This paper has been superseded by “Precise Quantita-
tive Information Flow Analysis — A Symbolic Approach”,
TCS, 2014.

Precise Quantitative Information Flow Analysis
Using Symbolic Model Counting

Vladimir Klebanov*

Karlsruhe Institute of Technology (KIT)
Am Fasanengarten 5, 76131 Karlsruhe, Germany
klebanov@kit.edu

Abstract. Quantitative information flow analyses (QIF) are a class of
techniques for measuring the amount of confidential information leaked
by a program to its public outputs. QIF analyses can be approximative
or precise, offering different trade-offs. In this paper, we lift a particular
limitation of precise QIF. We show how symbolic model counting replaces
explicit leak enumeration with symbolic computation, thus eliminating
the associated bottleneck.

1 Introduction

Recently, there has been a surge in research on quantitative information flow
analysis (QIF). The research is motivated by the observation that it is not fea-
sible to completely prevent information leaks (i.e., the flow of confidential infor-
mation to public ports) in realistic programs. Instead, practical security analysis
demands a measure of leaked information in order to decide if a leak is tolerable.

QIF analyses can be precise or approximative, offering different trade-offs.
The only precise analysis that we are aware of is [1], where the authors present
a two-stage approach. The first stage—program analysis—uses an off-the-shelf
model checker to compute a summary of information flow in the program. This
summary takes the form of an equivalence relation describing which confidential
inputs are indistinguishable by public program outputs in a given attack sce-
nario. The second stage—quantification—uses model generation and counting
techniques to transform this relation into a variety of information-theoretical
metrics.

So far, precise QIF has been applied to quite small examples only, and even
there, a number of severe limitations on program complexity and state space
had to be put up with. These limitations have been dictated by two bottlenecks:
the first is the limited performance of exhaustive program analyses on programs
with a high number of paths and/or states (in stage one). The second is the
explicit leak enumeration in the quantification stage.

In this paper, we (only) address bottleneck II (quantification stage). We
present a new quantification stage based on existing advanced model counting

* This work was supported by the German National Science Foundation (DFG) under
the priority programme 1496 “Reliably Secure Software Systems — RS3.”

technology of extended Barvinok counting. The technique is completely symbolic,
thus eliminating the explicit leak enumeration and allowing precise QIF to scale
up to programs with a large number of leaks.

Solving bottleneck I in precise QIF is an independent problem, which we do
not address here. We are currently investigating the use of user-supplied and/or
synthesized program specifications for this purpose.

We illustrate both bottlenecks using examples from the literature in Section 2.
Related work is surveyed in Section 3, and basic QIF notions are introduced in
Sections 4—6. Section 7 gives an overview of counting techniques, while Section 8
introduces an approach for precise QIF based on it. Section 9 describes our
implementation using the KeY deductive verification system [4] and the barvinok
counting tool [14], which we used to carry out the experiments. Section 10 gives
a complete description of one such experiment. Section 11 concludes.

2 Examples for Bottlenecks in QIF

In the following, we present examples for the QIF bottlenecks outlined in
the Introduction. As representatives of the problematic program classes we use
programs given in [1]. Each example illustrates a particular issue and a limitation
that had to be imposed until now in order to be able to treat the example
with existing precise QIF approaches. We start with bottleneck II, which can be
eliminated using the technique that we propose.

Bottleneck II (quantification of large leaks) Some programs have inher-
ently large leaks. The program 1 = hl + h2 + h3; has no low inputs, yet the
number of possible outputs (and thus equivalence classes of the indistinguisha-
bility relation) is very high. Generating an explicit representative for each equiv-
alence class and measuring the size of each class is infeasible. To treat the ex-
ample, [1] limits the input domain and assumes 0 < h; < 9. The technique that
we propose lifts this limitation.

Large leakage can also be due to a large number of experiments, each leaking
only a little. The password checker program

if (secret==guess) { access=1; } else { access=0; }

with a password secret of sufficient length is quite secure under a few guess-
ing attacks, but will unavoidably reveal the complete secret upon an exhaustive
brute-force attack.! So far, the latter fact can be deduced from the verification
conditions generated by the program analysis stage, but a measurement of the
individual equivalence class sizes is infeasible due to the enumeration bottleneck.
The technique that we propose can symbolically compute equivalence class sizes
of arbitrarily fine equivalence relations (the identity relation being just an ex-
treme example).

! In practice, such attacks are mitigated by introducing delays or shutting down the
system after a few unsuccessful attempts.

Bottleneck I (program analysis of programs with a large number of
paths/states) An example is the program

lo = 0; while (A >=1) { h=h -1; 1o = 1o + 1; } (1)

modeling an “electronic purse” that receives a secret input h with the balance
of a bank account and debits a fixed amount 1 from this account until the bal-
ance is insufficient for another debit transaction. Upon termination, the program
outputs the number of successful debit transactions stored in the variable lo.
This number reveals partial information about the initial balance of the account.
To analyze the leak (resp. residual uncertainty), [1] bounds the initial balance:
0 < h < 20. When considering a single experiment (1 = 5), the running time of
the model checker is reported as 24 seconds. This bears no good news for scaling
the analysis up to higher values of h. Using a deductive verification system in
exhaustive exploration mode, we could speed up the computation of zf for the
same bounds by approximately an order of magnitude (see Section 9), which is
still too slow to be practicable. As mentioned in the Introduction, we ignore this
bottleneck for now.

An extreme instance of bottleneck I occurs when there is a possibility of
non-terminating program runs. Due to the finite execution requirements, QIF
analyses based on exhaustive space exploration or sampling are limited to ter-
minating programs only.

3 Related Work

There is a large body of work on demonstrating absence of information leaks in
programs, which we cannot survey here.

A remarkable result in the field of QIF and the only precise analysis we are
aware of is [1]. We have already discussed it to some extent in the introduction
and will continue to do so in the following.

The most relevant approximative QIF techniques are [8] and [10]. The former
work is concerned with checking quantitative leakage bounds (“does the program
leak more than X?”) via bounded model checking. It does not use a dedicated
counting tool, but encodes detection of (small) leaks as a model checking prob-
lem. The latter work is concerned with addressing the scalability issues of [1]. In
order to maintain automation, the approach gives up precise computation of the
leak and opts for an approximative characterization, deriving lower and upper
leak bounds (when measuring residual min-entropy) via abstract interpretation
and concolic testing respectively. Measurement of residual Shannon entropy re-
lies in addition on randomized sampling, and its result is only probably correct,
with the user choosing the desired confidence level.

A theoretical account of the hardness of quantifying information flow in pro-
grams is given in [16], though this work is only concerned with framing QIF as
a program analysis (i.e., without employing counting technology).

A seminal work reasoning about information flow in program logics is [5],
showing different approaches to formalize and prove both program security (ab-
sence of leaks) and insecurity (presence of leaks) in Dynamic Logic for Java and

the KeY prover. The self-composition technique was first presented in a work-
shop version of [5] and received further theoretical treatment and its name in [2];
it was also studied from the point of view of verification in [12].

4 The Formal Framework

We use an instance of Dynamic Logic [6] to state assertions about programs.
This allows a unified and concise formulation, but does not mean that the tools
used for reasoning about programs have to be based on this formalism. The
results can be easily transferred to systems using Hoare Logic, symbolic model
checking (for terminating programs), etc.

We assume a deterministic, imperative programming language with integer
variables. For succinctness, we will denote several related program variables or
terms as ¥, ¢, etc. and assume that all operations happen component-wise.

Assertion syntax Our formal framework extends standard first-order logic
with arithmetics with two predicate transformers. For every program p and every
formula ¢, (p)¢ (“diamond”) and [p]¢ (“box”) are formulas. The diamond is a
weakest precondition predicate transformer (also known as wp(p, ¢)). The box is
a weakest liberal precondition predicate transformer (also known as wip(p, ¢)).
The formula ¢ — [p]¢ has the same intuitive meaning as the triple {¢)}p{¢}
in Hoare Logic. Our logic is closed under subformula relation; in particular box
and diamond operators can appear nested.

Semantics The semantics of the logic is based on the notion of a (program)
state, i.e., a first-order structure assigning (among other things) values to pro-
gram variables. We presume an appropriate signature and refer to the set of all
possible states that are based on it as S.

The transition relation p, C S xS gives meaning to a program p as a relation
between its initial and final states. The definition of the programming language
fixes p, for every syntactically valid program p. In this paper, we only consider
deterministic programs, so all relations p,, are actually partial functions: for every
initial state, there is at most one final state.

Furthermore, for any given state s € S: (1) Terms and formulas without box
or diamond operators have the meaning as usual in first-order logic. (2) The
diamond formula (p)¢ is true in s, if the program p started in s terminates
and the formula ¢ is true in the state p,(s) reached upon termination. (3) The
meaning of a box formula is the same, but termination is not required: [p]¢ is
true in s, if either p does not terminate when started in s, or (p)¢ is true in s.

A formula is logically valid if it is true in every state.?

5 Basics of Information Flow

For reasoning about information flow, we classify parts of the state according to
a (simple) security lattice:

2 Thus, there is implicit universal quantification over program variables.

— The signature marks each program variable either as high (confidential) or
as low (publicly observable/changeable).?

— According to the above distinction, we define projection functions -j; and -j,.
Each state s € S is a pair of its high component s;; and its low compo-
nent s;,, and S = Sy; X Spo.

The attacker The attacker model is as follows. Assume a run of a program p,
with an initial state s = (sp;, $1), and the final state s’ = pp(s) = (s}, s],). The
attacker knows p, s;,, and s}, (but not sp;, sj,;, or any intermediate states). The
goal of the attacker is to learn something about sp;.

The amount of information leaked by the program (and thus the success of the
attacker) depends on the number of program runs that the attacker can study.
Each such run is called in terminology of [1] an ezperiment, and it is uniquely
characterized by the low component s;, of the initial state. We assume that the
attacker can freely choose s;,. The analysis presented below is parameterized by
a set of experiments F.

Describing information leaks The canonical way to describe information
leakage of a program is by grouping confidential inputs that lead to the same
public output in a given attack scenario.

Definition 1 (Indistinguishability relation). For a given program p and
a set of low state components (experiments) E, the indistinguishability rela-
tion mfg Shi X Sh; 18

zf: {(814is S213) | for alle € E - (pp((81hi7€)))lo = (pp((52hi7e)))lo})

Intuitively, %5 is an “equivalence relation on the set of possible secret inputs.
Two inputs are in the same equivalence class whenever the program produces the
same result on both inputs. By observing the output of the program, the attacker
can then only deduce the secret input up to its [...] equivalence class.” [1]

More precisely, for a given p and E, %f is an equivalence relation on high
state components. Taking any two states with (1) their high components in the
same %f -equivalence class, and (2) their low components identical and in E as
initial states for running p will lead to the same observable (i.e., low) final state.
We do not consider the case that programs may not terminate in this paper.

Secure programs have a coarse indistinguishability relation, while insecure a
fine one. If the indistinguishability relation is identity (very fine), then all equiv-
alence classes are singleton sets, and each low final state corresponds uniquely
to a high initial state: the attacker has perfect knowledge. Conversely, the coars-
est indistinguishability relation zf = Sh; X Sp; with only one equivalence class
means that the attacker learns nothing about the high inputs observing the low
outputs (a scenario known as “non-interference”).

3 This definition forces us to mark local variables as high, but this restriction has no
practical consequence.

6 Security Metrics

Given the number and sizes of equivalence classes of %f , it is possible to com-
pute a range of security measures summarizing information flow (leakage) in a
program. The leaked information is the difference between the attacker’s ini-
tial uncertainty about the secret inputs and the remaining uncertainty after
observing the output of the program [11]: “Leakage = initial uncertainty —
remaining uncertainty”. In the following, we concentrate on quantifying the re-
maining uncertainty.

We assume that a set of experiments F is fixed, giving rise to the indis-
tinguishability relation zf with n equivalence classes Sy; = C1U...UC,,. We
assume that the secret inputs are modeled by a random variable H ranging
over Sy;, and the public outputs are modeled by a random variable L ranging
over Sj,. The program p restricts the values of H and L that can occur simul-
taneously. Furthermore, we assume that H follows a uniform distribution, i.e.,
that all secret inputs are equally likely.

Under these assumptions, the following measures (among other) can be com-
puted: (1) conditional guessing entropy G(H|L) or the expected number of
guesses required to determine H after observing L, (2) conditional minimal
guessing entropy G(H|L) or the expected number of guesses to determine H
after observing a value of L corresponding to the weakest secret (smallest class
in ~7), (3) conditional Shannon entropy H(H|L) or the lower bound in bit
on the expected message length needed to communicate the remaining secret
about H after observing L, (4) conditional min-entropy Ho (H|L) or a measure
in bit reflecting the probability of correctly determining H in a single guess after
observing L. The formulas for computing the measures can be found in [11,1].

It should be noted that different measures have significantly different prop-
erties and are appropriate for different scenarios. It may also be necessary to
consider several measures in order to give dependable operational guarantees.

We refer to [11] for a survey.

7 Counting for QIF

QIF problems are intimately related to counting. In this section, we describe
the extended Barvinok counting technique (developed by Verdoolaege et al.)
that we use in this paper, as well as its relations to other counting techniques.

Standard Barvinok counting If an equivalence class of %f can be described
by a system of linear integer inequalities AZ > b (i.e., if it is a bounded integer
polytope), then Barvinok’s algorithm [3] can be used to count the number of
integer solutions to this system—read elements of the class.

[1] uses an implementation of the algorithm from the LattE framework to do
so for each class in separation. This requires enumerating the classes, which is
the bottleneck of the approach.

Extended Barvinok counting We propose to use an extension of Barvinok’s
algorithm [14] implemented in the barvinok tool [13] to eliminate the counting
bottleneck of precise QIF. The advantages of the extended counting algorithm
are the symbolic nature of computation as well as the additional operations it
offers.

barvinok implements (among others) the following operations: (1) set con-
struction {Z | (&)} resp. {[x1,...,xnl: ...}, where @ is a formula over linear
arithmetics, (2) relation construction {(@,b) | ®(a,b)} resp. {[al->[b]:...},
(3) inverse relation computation R~!, (4) relation range computation ran R,
(5) set projection {Z | Jv.P(Z,v)}, (6) lexicographic optimization (lexmin)
on sets (the smallest element) and relations lezmin R = {(a,b) € R | b =
lexmin{z | (a,z) € R}}, and finally (7) cardinality computation on sets | - |
resp. card and relations |R| = Ap.|S(p)| with S(p) = {s | (p,s) € R} (number of
elements in the image of each domain element). The result of cardinality com-
putations is a (symbolic) quasi-polynomial in parameters of the set constraint.

All operations are carried out exactly and completely symbolically. The run-
time performance of extended Barvinok counting is not dependent on the range
of individual variables. For all our queries, the barvinok tool produced replies
instantaneously. The details of how we use these powerful capabilities will be
given in Section 8.

Scope and limitations Barvinok-based counting only works when the input
of the program under analysis are integer vectors of fixed length. The program
may use complicated data structures (arrays, objects, etc.) as long as they do
not cross the boundaries of the program (and the program analysis supports
them). Furthermore, only programs can be analyzed that admit a sufficiently pre-
cise specification in quantifier-free logic with linear arithmetics. Unfortunately,
this property cannot be effectively determined from the program syntax. It is,
nonetheless, satisfied by a significant class of programs.

An approach to deal with non-linear %f descriptions is proposed in [7]. Due
to the finiteness of machine integers, such descriptions can be translated into a
(large) purely propositional formula (“bit-blasting”). Then, one of the available
#SAT solvers is used to count the number of solutions to the SAT problem given
by the formula. As far as we understand, this approach does not scale as well as
Barvinok counting.

8 Detecting and Quantifying Information Flow

This section describes the actual approach for precise QIF. It uses the stan-
dard technique of self-composition [5,2,12] in the program analysis stage (es-
sentially as in [1]). We also briefly describe the quantification stage used in [1]
before proposing a replacement.

We assume that a program analysis is available implementing a verification
condition generation operator ve(¥). For every formula ¥ in the sense of Sec-
tion 4 containing programs, vc(¥) returns an equivalent formula in first-order

logic with theories (without programs). [1] uses an iterative procedure imple-
mented on top of the model checker ARMC to compute ve(-) for terminating
programs. In our experiments, we have used the deductive verification system
KeY for this purpose (cf. Section 9). In general, numerous systems exist that
offer such functionality.

To deal with loops, the vc(-) operator is typically parameterized by a loop
invariant. In this paper, we assume that all loops are bounded and treated by
unwinding instead.

Stage 1: Program analysis In the first stage, the approach uses a program
analysis to compute a logical description of %5 . We use self-composition, i.e.,
employ two copies of the program p(h, 1) with renamed variables: p; := p(hy,1;)
and py := p(ha,1s). The goal is to determine a program-free formula @(hy,hs)
such that

E . = =y . .
S1pi A Sap; iff @(h1,hy) is true in a state (s14; © S2pi5 S10)

where s;, is some low state component and s1j; @ s2p; is a high state component
where the values of h; are the same as the values of h in sy,; and the values
of hy are the same as the values of h in sap;.

Transcribing the characterization of indistinguishability (Definition 1) in pro-
gram logic we obtain:

U =FE(11)A 11 =12) A Pre A {p1)(p2)(11 =12) . (3)

The predicate E(z) describes the set of experiments E. For modeling reasons,
one may sometimes wish to restrict the set of initial states by including Pre,
which is a (symmetric) precondition over the high vocabulary of p; and ps. In
this case, the obtained @ only describes an equivalence relation on the high state
components satisfying Pre.

The desired logical description of & is then immediately @(hy,hy) = ve(¥).

Stage 2: Enumerative model generation and counting (to be replaced)

Stage 2a: Model generation After Stage 1, Stage 2a uses model gen-
eration techniques to compute a representative system {r;} for %f . The
representative system is computed by an iterative algorithm, which re-
peatedly asks a model generator for a representative value (i.e., a satis-
fying assignment to hy in @(hy,hy)) that is not equivalent to any of the
previously computed representatives. The technical basis for this com-
putation may be the Omega calculator or an SMT solver.

Stage 2b: Model counting This stage uses the standard version of
Barvinok’s algorithm to determine the size of individual equivalence
classes. The algorithm takes a set of formulas @(h, ;) as input and re-
turns the (concrete) number of integer assignments to h satisfying each
formula. This is the size of the 7;-equivalence class. [1] uses the LattE
framework as an implementation of the algorithm.

Stage 2: Symbolic model counting (our proposal)

Proposition 1. Given a symbolic counting procedure implementing the opera-
tions of Section 7, the size of the equivalence classes of %f, can be computed as
a closed expression as follows:

{IGil} = |(lexmin{(hy, h2) | D(h1, h2)}) 7" (4)
The number of equivalence classes n can be computed as
n = |ran lexmin{(hy,hs) | ®(h1,hs)}| . (5)
Ezxample 1. Assume the following description of Rﬁf :
&(hy,hs) = hy=hs mod 3A0<h; <4A0<hy <4
(we are choosing small domains for illustration purposes only). It is easy to see

~p={(4,4),(1,4),(3,3),(0,3), (2,2), (4,1),(1,1),(3,0), (0,0)}
lexmin ~E {(272)7(4’ 1)7(171)’(370)7(030)} .

p =
Again, these point enumerations are for illustration purposes only. The counting
procedure symbolically computes:

n = |ran lexmin %f |=3 (“number of points in the image”)

{ICil} = [(lewmin ~7) 7| = {2 = [(1 + ha) /3] | 0 < hy <2} .

8.1 Computing Security Metrics

Finally, the symbolic counting results must be combined with the appropriate
formula(s) to compute the various security metrics described in Section 6. This
calculation can be carried out symbolically, without reintroducing bottleneck II
of explicit enumeration. Even if the obtained quasi-polynomials (symbolic terms)
encoding the number and size of the equivalence classes are complex, algebraic
simplification laws (replacing repeated addition by multiplication, etc.) allow
efficiently exploiting their structure.

In difficult cases, applying a computer algebra system may be necessary to
calculate the security metrics. In our experience, Mathematica [15] had no prob-
lems doing so even for quite unwieldy terms.

9 Implementation

Our implementation consists of two publicly available tools. For program analysis
we used the KeY system v1.6 [4,9] and for counting barvinok v0.35 [13].

The KeY system is a deductive verification system (i.e., a theorem prover) for
Java based on Java Dynamic Logic. It includes the box and diamond operators
as part of the input syntax, so the program formulas shown in this paper can be

supplied to the system virtually verbatim. The system features an explicit proof
object. To compute verification conditions, we provided the initial proof goal ¥
in program logic, and run the automated proof search strategy to exhaustion.
The conjunction of the open program-free proof goals constituted vc(¥).

We did not implement any glueing code between KeY and barvinok, but since
both systems use virtually identical syntax for first-order formulas, it was easy
to copy and paste between the two.

We only used the imperative fragment of Java. The verification conditions
were generated with machine-faithful arithmetics.

We have also tried to run KeY in exhaustive mode on the “electronic purse”
example (1) from [1]. This is the only example with non-negligible program
analysis running time, which is reported by [1] at 24 seconds for h < 20. Program
analysis with KeY took around 3.5 seconds on a mobile system with a 1.60GHz
Intel Core2 Duo CPU.

We conjecture that the theorem prover-based analysis is faster as it can com-
pute the indistinguishability relation completely in one symbolic run. A model
checker, in contrast, must explore the program repeatedly as the indistinguisha-
bility relation is refined with found leaks.

10 A Complete Example: Sum of Three 32-bit Integers

Theorem prover input The following input encodes (3) in KeY.

\programVariables{
int hla; int h2a; int h3a; int loa;
int hilb; int h2b; int h3b; int lob;
}

\problem {

inInt(hla) & inInt(h2a) & inInt(h3a) &

inInt (hib) & inInt(h2b) & inInt(h3b) &

\<{ loa=hla+h2a+h3a; }\>\<{ lob=h1b+h2b+h3b; }\> loa=lob
}

Computed indistinguishability relation The following verification condi-
tion is computed automatically for the problem above:

hla >= -2147483648 & hla <= 2147483647
h2a >= -2147483648 & h2a <= 2147483647
h3a >= -2147483648 & h3a <= 2147483647
hib >= -2147483648 & hilb <= 2147483647
h2b >= -2147483648 & h2b <= 2147483647
h3b >= -2147483648 & h3b <= 2147483647 &
(2147483648 + hla + h2a + h3a) ’ 4294967296
+ (2147483648 + hib + h2b + h3b) 7 4294967296 * -1 = 0

F R

This formula describes the indistinguishability relation and is abbreviated as PHI
in the following.

10

Determining the number of classes We use the following barvinok query
to compute n according to (5):

card ran (lexmin PHI);

The result is 4294967296. Intuitively, every integer is realizable as output.

Determining individual class size We use the following barvinok query to
compute {|C;|} according to (4):

card (lexmin PHI)"-1;
The result is initially (in the body of the term, after =>, [-] is the floor function)

[hib, h2b, h3b] ->
((18446744073709551616 +
(6917529017977405443 - 12884901879/2 * h3b + 3/2 * h3b~2) *
[(2147483649 + h3b)/4294967296]) +
(-2305843005992468481 + 4294967293/2 * h3b - 1/2 * h3b~2) *
[(2147483650 + h3b)/4294967296]
)
hib = -2147483648 & h2b = -2147483648 & -2147483648 <= h3b <= 2147483647

but simplifies to [h1b, h2b, h3b] -> 18446744073709551616. The simplifica-
tion is achieved by giving the tool the hint to split the term at the values of h3b
where the floor terms change value (at 2147483646 = 4294967296 —2147483650,
for instance). All classes have thus the same size. This would have been different
with unbounded nonnegative integers.

Security metrics After observing the sum of three secret signed 32-bit in-
tegers, the Shannon entropy of the secret diminishes from 3 % 32 = 96 bit to
H(H|L) = log,(18446744073709551616) * 18446744073709551616 * 232 /296 = 64
bit. To corroborate the intuitive plausibility of this result consider the case of
1-bit integers.

11 Conclusion and Future Work

We have extend the scope of precise QIF by using symbolic model counting.
Symbolic counting completely eliminates the bottleneck of leak enumeration and
allows efficient treatment of variable domains and leaks of arbitrary size.

We have also demonstrated that a deductive verification system and a sym-
bolic model counting system are a good platform for implementing a precise
QIF analysis in a satisfyingly direct fashion. The soundness of the analysis re-
sults almost directly from the soundness of the tools. In exhaustive exploration
mode, a deductive verification system is significantly faster for QIF than an
implementation based on model checking.

So far, we have mainly concentrated on treating the programs given in [1]
(while proving stronger properties). In the future, we would like to carry out
more experiments with the technique presented. Addressing the bottleneck of
exploring unbounded program path and state spaces is another goal of ours.

11

Acknowledgment The author would like to thank Bernhard Beckert for fruit-
ful discussions.

References

1.

o

11.

12.

13.

14.

15.

16.

M. Backes, B. Kopf, and A. Rybalchenko. Automatic discovery and quantifica-
tion of information leaks. In Proceedings, 30th IEEE Symposium on Security and
Privacy (S&P 2009), pages 141-153. IEEE Computer Society, 2009.

G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In 17th IEEE Computer Security Foundations Workshop, CSFW-17,
Pacific Grove, CA, USA, pages 100-114. IEEE Computer Society, 2004.

A. 1. Barvinok. A polynomial time algorithm for counting integral points in poly-
hedra when the dimension is fixed. Math. Oper. Res., 19:769-779, November 1994.
B. Beckert, R. Hahnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNCS. Springer, 2007.

A. Darvas, R. Hihnle, and D. Sands. A theorem proving approach to analysis
of secure information flow. In D. Hutter and M. Ullmann, editors, Proceedings,
Security in Pervasive Computing, volume 3450 of LNCS, pages 193-209. Springer,
2005.

D. Harel. First-Order Dynamic Logic. Springer, 1979.

J. Heusser and P. Malacaria. Applied quantitative information flow and statistical
databases. In Proceedings of the 6th international conference on Formal Aspects
in Security and Trust, FAST’09, pages 96-110, Berlin, Heidelberg, 2010. Springer-
Verlag.

J. Heusser and P. Malacaria. Quantifying information leaks in software. In Pro-
ceedings of the 26th Annual Computer Security Applications Conference, ACSAC
’10, pages 261-269. ACM, 2010.

The KeY tool. Website at www.key-project.org.

. B. Kopf and A. Rybalchenko. Approximation and randomization for quantitative

information-flow analysis. In Proceedings of the 2010 23rd IEEE Computer Security
Foundations Symposium, CSF 10, pages 3—14, Washington, DC, USA, 2010. IEEE
Computer Society.

G. Smith. On the foundations of quantitative information flow. In Proceed-
ings of the 12th International Conference on Foundations of Software Science and
Computational Structures, FOSSACS '09, pages 288-302, Berlin, Heidelberg, 2009.
Springer-Verlag.

T. Terauchi and A. Aiken. Secure information flow as a safety problem. In C. Han-
kin and I. Siveroni, editors, Proceedings, Symposium on Static Analysis, volume
3672 of LNCS, pages 352-367. Springer, 2005.

S. Verdoolaege. The Barvinok tool. Website at www.kotnet.org/~skimo/
barvinok/.

S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe. Counting
integer points in parametric polytopes using Barvinok’s rational functions. Algo-
rithmica, 48(1):37-66, June 2007.

Wolfram Research, Inc. Mathematica version 8.0 (computer algebra system). http:
//www.wolfram.com/mathematica/, 2010.

H. Yasuoka and T. Terauchi. Quantitative information flow — verification hard-
ness and possibilities. In Proceedings of the 2010 23rd IEEE Computer Security
Foundations Symposium, CSF 10, pages 15-27. IEEE Computer Society, 2010.

12

