect. 3.2.4]. We
will nevertheless use the term ‘program’ synonymously.

∀Int i((0 ≤ i ∧ i < maxvalue) →
{a := i} 〈α〉 (0 ≤ r ∧ r ∗ r ≤ i ∧ (r+ 1) ∗ (r+ 1) > i))

(1)

∀Heap h, h′ ∀Int i, i′((select(h, this, f)
.
= select(h′, this, f) ∧

{heap := h} 〈m();〉 i .= r ∧ {heap := h′} 〈m();〉 i′ .= r)→ i
.
= i′)

(2)

Fig. 1. Two examples of JavaDL formulas

The recursive definition of the relation s |= φ (formula φ is true in state s)
follows the usual pattern. Only the three modal operators need explanation. For
a JavaDL formula φ and state s, we define:
1. s |= {a := t}φ iff s′ |= φ, where s′ coincides with s except for s′(a) = ts.
2. s |= 〈α〉φ iff s′ |= φ for some s′ such that α started in s terminates in s′.
3. s |= [α]φ iff s′ |= φ for all s′ such that α started in s terminates in s′.

If program α does not terminate when started in state s, then s |= [α]φ is
trivially true for all formulas φ, including φ ≡ false.

Let us look at the examples of Fig. 1. Formula (1) expresses that program
α computes the positive integer square root for any positive input a (result is
abbreviated by r). Formula (2) states that the return value of method m() only
depends on the field this.f . Logical variables cannot occur in programs and
program variables may not be quantified over. As these examples demonstrate,
updates can be used as an interface between both types of variables.

We adopt the constant domain approach (see for instance [8,33]), i.e., all poten-
tial objects are contained in D from the start. The generation of a new object of
type T in state s is effected by changing the value of o.created from ff to tt , where o
= nextToCreateT

D(s), with nextToCreateT
D being the function which selects the

next new object of type T to create depending on the state. In this paper compu-
tation domains D1, D2 will at most differ in the interpretation nextToCreateT

Di .
Only functions nextToCreateT

D with createdD+s(nextToCreateT
D(s)) = ff and

exactInstanceT
D(nextToCreateT

D(s)) = tt are considered.
Let α be a program, D a computation domain and let s1, s2 be states. We

denote “α started in D + s1 terminates in D + s2” by D + s1
α
 D + s2.

3 Information Flow in Java

In Fig. 2 we reproduce a typical example of object-sensitive information flow.
If low-equivalence of states required the values of x and y to be equal, method
m1() would be rated as insecure. However, we treat object references in Java as
opaque, i.e., references can only be compared by the == function, cf. [23]. Thus
m1() obviously does not leak information.2

2 In [19] it has been demonstrated that this abstraction might be broken, e.g., by
the implementation of native methods such as Object::hashCode(). This potential
leakage can be dealt with by assigning a high security level to the output of native
methods or by using the security type analysis proposed in the quoted paper.

final class C {
static C x, y; // low variables
static boolean h; // high variable
static void m1() { if (h) {x = new C(); y = new C();}

else {y = new C(); x = new C();} } }

Fig. 2. Secure object creation

We describe publicly (and thus attacker-) visible parts of the program state
as sets of JavaDL terms. The attacker sees the term and the corresponding
evaluation in the pre- and post-state of a method as if they were printed on
a screen. Further, we assume that the attacker knows the program code. This
allows them to trace back the observed differences in low values in the post-state
to high values in the pre-state. In summary, an attacker can compare observed
values that are of a primitive type to each other and to literals (of that type) as
by using ==; can compare observed values of object reference type to each other
and to null as by using the == predicate and observe their (runtime) type and
the length attribute for array references; cannot learn more than object identity
from object references (e.g., the order in which objects have been generated
cannot be learned).

Formally, we call a sequence of JavaDL terms (which itself is a JavaDL
term), an observation expression. The low locations of Fig. 2, for instance, give
rise to the observation expression 〈C.x, C.y〉. Let R be an observation expression
and s a state. An attacker is able to observe the tuple (R,Rs), where Rs =
〈es1, . . . , esk〉 if R = 〈e1, . . . , ek〉. Hence, they are able to deduce for any 1 ≤ i ≤ k
that esi is the value of the term ei. Additionally, an attacker can learn the result of
the comparison of any two values esi = esj and, in case of reference values, retrieve
their runtime type type(esi) and, for array references, their length len(esi).

Definition 1. By Obj (Rs) we denote the set of objects observable by R in state s,
that is, Obj (Rs) = {o ∈ ObjD | ∃i(o = Rs[i])} ∪

⋃
i∈{j|Rs[j]∈SeqD}Obj (Rs[i]).

In an object-oriented setting, what is observable may depend on the state.
For example, if o.next .val is observable, then it depends on the state what
object o.next evaluates to. Moreover, if all locations in a linked list are observed,
then the number of observable locations may depend on the state, since the list
length does.

Observation expressions cover such cases: JavaDL includes a sequence def-
inition operator seq{i}(from, to, e) with the semantics [seq{i}(from, to, e)]s =
〈[e[i→n]]s, [e[i→n+1]]s, . . . , [e[i→m−1]]s〉, if froms = n < m = tos are integers.
Here e[i→n] is the term obtained from e by replacing all occurrences of the
variable i by the literal n. Further JavaDL contains a reachability operator
e.it(f, i), where e is a JavaDL term of type T , f is an attribute defined in
class T and also of type T and i is an integer term. The semantics of e.it(f, i)
is defined by [e.it(f, i)]s = f.f([e]s) (k times) with k = is. The observation
of all elements of a linked list can be modeled by the observation expression
seq{i}(0, list.len, list.it(next, i).val).

Here and in the following we abbreviate length by len. Further, we write
sequences of fixed length as 〈. . .〉 and denote the concatenation of two sequences
R1 and R2 by R1;R2. For uniformity of notation we will frequently write f(e0)
instead of e0.f .

Our approach generalizes and unifies declassification of terms [4,31]. It already
proved to be useful in a recent case-study [15] which uses our approach and
implementation. Here, whether information is considered secret or public depends
on the internal state of the system. Therefore, the information flow specifications
of [15] make use of conditional terms. Another application is information flow class
invariants: if a program or library has a public interface with several methods,
then often it has to be ensured that any sequence of calls to those methods is
secure. For this purpose it is useful to define the knowledge of the caller by a list
of terms. The program is secure, if for any method of the interface the final values
of those terms depend at most on their initial values. An illustrating example
can be found in the companion technical report [7].

4 Isomorphisms

We assume that the reader is familiar with the concept of isomorphism for typed
structures [25]. In this section we collect the results needed later on for easy
reference.

We will consider isomorphisms only on the computation domain D, and the
structures D+ s (see Section 2) for different states s. If π is an isomorphism from
D + s1 onto D + s2, we will say that s2 is isomorphic to s1 and write s2 = π(s1).
We will need the following (folklore) results:

Lemma 1. Let ρ be an automorphism of D, s a state, φ a formula, e an expres-
sion. Then s |= φ⇔ ρ(s) |= φ and eρ(s) = ρ(es).

Lemma 2. Let D be a computation domain and π′ be a bijection from X onto
Y for finite subsets X,Y ⊆ ObjD with

1. If null ∈ X then π′(null) = null and null ∈ Y implies null ∈ X.
2. π′ preserves the exact types of its arguments.
3. π′ preserves the length of array objects.

Then there is a computation domain D′ and an isomorphism π : D → D′
extending π′.

Definition 2 (Partial isomorphism w.r.t. R). Let R be an observation ex-
pression and s1, s2 be two states.

A partial isomorphism with respect to R from s1 to s2 is a bijection π :
Obj (Rs1) → Obj (Rs2) such that (a) the requirements of Lemma 2 hold and
(b) πSeq(Rs1) = Rs2 where πSeq is defined on sequences as πSeq(〈e1, . . . , ek〉) =

〈e′1, . . . , e′k〉 with e′i = π(ei) if ei ∈ ObjD, e′i = πSeq(ei) if ei ∈ SeqD and
e′i = ei else.

It will greatly simplify notation to stipulate that every partial isomorphism π
is also defined on all primitive values w with π(w) = w.

If p ∈ R for all program variables p, every automorphism extending a partial
isomorphism π with respect to R according to Lemma 2 is a total isomorphism
from D + s1 onto D + s2 since π(ps1) = ps2 by requirement (b).

Not every partial isomorphism can be extended to a total isomorphism, on the
other hand. If q is a program variable such that q does not appear as a subterm
in R, then π(qs1) = qs2 is not required.

To clarify the role of the additional condition (b) in Def. 2 let x be a program
variable of type C and f a field in C, say of type integer such that R = 〈x, f(x)〉
and let s1, s2 be states. In this case the condition implies π((f(x))s1) = (f(x))s2 =
fs2(xs2) = fs2(π(xs1)). This amounts to the usual requirements on isomorphisms
on mathematical structures.

5 Formalizing Information Flow

As mentioned before, we treat object references as opaque. This means in par-
ticular that the behavior of a Java program cannot depend on the values of
references up to comparison by == . Hence, if a program α is started in two
isomorphic states, then α also terminates in isomorphic states (if α terminates.)
Though this assumption is not always made explicit, it is widely used in the
literature [1, 3, 26, 28]. Opaqueness of references can be formalized in our setting
as follows:

Postulate 1 Let s1, s2 be states. Let α be a program which started in s1 termi-
nates in s2, and let ρ : D → D′ be an isomorphism from computation domain D
onto computation domain D′.

Then α started in D′ + ρ(s1) terminates in ρ′(s2), where ρ′ : D → D′ is an
isomorphism that coincides with ρ on all objects existing in state s1, i.e. for all
o ∈ ObjD with createds1(o) = tt we know ρ(o) = ρ′(o). (See beginning of Sect. 4
for the definition of ρ(si).)

The reason why we cannot assume ρ = ρ′, is that α may generate new objects
and there is no reason why a new element o′ generated in the run starting in
state D′ + ρ(s1) should be the ρ-image of the new element o generated in the
run of α starting in state D + s1.

5.1 Basic Information Flow Definition and its Properties

We start with formalizing the basic object-sensitive non-interference property for
Java. Apart from the more flexible assignment of security levels, this property
does not yet exceed the state of the art in object-sensitive non-interference (cf.
Sect. 1). We consider here the termination-insensitive case. Extensions taking
termination into account, as well as differentiating between normal and abnormal
termination, are straightforward.

Definition 3 (Agreement of states). Let R be an observation expression.
We say that two states s, s′ agree on R, abbreviated by agree(R, s, s′), iff there

exists a partial isomorphism π : Obj (Rs1) → Obj (Rs2) with respect to R. The
partial isomorphism π is uniquely determined by R, s and s′. We use the notation
agree(R, s, s′, π) to indicate that agree(R, s, s′) is true and π is the mapping thus
defined.

Notice that because of our tacit agreement on the values of partial isomor-
phisms on primitive values, agree(R, s, s′) entails (ei)

s = (ei)
s′ , if ei is a term of

primitive type.
We now define what it means for a program α (when started in a state s)

to allow information flow only from R1 to R2, a fact which we denote by
flow(s, α,R1, R2). The intuition is that R1 describes the low locations in the
pre-state and R2 describes the low locations in the post-state. Thus, the values
of the variables and locations in R2 in the post-state must at most depend – up
to isomorphism of states – on the values of the variables and locations in R1 in
the pre-state and on nothing else.

Definition 4 (The predicate flow). Let α be a program and R1 and R2 be
two observation expressions.

Program α allows information to flow only from R1 to R2 when started in s1,
denoted by flow(s1, α,R1, R2), iff, for computation domains D, D′ and all states
s′1, s2, s

′
2 such that D + s1

α
 D + s2 and D′ + s′1

α
 D′ + s′2, we have

if agree(R1, s1, s
′
1, π

1) for some π1

then agree(R2, s2, s
′
2, π

2) for some π2 that is compatible with π1

where π2 is said to be compatible with π1 if
π2(o) = π1(o) for all o ∈ Obj (Rs11) ∩Obj (Rs22) with createds1(o) = tt .

In the most common case, the low locations before program execution will be
the same as the low locations after program execution, i.e., R1 = R2. But, that
may not be true in all cases. To declassify an expression edecl, one would choose
R1 = R2; edecl.

Consider the following extension of method m1() from Fig. 2 as if defined in
class C:

C next;
static void m2() { if(h) {x=new C(); y=new C(); x.next=y;}

else {y=new C(); x=new C(); x.next=x;} }

Whether m2() leaks information or not depends on the examined observation
expression. For R = 〈C.x,C.y〉 the observation will always consist of two freshly
created, distinct object references. If agree(R, s1, s

′
1, π

1), the partial isomorphism
π2 defined as an extension of π1 by π2(xs2) = xs

′
2 and π2(ys2) = ys

′
2 ensures that

agree(R, s2, s
′
2, π

2) and, therefore, flow(s1, m2(), R,R).
But if R′ = 〈C.x,C.y, C.x.next〉 is chosen, π2 is no longer a partial isomor-

phism as π2(nexts2(xs2)) = nexts
′
2(xs

′
2) would need to hold. But if hs1 = tt and

hs
′
1 = ff , the resulting heap structures are not isomorphic: π2(nexts2(xs2)) =

π2(ys2) and nexts
′
2(xs

′
2) = xs

′
2 = π2(xs2) which cannot be equal as π2 is an

injection. The attacker can learn the value of h by comparing x and x.next:
flow(s1, m2(), R′, R′) does not hold.

For later reference we state the following lemma.

Lemma 3. If agree(R, s, s′, π) and ρ is an automorphism on D then also
(1) agree(R, s, ρ(s′), ρ ◦ π) and (2) agree(R, ρ(s), s′, π ◦ ρ−1).

Proof. Part 1: By assumption the mapping π given by πSeq(Rs) = Rs
′
is a

partial isomorphism, where πSeq is defined as in Def. 2. Since π is a partial
isomorphism and ρ is an automorphism also ρ ◦ π is a partial isomorphism.
Further, let (ρ◦π)Seq be defined as (ρ◦π)Seq(〈e1, . . . , ek〉) = 〈e′1, . . . , e′k〉 with e′i =

ρ ◦π(ei) if ei ∈ ObjD, e′i = (ρ ◦π)Seq(ei) if ei ∈ SeqD and e′i = ei else. Then (ρ ◦
π)Seq(Rs) = ρ◦πSeq(Rs), because ρ is an automorphism on D, and ρ◦πSeq(Rs) =

ρ(Rs
′
), because of πSeq(Rs) = Rs

′
. Finally we derive by Lemma 1 ρ(Rs

′
) = Rρ(s

′)

and thus we have (ρ ◦ π)Seq(Rs) = Rρ(s
′). Hence agree(R, s, ρ(s′), ρ ◦ π) holds.

Part 2: By symmetry from Part 1. ut

5.2 An Optimized but Equivalent Formulation

In this section, we introduce flow∗, an optimized version of the flow property from
Def. 4. The property flow∗ restricts the partial isomorphism of the pre-state to be
the identity. This simplifies the formulation of verification conditions considerably
(see Theorem 1 below), also making them easier to verify. Yet, it is semantically
equivalent to flow.

Definition 5 (The flow∗ predicate). Let α be a program and R1 and R2 be
two observation expressions.

We say that α allows simple information flow only from R1 to R2 when started
in s1, denoted by flow∗(s1, α,R1, R2), iff, for all computation domains D, D′ and
states s′1, s2, s′2 such that D + s1

α
 D + s2 and D′ + s′1

α
 D′ + s′2, we have

if agree(R1, s1, s
′
1, id)

then agree(R2, s2, s
′
2, π

2) for some π2 compatible with id.

Note that agree(R1, s1, s
′
1, id) implies in particular Obj (Rs11) = Obj (R

s′1
1) since

π1 = id is a bijection from Obj (Rs11) onto Obj (R
s′1
1).

Lemma 4. For all programs α, any two observation expressions R1 and R2, and
any state s1 flow∗(s1, α,R1, R2) ⇔ flow(s1, α,R1, R2) .

Proof. flow(s1, α,R1, R2)⇒ flow∗(s1, α,R1, R2) is obviously true. Thus it suffices
to show flow∗(s1, α,R1, R2)⇒ flow(s1, α,R1, R2).

To prove flow(s1, α,R1, R2) we fix, in addition to s1, states s′1, s2, s′2 such
that s1

α
 s2 and s′1

α
 s′2, and assume agree(R1, s1, s

′
1, π

1). We need to show
agree(R2, s2, s

′
2, π

2) with π2 extending π1.
By Lemma 2, there is an automorphism ρ on D′ extending (π1)−1. From

agree(R1, s1, s
′
1, π

1) we conclude agree(R1, s1, ρ(s′1), ρ◦π1) using Lemma 3. Since
ρ extends (π1)−1 we have agree(R1, s1, ρ(s′1), id). By Postulate 1 there is a state s′3
and a computation domain D′′ such that D′′+ρ(s′1)

α
 D′′+s′3. This enables us to

make use of the assumption flow∗(s1, α,R1, R2) and conclude agree(R2, s2, s
′
3, π

3).
Furthermore, π3(o) = o for all o ∈ Obj (Rs11) ∩Obj (Rs22).

Again, appealing to Postulate 1 in the situation that ρ(s′1)
α
 s′3 and con-

sidering the inverse automorphism ρ−1, we obtain an automorphism ρ′ such
that ρ−1(ρ(s′1)) = s′1

α
 ρ′(s′3) and ρ′ coincides with ρ−1 on all objects in

{o ∈ ObjD | createdρ(s
′
1)(o) = tt}.

Again, using Lemma 3, this time for the isomorphism ρ′, we obtain from
agree(R2, s2, s

′
3, π

3) also agree(R2, s2, ρ
′(s′3), ρ′ ◦ π3). Since α is a deterministic

program and we have already defined s′2 to be the final state of α when started in s′1
in the computation domain D′ we get s′2 = ρ′(s′3) and thus agree(R2, s2, s

′
2, ρ
′◦π3).

Because π2 is uniquely determined by R2, s2 and s′2, we have ρ′ ◦ π3 = π2.
Finally, we show that ρ′◦π3 extends π1, i.e., for every o ∈ Obj (Rs11)∩Obj (Rs22)

with createds1(o) = tt we need to show ρ′ ◦ π3(o) = π1(o). Since π3(o) = o for
o ∈ Obj (Rs11) ∩ Obj (Rs22) it suffices to show π1(o) = ρ′(o). By the definition
of isomorphic states we obtain from createds1(o) = tt also createdρ(s1)(o) = tt .
Thus ρ′(o) = ρ−1(o) and by choice of ρ further ρ−1(o) = π1(o), as desired. ut

6 Verification Conditions

The ultimate goal is to prove information flow properties flow(s1, α,R1, R2) for
particular observations Ri and a program α. To this end, specialized proof rules
for the flow predicate could be introduced. We pursue this approach in another
paper. Here, we will show how to derive verification conditions directly from the
definition. We will show how flow(s1, α,R1, R2) can be expressed by a JavaDL
formula – to be discharged by a standard JavaDL calculus. This exposition should
also convey the idea how to obtain verification conditions with methodologies
other than Dynamic Logic.

Theorem 1. Let α be a program, and let R1, R2 be observation expressions.
There is a JavaDL formula φα,R1,R2

making use of self-composition such that

D + s1 |= φα,R1,R2
iff flow(s1, α,R1, R2)

for all computation domains D.

We will explain here the construction of φα,R1,R2 only. The complete proof of
Thm. 1 can be found in the companion technical report [7].

The property to be formalized requires quantification over states. A state s
is determined by the value of the heap hs in s and the values of the (finitely
many) program variables as in s. We can directly quantify over heaps h and refer
to the value of a field f of type C for the object o referenced by the term e as
selectC(h, e, f). We cannot directly quantify over program variables, as opposed
to quantifying over the values of program variables, which is perfectly possible.
Thus we use quantifiers ∀x, ∃x over the type domain of the variable and assign x
to a via an update a := x. There are four states involved, the two pre-states s1,
s′1 and the post-states s2, s′2. Correspondingly, there will be, for every program
variable v, four universally quantifier variables v, v′1, v2, v′2 of appropriate type
representing the values of v in states s1, s′1, s2, s′2. There are some program
variables that make only sense in pre-states, e.g., this, and variables that make

only sense in post-state, e.g., result. There will be only two logical variables
that supply values to them instead of four. This leads to the following schematic
form of φα,R1,R2

:

φα,R1,R2
≡ ∀Heap h′1, h2, h

′
2∀To′∀Trr, r′∀ . . . v′1, v2, v′2 . . .

(Agreepre ∧ 〈α〉 sv{s2} ∧ {in s′1} 〈α〉 sv{s′2} → {in s2}{in s′2}(Agreepost ∧ Ext))
To maintain readability we have used suggestive abbreviations: (1) {in s′1} 〈α〉
signals that an update {heap := h′1 || this := o′ || . . . ai := v′1 . . .} is
placed before the modal operator. The ai cover all relevant parameters and
local variables. (2) The construct sv{s2} abbreviates a conjunction of equations
h2

.
= heap, r .

= result, . . . , v2
.
= ai, (3) Analogously, sv{s′2} stands for the

primed version h′2
.
= heap, r′ .= result, . . . , v′2

.
= ai, (4) The shorthand

{in s2}{in s′2}E in front of a formula is resolved by (a) prefixing every occurrence
of a heap-dependent term e with the update {heap := h2} and (b) every primed
term e′ with {heap := h′2}. (5) The same applies to {in s′1}E. Note that there is
no {in s1}, and no quantified variables o, v since the whole formula φα,R1,R2

is
evaluated in state s1.

Furthermore we use the notation (R1
i)
′, R2

i , (R2
i)
′ for the expressions obtained

from Ri by replacing each state dependent designator v by v′1, v2, v′2 respectively.
Technically, these substitutions are effected by prefixing Ri with an appropriate
update. For short we use R[i] instead of seqGetAny(r, i), t@−A for instanceA(t),
and eInstA for exactInstanceA.

We now supply the definitions of the abbreviations used above:
Agreepre ≡ R1

.
= (R1

1)′

Agreepost ≡ Agreetype&prim(R2
2, (R

2
2)′) ∧Agreeobj (R

2
2, R

2
2, (R

2
2)′, (R2

2)′)
Ext ≡ Agreeobj (R1, R

2
2, (R

1
1)′, (R2

2)′)

These definitions make use of the predicates Agreetype&prim , Agreeobj and
Agree2

obj which are recursively defined as

Agreetype&prim(Seq X,Seq X ′) ≡
X.len

.
= X ′.len ∧ ∀i(0 ≤ i < X.len→∧

A in α(eInstA(X[i])↔ eInstA(X ′[i]))
∧ (X[i] 6@−Obj ∧X[i] 6@−Seq → X[i]

.
= X ′[i])

∧ (X[i]@− Seq → Agreetype&prim(X[i], X ′[i])))

Agreeobj (Seq X,Seq Y,Seq X ′,Seq Y ′) ≡
∀i(0 ≤ i < Y.len→ (Y [i]@−Obj → Agree2

obj (X,Y [i], X ′, Y ′[i]))
∧ (Y [i]@− Seq → Agreeobj (X,Y [i], X ′, Y ′[i])))

Agree2
obj (Seq X,Obj y,Seq X ′,Obj y′) ≡
∀i(0 ≤ i < X.len→ (X[i]@−Obj → (X[i]

.
= y ↔ X ′[i]

.
= y′))

∧ (X[i]@− Seq → Agree2
obj (X[i], y,X ′[i], y′)))

In many cases these definitions are much simpler. Frequently it is the case
that Ri.length is not state dependent, then quantification over index i reduces
to a disjunction of fixed length. Also the exact type of an expression can often
be checked syntactically and needs not be part of the formula. In other cases
however, e.g., if Ri is a variable of type Seq , the full definition is necessary.

Reconsider method m1() from Fig. 2 on page 5. Let R = 〈C.x, C.y〉. Then,
(R.len)s = 2 for all states s and the exact type of both fields x, y is always C.
Thus Agreepre equals x

.
= x′1 ∧ y

.
= y′1. Agreepost equals x2

.
= y2 ↔ x′2

.
= y′2. The

complete formula φm3(),R,R is (after some simplification)

φm3(),R,R ≡
∀Heap h′1, h2, h

′
2∀C o′∀x′1, x2, x′2, y′1, y2, y′2((x

.
= x′1 ∧ y

.
= y′1 ∧

〈m3()〉 (x2
.
= x ∧ y2

.
= y) ∧ {x := x′1, y := y′1} 〈m3()〉 (x′2

.
= x ∧ y′2

.
= y))

→
(x2

.
= y2 ↔ x′2

.
= y′2 ∧ x

.
= x2 → x′1

.
= x′2 ∧ y

.
= x2 → y′1

.
= x′2 ∧

x
.
= y2 → x′1

.
= y′2 ∧ y

.
= y2 → y′1

.
= y′2))

7 An Efficient Compositional Criterion

Though flow∗ from Def. 5 already simplifies the formulation of verification
conditions and consequently checking for flow, we want to present another
information flow property, flow∗∗, which is still simpler to check. flow∗∗ is a
criterion for flow, i.e., a sufficient but not a necessary condition. Roughly speaking,
the main difference between flow and flow∗∗ is that flow∗∗ admits the attacker
to distinguish between newly created objects and objects which already existed
in the pre-state. This property of flow∗∗ is responsible for its compositionality
(Thm. 3), which is an indispensable prerequisite for modular verification of
information-flow properties. On the face of it, flow∗∗ takes more words to explain
than the original flow property, but it is easier to prove: the partial isomorphism
only differs from the identity on new objects. This reduces the effort to verify
flow∗∗ considerably if only few or no new objects are created. Also, there is no
obligation that one isomorphism is an extension of another.

On the other hand, an additional observation expression N2 has to be given
which exactly names the new elements of the set of objects observable in the
post-state. Further it has to be proven that N2 exactly names the new elements.
However, normally it is quite an easy task to prove whether an object is newly
created or not. Additionally, if a newly created object is observable in the post-
state by an observation expression R2, then there has to be a term in R2 which
evaluates to this object. Hence N2 is normally an explicit subexpression of R2

and can be named easily.

Definition 6 (The predicate flow∗∗). Let N2 be an observation expression
such that all terms in N2 are of object type. Let, furthermore, α be a program,
R1, R2 observation expressions, and s1 a state.

The predicate flow∗∗(s1, α,R1, R2, N2) is true iff, for all computation domains
D, D′ and states s′1, s2, s′2 such that D+ s1

α
 D+ s2 and D′ + s′1

α
 D′ + s′2, we

have
if agree(R1, s1, s

′
1, id)

then all objects in Obj (Ns2
2) and Obj (N

s′2
2) are new and

agree(N2, s2, s
′
2, π) for a partial isomorphism π and

if agree(N2, s2, s
′
2, id) then agree(R2, s2, s

′
2, id)

Theorem 2. Let N2 be an observation expression such that all expressions in
N2 are of object type. Let furthermore α be a program, R1, R2 observation
expressions, and s1 a state.

1. flow∗∗(s1, α,R1, R2, N2) ⇒ flow(s1, α,R1, R2).
2. If for all domains D such that D+ s1

α
 D+ s2 we have Obj (Ns2

2) = {o ∈
Obj (Rs22) | createds1(o) = ff } and {o ∈ Obj (Rs22) | createds1(o) = tt} ⊆
Obj (Rs11)
then flow(s1, α,R1, R2) ⇒ flow∗∗(s1, α,R1, R2, N2) .

For the proof of the theorem we need the following auxiliary lemma. It states
that we always can find domains D2, D′2 and therefore nextToCreate functions
such that in two runs of a program α, which are started in R equivalent states,
the same new objects are chosen for those objects which are observable by R.

Lemma 5. Let α be a program such that D + s1
α
 D + s2, D′ + s′1

α
 D′ + s′2,

agree(R, s1, s
′
1, id) and agree(N, s2, s

′
2, π) hold true for observation expressions

R and N . In addition we assume that all objects in Obj (Ns2) and Obj (Ns′2) are
new.
Then there are domains D2, D′2 and isomorphisms ρ : D → D2, ρ′ : D′ → D′2
such that α started in D2 + s1 terminates in D2 + ρ(s2), α started in D′2 + s′1
terminates in D′2 + ρ′(s′2) and agree(N, ρ(s2), ρ′(s′2), id) and ρ(o) = o, ρ′(o′) = o′

for all o existing in state s1 and for all o′ existing in state s′1.

We omit the proof of Lemma 5 and go for the proof of Thm. 2 instead.

Proof (Theorem 2).
Part 1: We assume flow∗∗(s1, α,R1, R2, N2) and show flow∗(s1, α,R1, R2). To

this end we fix states s′1, s2, s′2 and domains D, D′ such that D + s1
α
 D + s2,

D′ + s′1
α
 D′ + s′2 and agree(R1, s1, s

′
1, id). We need to show agree(R2, s2, s

′
2, π),

where the uniquely determined partial isomorphism π is compatible with id.
By assumption we obtain agree(N2, s2, s

′
2, σ) and we know that all objects

in Obj (Ns2
2) and Obj (N

s′2
2) are new. By Lemma 5 there are domains D2, D′2

and isomorphisms ρ : D → D2, ρ′ : D′ → D′2 such that α started in D2 + s1
terminates in D2 + ρ(s2), α started in D′2 + s′1 terminates in D′2 + ρ′(s′2), and
agree(N2, ρ(s2), ρ′(s′2), id). This enables us to use flow∗∗(s1, α,R1, R2, N2) again,
now for the domains D2, D′2 in place of D, D′ to obtain agree(R2, ρ(s2), ρ′(s′2), id).
Another appeal to Lemma 3 yields agree(R2, s2, s

′
2, ρ
′ ◦ ρ−1). For o ∈ Obj (Rs11)∩

Obj (Rs22) we have ρ′ ◦ ρ−1(o) = o, thus ρ′ ◦ ρ−1 is compatible with id and the
claim is proved.

Part 2: For the reverse implication we assume flow(s1, α,R1, R2).
For the proof of flow∗∗(s1, α,R1, R2, N2) we consider states s′1, s2, s′2 and do-

mains D, D′ such that D+s1
α
 D+s2, D′+s′1

α
 D′+s′2 and agree(R1, s1, s

′
1, id).

From flow(s1, α,R1, R2) we obtain agree(R2, s2, s
′
2, π) for π compatible with id.

By case assumption we know Obj (Ns2
2) = {o ∈ Obj (Rs22) | createds1(o) =

ff }. We see that π is a partial isomorphism from Obj (Ns2
2) onto Obj (N

s′2
2).

This already gives us agree(N2, s2, s
′
2, π). We assume agree(N2, s2, s

′
2, id) to ver-

ify the remaining part of flow∗∗(s1, α,R1, R2, N2) with the intention to show
agree(R2, s2, s

′
2, id).

By agree(R2, s2, s
′
2, π) we already know πSeq(Rs22) = R

s′2
2 , where πSeq is

defined as πSeq(〈e1, . . . , ek〉) = 〈e′1, . . . , e′k〉 with e′i = π(ei) if ei ∈ ObjD, e′i =

πSeq(ei) if ei ∈ SeqD and e′i = ei else. It remains to be shown that π(ei) =
ei for ei ∈ Obj (Rs22). We distinguish two cases: (1) createds1(ei) = tt and
(2) createds1(ei) = ff .

In case (1) we obtain ei ∈ Obj (Rs11) by the assumption {o ∈ Obj (Rs22) |
createds1(o) = tt} ⊆ Obj (Rs11). Hence π(ei) = ei since π is compatible with id.
In case (2) use assumptions agree(N2, s2, s

′
2, id) and Obj (Ns2

2) = {o ∈ Obj (Rs22) |
createds1(o) = ff }, and also arrive at π(ei) = ei. ut

The next lemma shows that the verification condition for flow∗∗ normally is
much simpler than the one for flow∗.

Lemma 6. Let α be a program, let R1, R2, N2 be observation expressions.
Then there is a JavaDL formula φα,R1,R2,N2

such that for all states s1
flow∗∗(s1, α,R1, R2, N2) ⇔ s1 |= φα,R1,R2,N2

.

Proof. The desired formula follows a pattern similar to the one in Thm. 1.

φα,R1,R2,N2
≡ ∀Heap h′1, h2, h′2∀To′∀Trr, r′∀ . . . v′1, v2, v′2 . . .

(R1
.
= (R1

1)′ ∧ 〈α〉 save{s2} ∧ in{s′1} 〈α〉 save{s′2}
→ {in s2}{in s′2}(newIso ∧ (N2

2
.
= (N2

2)′ → R2
2
.
= (R2

2)′)))

The abbreviations used above are defined as follows:
newIso ≡ newOn(heap, N2

2) ∧ newOn(h′1, (N
2
2)′) ∧Agreetype(N2

2 , (N
2
2)′) ∧

Agreeobj (N
2
2 , N

2
2 , (N

2
2)′, (N2

2)′)

newOn(Heap h,Seq X) ≡
∀i(0 ≤ i < X.len→ (X[i]@−Obj → select(h,X[i], created)

.
= FALSE)

∧ (X[i]@− Seq → newOn(h,X[i])))

Agreetype(Seq X,Seq X ′) ≡
X.len

.
= X ′.len ∧ ∀i(0 ≤ i < X.len→∧

A in α(eInstA(X[i])↔ eInstA(X ′[i]))
∧ (X[i]@− Seq → Agreetype(X[i], X ′[i])))

Agreeobj as in Thm. 1. We skip the rest of the proof, since it greatly parallels
the one given for Thm. 1. ut

We now show the compositionality of flow∗∗. To this end we need to prove
that flow∗∗ implies that the set of objects, which can be observed by an attacker
in the post-state, contains only objects which are newly created or which already
have been observed in the pre-state.

Lemma 7. Let s1, s′1, s2, s′2 be states such that s1
α
 s2 and s′1

α
 s′2.

flow∗∗(s1, α,R1, R2, N2) implies flow(s1, α,R1, R2) and agree(R1, s1, s
′
1) ⇒

{o ∈ Obj (Rs22) | createds1(o) = tt} ⊆ Obj (Rs11).

Lemma 7 in combination with Thm. 2 gives an almost complete characteri-
zation of flow∗∗. Indeed we can show that flow∗∗(s1, α,R1, R2, N2) also implies
agree(R1, s1, s

′
1)⇒ {o ∈ Obj (Rs22) | createds1(o) = ff } ⊆ Obj (Ns2

2) which makes
this characterization tight. This characterization shows in particular that the
main difference between flow and flow∗∗ is that, roughly speaking, flow∗∗ admits
the attacker to distinguish between newly created objects and objects which
already existed in the pre-state. This property of flow∗∗ is responsible for its
compositionality:

Theorem 3 (Compositionality of flow∗∗). Let s1, s′1, s2, s′2, s3, s′3 be states
such that s1

α1 s2, s2
α2 s3, s′1

α1 s′2 and s′2
α2 s′3. If

1. flow(s1, α1, R1, R2),
2. flow(s2, α2, R2, R3),
3. agree(R1, s1, s

′
1)⇒ {o ∈ Obj (Rs22) | createds1(o) = tt} ⊆ Obj (Rs11) and

4. agree(R2, s2, s
′
2)⇒ {o ∈ Obj (Rs33) | createds2(o) = tt} ⊆ Obj (Rs22)

then
flow(s1, α1;α2, R1, R3) and agree(R1, s1, s

′
1) ⇒ {o ∈ Obj (Rs33) | createds1(o) =

tt} ⊆ Obj (Rs11).

We omit the proofs of Lemma 7 and Thm. 3 for the sake of brevity, but they can
be found in the companion technical report [7].

8 Related Work

There exists a very large body of work on language-based security. Besides the
discussion below, we refer to [30] for a survey.

Security type systems are one of the most popular approaches. A prominent
example in this field is the JIF system [26]. Type system approaches are efficient,
but sometimes also quite imprecise. A further approach is checking the dependence
graph of a program for graph-theoretical reachability properties [16]. Though this
technique is substantially different from type system approaches, it is efficient
and sometimes quite imprecise, too. Further approaches use abstraction and
ghost code for explicit tracking of dependencies [10]. They are quite near in
spirit to flow-sensitive security type systems, but have not tackled the problem
of modular verification yet. All approaches mentioned so far appear to be limited
to information flow between variables and it is questionable whether they can be
adopted to fine-grained specifications as the one introduced in this paper.

The most popular approach in logic based information flow analysis is stating
secure information flow with the help of self-composition [5, 12] and using off-
the-shelf software verification systems to check for it, as we do. The approach
has the appealing feature that it can be arbitrarily precise as long as the used
verification system has a relatively complete calculus. An important alternative
in logic based information flow analysis is the usage of specialized, approximate
calculi [1]. Finally, secure information flow can be formalized in higher-order

logic, and higher-order theorem provers like Coq can be used for checking secure
information flow [27]. This approach seems to be very expressive, but comes at
the price of more and more complex interactions with the proof system.

Focusing on object-sensitive secure information flow, the paper closest to ours
is [1]. The authors build on region logic, a kind of Hoare logic with concepts
from separation logic, which is comparable to JavaDL. They use the same
basic definition of object-sensitive secure information flow. Instead of providing
verification conditions which can be discharged with a standard calculus, as we
do, they introduce a specialized, more efficient calculus to show object-sensitive
secure information flow. This specialized calculus uses approximate rules which
avoid explicit modeling of isomorphisms, but comes with the price of imprecision.
The discerning points of our work are: (1) a further investigation of the security
property, allowing the restriction of isomorphisms as far as possible and thus
making the explicit, non approximate modeling of isomorphisms feasible with
a minimum of additional user interaction; (2) verification conditions that are
discharged with an existing tool; and (3) a more flexible specification methodology.

Contributions (1) and (3) also distinguish this work from the other approaches
mentioned above, including JIF, which already presented an approximative
treatment of object-sensitive secure information flow for Java [26]. JIF is a
practical approach to the analysis of secure information flow which covers a
broad range of language features, but it has not been formally proven to enforce
non-interference. Similar to JIF, [3, 6] use type systems for the verification of
object-oriented secure information flow. They treat a smaller set of language
features, but prove that their type systems indeed enforce non-interference. A
closely related approach is [9]. Here, only the information flow analysis is based
on type systems; the verification task is separated from the analysis and based
on program logics. Still, points (1) and (3) as well as the overall precision are
discerning points of this paper. The approach in [6], already mentioned above,
and the approaches [17,18] target Java Bytecode in contrast to source code, as
the other approaches do. The latter is a type system approach, too, whereas the
former uses abstract interpretation in combination with classical static analysis.

To the best of our knowledge, the only approach which models isomorphisms
explicitly is the self-composition approach [28]. The drawback of that approach
is that the specifier needs to track the isomorphism manually with the help of
additional ghost code annotations. This increases the burden on the specifier,
whereas our approach detects the isomorphism automatically.

Focusing on fine-grained information flow specifications, the approaches closest
to ours are [4,31]. These approaches specify information flow between variables and
fields only, but allow for the declassification of terms. Our approach generalizes
and unifies these approaches. This generalization already proved to be useful in
a recent case-study, see Sect. 3.

9 Conclusions and Future Work

Lemma 4 and Thm. 2 prove the relation between standard object-sensitive non-
interference and our improved versions. These results lead to an approach to
verify object-sensitive non-interference properties of Java programs by a direct
translation into Dynamic Logic (Thm. 1 and Lemma 6). The approach has
been implemented in the KeY tool and successfully tested on small examples.
The implementation can be tested on our web page using Java Web Start. In
particular, we have successfully treated the examples included in this paper, as
well as the (somewhat more involved) examples by Naumann [28]. Application to
a larger e-voting case study is currently underway.

In a future paper we plan to present a complementary specialized calculus for
the flow predicate intended to further increase reasoning efficiency. As proved
in Thm. 3, the flow∗∗ criterion is compositional and is expected to lead to a
particularly efficient calculus. A specification interface to the Java Modeling
Language (JML) [22] for information flow properties has been published in [31].

References

1. T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow in
object-oriented programs. In Proceedings POPL, pages 91–102. ACM, 2006.

2. T. Amtoft and A. Banerjee. Information flow analysis in logical form. In Proceedings,
SAS, pages 100–115, 2004.

3. A. Banerjee and D. A. Naumann. Secure information flow and pointer confinement
in a Java-like language. In Proceedings CSFW, 2002.

4. A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive declassification policies
and modular static enforcement. In Security and Privacy, 2008. SP 2008. IEEE
Symposium on, pages 339–353. IEEE, 2008.

5. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. CSFW ’04, pages 100–115, Washington, USA, 2004. IEEE CS.

6. G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-interference Java
bytecode verifier. Mathematical Structures in Comp. Sci., FirstView:1–50, 4 2013.

7. B. Beckert, D. Bruns, V. Klebanov, C. Scheben, P. H. Schmitt, and M. Ulbrich.
Information flow in object-oriented software : Extended version. Technical Report
2013-14, KIT, 2013.

8. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach. LNCS 4334. Springer, 2007.

9. L. Beringer and M. Hofmann. Secure information flow and program logics. In CSF,
pages 233–248, 2007.

10. R. Bubel, R. Hähnle, and B. Weiß. Abstract interpretation of symbolic execution
with explicit state updates. In FMCO, pages 247–277, 2008.

11. E. S. Cohen. Information transmission in computational systems. In SOSP, pages
133–139, 1977.

12. Á. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of
secure information flow. In Security in Pervasive Computing, LNCS 3450. 2005.

13. D. E. Denning. A lattice model of secure information flow. Commun. ACM,
19(5):236–243, 1976.

http://www.key-project.org/DeduSec/

14. J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy, pages 11–20, 1982.

15. S. Greiner, P. Birnstill, E. Krempel, B. Beckert, and J. Beyerer. Privacy preserving
surveillance and the tracking paradox. In Proceedings, Future Security Conference
2013, 15–19 September 2013, Berlin, 2013. To appear.

16. C. Hammer, J. Krinke, and G. Snelting. Information flow control for Java based on
path conditions in dependence graphs. In ISSSE, pages 87–96. IEEE, March 2006.

17. R. R. Hansen and C. W. Probst. Non-interference and erasure policies for Java
Card bytecode. In WITS, 2006.

18. D. Hedin and D. Sands. Timing aware information flow security for a JavaCard-like
bytecode. In BYTECODE, volume 141:1 of ENTCS, pages 163 – 182. 2005.

19. D. Hedin and D. Sands. Noninterference in the presence of non-opaque pointers.
In CSFW, pages 217–229. IEEE Computer Society, 2006.

20. R. Joshi and K. R. M. Leino. A semantic approach to secure information flow.
Science of Computer Programming, 37(1-3):113–138, 2000.

21. B. W. Lampson. A note on the confinement problem. Commun. ACM, 16(10):613–
615, 1973.

22. G. T. Leavens, A. L. Baker, and C. Ruby. JML: a Java Modeling Language. In
Formal Underpinnings of Java Workshop (at OOPSLA ’98), Oct. 1998.

23. T. Lindholm and F. Yellin. Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.

24. J. McCarthy. Towards a mathematical science of computation. Information
Processing, pages 21–28, 1962.

25. J. C. Mitchell. Type systems for programming languages. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics, pages 365–458. 1990.

26. A. C. Myers. JFlow: Practical mostly-static information flow control. In POPL,
pages 228–241, 1999.

27. A. Nanevski, A. Banerjee, and D. Garg. Verification of information flow and access
control policies with dependent types. In SP, pages 165 –179, 2011.

28. D. A. Naumann. From coupling relations to mated invariants for checking informa-
tion flow. In ESORICS, pages 279–296, 2006.

29. S. Ranise and C. Tinelli. The SMT-LIB standard: Version 1.2. Tr, U. of Iowa, 2006.
30. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 21(1):5–19, 2003.
31. C. Scheben and P. H. Schmitt. Verification of information flow properties of Java

programs without approximations. In FoVeOOS, volume 7421 of LNCS, pages
232–249. Springer, 2012.

32. Q. Sun, A. Banerjee, and D. A. Naumann. Modular and constraint-based information
flow inference for an object-oriented language. In SAS, pages 84–99, 2004.

33. B. Weiß. Deductive Verification of Object-Oriented Software: Dynamic Frames,
Dynamic Logic and Predicate Abstraction. PhD thesis, KIT, 2011.

	Information Flow in Object-Oriented Software

