
A Dynamic Logic for Deductive Verification of Concurrent Programs

Bernhard Beckert and Vladimir Klebanov

Institute for Computer Science

University of Koblenz-Landau

www.key-project.org

Abstract

In this paper, we present an approach aiming at full

functional deductive verification of concurrent Java pro-

grams, based on symbolic execution. We define a Dy-

namic Logic and a deductive verification calculus for a re-

stricted fragment of Java with native concurrency prim-

itives. Even though we cannot yet deal with non-atomic

loops, employing the technique of symmetry reduction al-

lows us to verify unbounded systems.

The calculus has been implementedwithin theKeYsys-

tem, and we demonstrate it by verifying a central method

of the StringBuffer class from the Java standard li-

brary.

1. Introduction

Motivation and Goals Verification of programs with
concurrency has traditionally been—with a few excep-
tions—the domain of model checking tools. This holds
also for Java program verification, where several very
successful model checking frameworks have been estab-
lished [13, 7]. Nonetheless, for verification problems
that are data-centric or that involve an unbounded
number of threads, deductive verification offers advan-
tages. In general, the properties we deal with in this
paper can neither be expressed in temporal logic nor
verified with a model checker.

In this paper, we present a Dynamic Logic and a
deductive verification calculus for a fragment of the
Java language, which includes concurrency. Our aim
has been to design a logic that (1) reflects the proper-
ties of Java concurrency in an intuitive manner, (2) has
a sound and (relatively) complete calculus, (3) requires
no intrinsic abstraction, no bounds on the state space
or thread number, (4) allows reasoning about proper-
ties of the scheduler within the logic, but does not re-
quire such reasoning for program verification.

To achieve our goal, we currently have to make three
important restrictions. (1) We do not consider thread
identities in programs, (2) we do not handle dynamic
thread creation (but systems with an unbounded num-
ber of threads), (3) we require that all loops are exe-
cuted atomically. These restrictions allow us to employ
very efficient symmetry reductions and thus symboli-
cally execute programs in the presence of unbounded
concurrency. We will discuss their significance in the
next section.

Our calculus has been implemented in the KeY sys-
tem [2, 3], which has been successfully used for verifica-
tion of non-concurrent Java programs. An application
of our method to verify one of the most common pieces
of production Java code in presence of unbounded con-
currency is described towards the end.

Achieved Java Coverage On the sequential side,
we benefit from the KeY system’s 100% Java Card
coverage, which includes full support for dynamic ob-
ject creation (with static initialization), efficient alias-
ing treatment, full handling of exceptions and method
calls, Java-faithful arithmetics, etc. All of these fea-
tures can be used in concurrent programs. On the con-
current side, we have to restrict the program fragment
as stated. Also, like all Java verification systems known
to us, we assume an intuitive, sequentially consistent
memory model, where updates to shared state are im-
mediately visible to all threads. In reality, the Java
Memory Model provides much weaker guarantees. We
believe that our calculus could be extended to reflect
these. Apart from this, our calculus faithfully models
Java’s concurrency.

One concurrency limitation concerns the use of ex-
plicit thread identities in programs. These are usually
manifested by invocations of methods from the class
Thread, the most important being t.interrupt() and
t.join(). Since our calculus is strongly based on sym-
metry reduction such programs are not allowed. We
believe, though, that this limitation precludes us from
verifying only a small fraction of interesting code. In

particular, it does not forbid the use of synchronized
blocks or condition variables with wait()/notify().

The only thread creation mechanism we currently
provide is the possibility for the programmer to specify
the initial thread configuration of a program (together
with the initial local variable assignment). Note that
the configuration values can be symbolic (“k threads”).
While this limitation is indeed unfortunate, it does not
impair the usefulness of the calculus much. It is in the
nature of concurrent Java applications that most ob-
jects are passive entities. They are unaware of thread
creation and can (and indeed have to) be verified for an
arbitrary number of threads accessing them. The most
prominent expression of this fact is library code, which
has to be thread-safe for any number of client threads.

Finally, we require all loops to be atomic. The pro-
grammer has to ensure that no (significant) interleav-
ings occur while the loop runs. This property can be
checked by our method as described later on. We are
working on overcoming this limitation by developing a
more elaborated algebraic model of the scheduler.

Related Work Several deductive calculi for (differ-
ent fragments of) sequential Java exist, while not much
work has been done to extend these calculi to cover con-
currency. A notable exception is the Verger tool [1],
a deductive verification system based on Hoare Logic.
The system requires the programs to be augmented
with auxiliary variables and annotated with Hoare-
style assertions. From these, verification conditions are
generated, which have to be discharged in PVS. The
system has a good concurrent language coverage, in-
cluding dynamic thread creation. It does, however, not
serve our goal of focusing on symbolic execution of con-
current programs.

A huge body of work is available on verifying tem-
poral properties of concurrent software. This includes
model checkers and even deductive proof systems (e.g.,
by Manna and Pnueli [10]). In contrast to using tem-
poral logic though, a proof system for dynamic logic
allows functional verification, i.e., full reasoning about
data. This way verification tasks can be tackled where
not only safety or liveness but the input-output rela-
tion of a concurrent program is of interest.

The only dynamic logic for a programming language
incorporating concurrency is—to our knowledge—the
Concurrent Dynamic Logic (CDL) described by David
Peleg in [12]. He notes, however, that this particular
logic “suffers from the absence of any communication
mechanisms; processes of CDL are totally independent
and mutually ignorant”. In [11], Peleg gives two ex-
tensions of CDL with interprocess communication: one
with channels and one with shared variables. In both
works cited, the focus is on studying concerns of ex-

pressivity and decidability of the logics (communica-
tion renders the logic highly undecidable, in short). The
issue of a calculus or program verification in general is
not touched.

A comprehensive control flow model of Java concur-
rency is given in [4]. The authors use a variant of Petri
nets to model the concurrent “skeletons” of programs
with an extension to treat the “partially non-blocking
rendez-vous” nature of Java’s wait()/notify() mech-
anism. As far as the basic representation formalism is
concerned, this is closely related to our work, although
we use full programs. The cited work describes a model
checker, which verifies program models for safety prop-
erties expressed in terms of control flow. The frame-
work does not cover functional verification.

Another class of verification tools for concurrent pro-
grams are static verifiers. A prominent example is the
SPEC# system, which incorporates a static verifier for
a concurrent object-oriented language [8]. Static veri-
fiers are very good at detecting race conditions but are
not geared towards input-output reasoning.

It is known that the efficiency of a verification sys-
tem is bounded to a great degree by the composition-
ality of reasoning it offers. This aspect is currently not
the target of our work though. Suggestions for mod-
ularizing reasoning about concurrent Java programs
have been made in [5, 15]. This research indicates that
programmers use dedicated “serializability techniques”
(mostly locking protocols and reference confinement)
to ensure correctness of programs. We believe that the
proposed specifications developed for model checking
resp. static analysis can be put to efficient use in a de-
ductive framework. We have already shown how cer-
tain serializability properties can be verified deduc-
tively in [9].

2. A Logic for Concurrent Java

Design of the Program Logic The logic we present
in this paper is an instance of Dynamic Logic (DL) [6],
and the proof system is a sequent-style symbolic ex-
ecution calculus, which ensures good understandabil-
ity.

DL can be seen as a modal logic with a modality
〈p〉 for every program p, which refers to the succes-
sor states that are reachable by running p. The for-
mula 〈p〉φ expresses that the program p terminates in
a state in which φ holds. A formula ψ → 〈p〉φ is valid
if for every state s satisfying pre-condition ψ a run of
the program p starting in s terminates, and in the ter-
minating state the post-condition φ holds. In standard
DL there can be several such states because the pro-
grams can be non-deterministic; we have equipped our

programs with a deterministic semantics via an under-
specified scheduler function. This allows much stronger
control over granularity of reasoning.

Concurrent Programs The programs we consider
are Java programs with the inherent restrictions posed
in the introduction. A program is a passive template
“without life” until a thread configuration is added,
i.e., a description of which threads are executing the
program. Threads are given a number, conventionally
called thread id (tid); they are in fact identified with
this number. In this paper we only feature programs
with a single code template or thread class. Our im-
plementation supports multiple thread classes as this
requires simply an additional case distinction.

Positions We number all state-changing statements
in a program (i.e., assignments; later also locking prim-
itives and native method calls) from left to right, start-
ing with one. We call these numbers the positions of the
program. Their intuitive meaning is that if a thread is
at a certain position, it is about to execute the corre-
sponding statement when it is next scheduled to run. In
addition, we consider the end of a program to be a po-
sition, which is reached when a thread has completed
the execution of the program.

Configurations A thread configuration specifies the
threads waiting to execute at every position of a given
program. A configuration (of size n) is an n-tuple of
pairwise disjoint sets of tids. ({3, 17, 5}, {}, {2}) is a
configuration of size three. A configuration of size n is
compatible with programs that have n positions, i.e.,
that have n− 1 statements.

We write (compatible) pairs c|p of thread configu-
rations and programs by inlining the components of
the configuration within the program. The program
v=(x<10); if (v) {a=10; x=a+1} together with the
configuration ({5}, {3, 4}, {1}, {2}), where four threads
are active and one has already terminated, is written

as {5}v=(x<10); if (v) {{3,4}a=x;{1}x=a+1;}{2}.
A position pos is enabled in a configuration c iff its

tid set is not empty and it is not the last position, which
is reserved for threads that have run to completion. We
define enabled (c, pos) ≡ (c(pos) 6= ∅) ∧ (pos < size(c)),
where size(c) is the length of the configuration tuple.

The Scheduler The scheduler is (modeled by) the
rigid function sched . That is, different models may in-
terpret this function differently and, thus, have differ-
ent schedulers. But within a model the scheduler is
rigid. It does not depend on the state. Intuitively, we
assume the scheduling to be data-independent; it is not
affected by the current values of variables and object
attributes.

To model the fact that a scheduler may not always
run the same thread for a given thread configuration,
we make it dependent on a seed : sched(r, c) is the id
of the thread scheduled to run next in configuration c
given the seed r. If no position is enabled in c, then
sched(r, c) = 0. Fairness or other scheduler properties
are not built into our model. Our scheduler may select
an arbitrary thread id provided it occurs in the config-
uration c and is not already at the last position. Prop-
erties such as fairness can, however, be specified by
adding axioms restricting the function sched . It should
be noted that Java itself is only “statistically fair”.

Signatures and Variables The formulas of our logic
are built over a set V of logical (quantifiable) vari-
ables and a signature Σ of function and predicate sym-
bols. Function symbols are either rigid or non-rigid.
Rigid function symbols have a fixed interpretation for
all states (e.g., addition on integers). In contrast, the
interpretation of non-rigid function symbols may dif-
fer from state to state.

Logical variables are rigid in the sense that if a log-
ical variable has a value, it is the same for all states.
They cannot be assigned to in programs. Everything
that is subject to assignment during program execu-
tion (variables, object attributes, arrays) is modeled
by non-rigid functions. We will call these functions
program variables. In particular, arrays and object at-
tributes give rise to functions with arity n > 0.

We now further sub-divide the bulk of program vari-
ables. Every thread has its own private copy of each
local variable, such that assignments to these are not
visible in other threads. We give non-rigid functions
used to model thread-local variables another argument,
which is the thread id, such that the local copies can
be distinguished. For example, l(k) denotes the copy
of variable l used by the thread with id k. This dis-
tinction, though, is unavailable within concurrent pro-
grams, as one thread is unaware of other threads’ copies
of the same local variable. As a peculiar consequence a
thread-local variable (which is, again, a non-rigid func-
tion) of arity n appears with n − 1 arguments in the
concurrent program.

Shared state manipulation can arise when these lo-
cal variables are dereferenced. Whether o(13).a refers
to the same memory location as o(17).a depends on
the values of o in the threads 13 and 17. This is a stan-
dard aliasing question, which is resolved just like in
the sequential KeY calculus. On the other hand, our
logic also has explicit shared variables, which are used
to model static fields. Shared variables exist only once
and assignments changing their value are immediately
visible to all threads.

Formulas The set of formulas is defined as common
in first-order dynamic logic. That is, they are built us-
ing the connectives ∧,∨,→,¬ and the quantifiers ∀, ∃
(first-order part). If p is a program, c is a configura-
tion, r is a scheduling seed, and φ a formula, then
〈r|c|p〉φ (the “diamond” modality) and [r|c|p]φ (the
“box” modality, which is a shorthand for ¬〈r|c|p〉¬φ)
are formulas. In the examples, we omit the schedul-
ing seed r where it is not relevant.

Intuitively, a diamond formula 〈r|c|p〉φ means that
all threads from the configuration c for a program p

and random seed r must terminate normally (run to
completion) and afterwards φ has to hold. The mean-
ing of a box formula is the same, but termination is not
required, i.e., φ must only hold if the program termi-
nates.

Furthermore, {lhs:=rhs}φ is a formula. The expres-
sion {lhs:=rhs} is called a state update. Note that, un-
like assignments, state updates can refer to the local
copies of local variables. They cannot be used within
programs and, as opposed to programs, their evaluation
does not require a thread configuration or a schedul-
ing seed. State updates (together with an update sim-
plification calculus, which is a standard part of KeY)
are used to handle assignments, resolve aliasing, and
also relate logical and program variables.

Semantics of Terms, Programs, and Formulas

The semantic domains used to interpret DL formu-
las are Kripke structures K = (S, ρ), where S is the
set of program states and ρ is the transition relation
interpreting programs (to be more precise: programs
with a given thread configuration and a given schedul-
ing seed). Since we use deterministic programs and the
scheduling is deterministic for a given seed, ρ is a (par-
tial) function: ρ(r, c, p) : S → S.

The states s ∈ S provide interpretations of functions
(including program variables) via first-order structures
for the signature Σ. We work under the constant do-
main assumption, i.e., for any two states s1, s2 ∈ S the
universes of s1 and s2 are the same set U . We refer
to U as the universe of K. Rigid function symbols have
a fixed interpretation for all states, while the interpre-
tation of non-rigid function symbols may differ from
state to state. We assume that the set S of states of
any Kripke structure consists of all first-order struc-
tures with signature Σ over some fixed universe and
for some fixed interpretation of the rigid symbols.

Since the transition relation ρ (by definition) corre-
sponds to the fixed semantics of our programming lan-
guage, the only things that can change from one model
(Kripke structure) to the other are: the signature, the
universe, and the interpretation of the rigid symbols
(including that of the scheduler function sched).

The valuation vals,β of terms w.r.t. a given state s
and a given logical variable assignment β is as usual
in first-order logic. The semantics ρβ(r, c, p) of a pro-
gram p reflects the behavior of the corresponding Java
program. Algebraically it is a relation between initial
and final states, which is parameterized by a schedul-
ing seed r and a thread configuration c. The seman-
tics of modal formulas is as usual for first-order modal
logic, i.e., vals,β(〈r, c, p〉φ) = true iff (s, s′) ∈ ρ(r, c, p)
for some state s′ with vals′,β(φ) = true. For formu-
las with attached updates, vals,β({lhs:=rhs}φ) = true

iff vals′,β(φ) = true for some state s′, which is iden-
tical to s except that the value of lhs is changed to
vals,β(rhs).

A Kripke structure is a model of a formula φ iff φ is
true in all states of that structure. A formula φ is valid

if all Kripke structures are a model of φ.

A Deductive Calculus We employ a sequent calcu-
lus that consists of the rules for symbolically execut-
ing concurrent programs presented in the following, to-
gether with standard structural first-order rules, rules
for integers and other datatypes (which include induc-
tion) and rules for update simplification. All the lat-
ter rules are inherited from the standard KeY calculus
and are not shown here.

A sequent is of the form Γ ` ∆, where Γ and ∆ are
sets of formulas. Its informal semantics is the same as
that of the formula

∧

φ∈Γ φ →
∨

ψ∈∆ ψ. As common
in sequent calculus, the direction of entailment in the
rules is from premisses (sequents above the bar) to the
conclusion (sequent below), while reasoning in practice
happens the other way round: by matching the conclu-
sion to the goal.

The invariant rule in Section 5 has to be applied
exactly as shown. From all other rules we have omitted
the usual context Γ and ∆, as well as a sequence of
updates U , which can preceed the formulas involved.
The modality 〈[·]〉 can mean both a diamond and a box,
as long as this choice is consistent within a rule.

3. A Calculus For Symbolic Execution

of Concurrent Programs

3.1. Extending Symmetry Reduction

Symmetry reduction is a well-known idea that differ-
ent threads with the same properties (which boil down
to local data and program counter) need not be dis-
tinguished. Most model checking frameworks use some
sort of symmetry reduction to prune the state space.
This is described prominently in [14] (the Bogor tool)
and [16] (on-the-fly model-checking with TVLA).

Due to their nature, these approaches only detect
symmetry between threads with exactly the same con-
crete local data. In a deductive verification system we
can give this idea a new twist. We know that proofs
about a program have significantly fewer cases than the
program possible inputs. In other words, even threads
with different local data will exhibit the same behav-
ior in terms of their execution path through the code.
Furthermore, there is only a finite and relatively small
number of different paths; this number is dictated by
the shape of the program. Since we are executing pro-
grams symbolically (and have already paid a price for
that in form of case distinctions), we can reap higher
benefits and, as a start, identify threads with differ-
ent local data as long as they follow the same path.

Furthermore, we can achieve even stronger symme-
try reduction by separating thread scheduling and con-
trol flow. We obtain symmetry between threads with
different paths through the program, by forcing each
thread to linearly traverse the program: There is no
jumping back (except within an atomic loop), and each
thread visits each position exactly once. This means,
however, that threads can end up in “wrong” parts of
if-then-else code. To preserve the original semantics of
the program, we assume that the state is not changed
by the program while its control flow is in the wrong
place. For this small additional price, all thread traces
are now completely symmetric.

Thus, we have completely eliminated the necessity
to consider different orderings of threads that have
reached the same position within the program. To-
gether with exploiting atomic and independent code,
this makes deductive verification of real concurrent sys-
tems feasible.

3.2. Expressing Unbounded Concurrency

As mentioned above, we force each thread to visit
each program position exactly once. Assuming threads
with tids 1, . . . , n, it is clear that for every position
pos , there is a permutation ppos : {1 . . . n} → {1 . . . n},
which describes the order in which the threads are
scheduled at this position.

Given these permutations, it is sufficient to know
how many threads are at each position. This fixes the
exact configuration as well and allows configurations
with r positions of the form (p1 : k1, . . . , pr : kr),
where p1, . . . , pk are terms representing the permuta-
tions and k1, . . . , kr are terms representing the number
of threads. Using this notation, the next thread sched-
uled at position pos is the (Post(pos) + 1)th thread,
which has the tid ppos(Post(pos) + 1) where Post(pos)

is the number of threads already beyond pos in the cur-
rent configuration: Post(pos) = kpos+1 + · · · + kr.

Consider a configuration of size 4 with 2, 3, 5 and 7
threads waiting at each position respectively. With the
permutation functions p1, . . . , p4 from above, we can
write this configuration as (p1 : 2, p2 : 3, p3 : 5, p4 : 7).
If we now concentrate on position 2, we can see that
Post(2) = 5 + 7 = 12 threads have already passed this
position and the next one to execute it will be the
13th in count. But exactly which one? Here the per-
mutation functions come into play. The exact tid of
the thread scheduled to run next at position 2 is given
by p2(Post(2)+1) = p2(13). This way we can talk con-
cisely about thread orderings even if we don’t know
them exactly.

The same way we can write configurations where the
number of threads is not a concrete number but a vari-
able. This very expressive form of writing allows us
to formulate rules that do not take the scheduling or-
der into account, as it is hidden inside the permuta-
tion functions. What we need for a complete calculus
are then the usual algebraic properties of permutations
and axioms of their interplay.

Altogether, our calculus works by reducing asser-
tions about programs to assertions about integers and
permutations, which encapsulate the scheduler deci-
sions. In the desirable case that the program is schedul-
ing-independent the permutations can be removed from
the correctness assertions by application of standard al-
gebraic lemmas. Scheduling independence means that
the relevant part of a program’s final result is always
the same, in spite of possibly different intermediate
states that it can assume in different runs. Scheduling
independence is an important part of program correct-
ness. When also the remaining assertions (now without
permutations) can be discharged, then the program is
fully correct w.r.t. its functional specification.

3.3. Program Unfolding

The rules of our calculus that symbolically execute
programs (i.e., treat state changes and concurrency;
they are explained in the following section), assume a
certain normal form of the program. That is, complex
sequential program parts must first be completely “un-
folded”.

This process results in a program that is trace-equiv-
alent to the original, but each occurring expression is
now simple and each assignment atomic. The program
has more of each now in exchange. A version of this
transformation is already a part of the sequential KeY
calculus (see [3]), and we have in fact reused the bulk
of the corresponding rules.

The only constructs in the resulting unfolded pro-
grams are assignments, conditionals and loops. We will
extend these to locking primitives and certain native
method calls later. Everything else, including object
creation, exceptions, etc., is reduced to these ingre-
dients. Moreover, the programs get normalized such
that (a) the evaluation of assignment expressions can-
not have side-effects, (b) the conditions of if-statements
and loops are fresh local variables. The latter property
eliminates technical difficulties when specifying execu-
tion path conditions.

During the unfolding process, the KeY calculus in-
troduces fresh local variables. For instance, we unfold
o.a=u.a++; into v=u.a; u.a=v+1; o.a=v; (with v a
fresh local variable). Java’s if (o.a>1){α} else{β}

unfolds to v=o.a>1;if (v){α′} else{β′}, and, a little
more involved, the Java program while(o.a>1){α}

expands to v=o.a>1; while(v){α′ v=o.a>1;}.

Method calls are handled by inlining method imple-
mentations and possibly adding conditionals for simu-
lating dynamic binding. Remember, modular verifica-
tion is not the goal of our current effort.

3.4. Concurrency-Related Rules

Configuration Skolemization The rule given now
replaces concrete thread configurations by a compact
permutation-based representation, while implying no
particular knowledge of the introduced permutations
as they are represented by new (Skolem) constants.

` 〈[r|cp|p]〉φ

` 〈[r|c|p]〉φ
conf

where c is a concrete thread configuration of the form
({i11, . . . , i

1
l1
},. . . , {ir1, . . . , i

r
lr
}); and cp is a configura-

tion of the form (p1 : l1, . . . , pr : lr), where p1, . . . , pr
are fresh unary permutation functions.

Position Choice Symbolic execution starts with the
choice of an enabled position in the given configura-
tion. For this we employ the function P , which is a
projection of the scheduling function. For a configura-
tion c and a seed r, P (r, c) returns the position from
which the next thread will be scheduled—or 0 if no en-
abled positions remain. P is axiomatized as follows.

The axiom 0 ≤ P (r, c) < size(c) effectively amounts
to a disjunction over the positions of c, which during
the proof gives rise to a case distinction. Furthermore,
the values of P are restricted to the enabled positions
in the configuration: P (r, c) 6= 0 → enabled(c, P (r, c)).
P may only return 0 if no position is enabled, which is
expressed by: P (r, c) = 0 → ∀pos .(1 ≤ pos < size(c) →

¬enabled (c, pos)). Remember that for skolemized con-
figurations enabled (c, pos) ≡ (c(pos) > 0) ∧ (pos <

size(c)).

The Rule for Concurrent Execution

step

` P (r, c) = pos

path(pos , p) ` {lhs∗(pos):=rhs∗(pos)}

〈[r|π {ppos :n−1}lhs=rhs{ppos+1:k+1} ω]〉φ
¬path(pos , p) `

〈[r|π {ppos :n−1}lhs=rhs{ppos+1:k+1} ω]〉φ

` 〈[r| π {ppos :n}lhs = rhs{ppos+1:k}

︸ ︷︷ ︸

at position pos in p

ω]〉φ

Listed above is the concurrent symbolic execution
rule of our calculus. π and ω denote unchanged pro-
gram parts. pos is the position of the executed assign-
ment lhs=rhs in the program p. path(pos , p) is the path
condition of this assignment (which is at position pos)
in the program p. It is a conjunction of all if-conditions
on the path from the beginning of the program to
the assignment. Each if-condition appears as given
if the path goes through the then-part, and negated
if the path goes through the else-part. For example,
the path condition of the statement v=t; in the pro-
gram if (a) {if (b) {} else {v=t;}} else {} is
b = FALSE ∧ a = TRUE .

Furthermore, {lhs∗(pos):=rhs∗(pos)} is a state up-
date built by replacing every occurrence of a local vari-
able v in lhs and rhs, by v(ppos(Post(pos) + 1)) using
the configuration of p (cf. definition of Post(·) in 3.2).
This way, the update represents a “sequential instanti-
ation” of the concurrent assignment, i.e., it makes ex-
plicit which thread-copy of the variable is involved.

For example, if we consider the assignment v=o.a;
at position one in some program, and the configura-
tion before execution is (p1 : 2, p2 : 5, p3 : 7), then the
generated update is {v(p1(13)):=o(p1(13)).a}. The up-
date will be tackled by the update simplification rules,
after the program has been completely executed. This
will happen at some point, since the rule reduces the
general measure of enabledness in the system.

The Rule for Empty Programs In case no position
is enabled in a configuration, the program does noth-
ing and the modality can be removed altogether. The
following rule applies:

` P (r, c) = 0 ` φ

` 〈[r|c|p]〉φ
empty-program

Reasoning About Permutations For the calculus
to be complete, we need to add standard axioms that

characterize permutations. We do not present these ax-
ioms here. It is a rule of the calculus that axioms can
be added to the left side of any sequent at any time.

Together with the following permutation interplay
axiom

pi+1(Post(i+ 1) + 1) ∈ {pi(1) . . . pi(Post(i))}\
{pi+1(1) . . . pi+1(Post(i+ 1))}

the calculus is sound and complete. This axiom con-
strains the threads that can be scheduled in a given
configuration at position i + 1. These are exactly the
threads that have already passed the position i, but are
not yet past position i+ 1.

Treating Concurrency Primitives At this point we
add rules for reasoning about synchronized methods
and blocks. Synchronized code offers a way to ensure
mutual exclusion of threads by structured acquisition
and release of locks associated with objects. To make
this process explicit, we extend the Object class with
a pair of “ghost” methods <lock>() and <unlock>().
Code marked as synchronized is automatically wrapped
by invocations of these methods during the unfolding
stage. The locking methods manipulate the ghost in-
teger fields <lockedby> (identity of the thread hold-
ing the lock) and <lockcount> (locking depth), which
are also introduced into every object.

The lock acquisition method is symbolically exe-
cuted by applying the rule:

lock

` P (r, c) = pos

path(pos , p) `
{o∗(pos).<lockcount>:=

o∗(pos).<lockcount>+ 1}
{o∗(pos).<lockedby>:=Post(pos)+1}

〈[r|π {ppos :n−1}o.<lock>{ppos+1:k+1} ω]〉φ
¬path(pos , p) `

〈[r|π {ppos :n−1}o.<lock>{ppos+1:k+1} ω]〉φ

` 〈[r| π {ppos :n}o.<lock>{ppos+1:k}

︸ ︷︷ ︸

at position pos in p

ω]〉φ

The structure of this rule is similar to the step rule for
handling normal assignments. Execution is successful
if the path condition is satisfied and the statement is
enabled (remember, P (r, c) = pos → enabled(c, pos)).

In addition, we also amend the enabledness predi-
cate in order to capture the mutual exclusion seman-
tics of locking. The new definition for o.<lock>() is:

enabled(c, pos) ≡ (c(pos) 6= ∅) ∧ (pos < size(c))∧
(o∗(pos).<lockcount> = 0∨

o∗(pos).<lockedby> = Post(pos) + 1)

The added second line means that either the lock has
to be available or it has been previously acquired by
the thread requesting it (reentrant locking). A simi-
lar rule exists for the <unlock>() method, which de-
creases the lock count and clears the locked by status
when the count reaches zero. All other rules can re-
main the same.

The presence of locking opens a possibility for dead-
lock. Just as the sequential KeY calculus maps abrupt
termination onto non-termination, we have decided to
model deadlock logically as termination. It is still easy
to discern a deadlocked state from normal termina-
tion by considering the final program configuration. Be-
sides, the desired postcondition would still hold, even
if the program becomes prematurely disabled.

Another important concurrency feature of Java is
condition variables. It allows threads to suspend execu-
tion until an external signal is received. Condition vari-
ables can be modeled in a manner similar to locks, since
their usage does not involve thread identities. On the
other hand, it requires a (special kind of) non-atomic
loop for correctness. We can verify programs where the
condition is atomic, but do not show the rules here.

4. A Simple Example

Consider a financial transaction system that pro-
cesses concurrent incoming payments for an account.
We wish to establish that all payments end up de-
posited, regardless of their number and the order in
which the threads are scheduled. This can be expressed
by the following proof obligation, where sum is a shared
variable and e is a local variable whose thread-local
copies contain the payments. Which scheduling seed r
is chosen is irrelevant, and p is an arbitrary permuta-
tion of {1, . . . , n}:

{sum:=0}〈{p:n}sum = sum+e;{}〉(sum =
∑n

i=1 e(i))

Note that for the sake of the example we have abused
the programming language, writing an atomic assign-
ment with two occurrences of a shared variable. In real-
ity, it would unfold to v=sum+e;sum=v; (with v a fresh
local variable) and locking would be necessary to avoid
a race condition.

The proof of the property boils down to a simple in-
duction argument. Let n be arbitrary but fixed, then
the induction hypothesis is that n−k transactions have
been completed correctly, while k remain:

{sum:=
∑n−k

i=1 e(p(i))}

〈{p:k}sum = sum+e;{n−k}〉(sum =
∑n

i=1 e(p(i)))

Now we have to prove that the above holds for k + 1
transactions, i.e.:

{sum:=
∑n−k−1
i=1 e(p(i))}

〈{p:k+1}sum= sum+e;{n−k−1}〉(sum =
∑n

i=1 e(p(i)))

Applying the step rule to the above formula once, we
obtain (there is only one position, and thus one per-
mutation function, namely p):

{sum:=
∑n−k−1
i=1 e(p(i))}{sum:=sum+e(p(n− k))}

〈{p:k}sum = sum+e;{n−k}〉(sum =
∑n

i=1 e(p(i)))

Where the updates can be combined to:

{sum:=
∑n−k

i=1 e(p(i))}

〈{p:k}sum = sum+e;{n−k}〉(sum =
∑n

i=1 e(p(i)))

Now, the induction hypothesis for k applies, and the
step case of the induction is closed. The base case k = 0
is trivially valid. Thus, we have established the hypoth-
esis for any k ≤ n. Instantiating k with n yields:

{sum:=
∑0
i=1 e(p(i))}

〈{p:n}sum = sum+e;{0}〉(sum =
∑n

i=1 e(p(i)))

The sum in the update is empty, so rewriting the post-
condition with the lemma

∑n

i=1 e(p(i)) =
∑n

i=1 e(i) we
can derive the original conjecture. The lemma does not
depend on the particular program but expresses prop-
erties of permutations (p is a permutation from 1 . . . n)
and the commutativity of integer addition.

We have now verified the transaction mechanism
for an arbitrary number of threads. This is important,
since it is very easy to devise code that works for n but
not for n + 1 threads. The state explosion caused by
the potentially different ordering of transactions is ef-
ficiently controlled, even without further knowledge of
concrete data.

5. An Invariant Rule

For systems with a high number of potentially simul-
taneously enabled positions, applying induction may be
unwieldy. In the following we present an additional in-
variant rule, which allows tackling each potentially en-
abled statement separately. Instead of an induction hy-
pothesis, the user has to state (and then prove) a suit-

able invariant INV of the system. The rule is:

invariant

` UINV (r, c0)
INV (r, c�) ` φ

INV (r, c), path(1, p), enabled(c, 1)

` {lhs
∗(1)
1 :=rhs

∗(1)
1 }INV (r, c1)

...
INV (r, c), path(q, p), enabled (c, q)

` {lhs
∗(q)
q :=rhs

∗(q)
q }INV (r, cq)

` U〈[r|c0|p]〉φ

We assume that the program p has q + 1 positions. c0
is here the initial configuration (n, 0, 0, . . . , 0). From c0
the final configuration c� = (0, 0, . . . , 0, n) is eventu-
ally reached, where all n threads have run to com-
pletion. The generic configuration c is a tuple of vari-
ables (t1, . . . , tq+1). The configurations ci are the same
as c except that ci(i) = c(i)−1 and ci(i+1) = c(i+1)+1
(i.e., ci is c with one thread having moved from posi-
tion i to i+ 1).

The first premiss of the rule states that the systems
satisfies the invariant in its initial configuration. The
second premiss states that the invariant implies the
desired property, once all threads have completed their
work. What follows are q premisses—one for each po-
sition in the program but the last—stating that the
execution of the statement at this position preserves
the invariant. More precisely, we show INV to be in-
variant under updates originating from every position i
(1 ≤ i ≤ q) in the program. For each such position we
can assume its enabledness and the corresponding path
condition.

An example for using the invariant rule is given in
the next section.

6. A Real-World Example

We have applied our calculus to verify the full func-
tional correctness of a method of the StringBuffer

class in presence of unbounded concurrency. The class
java.lang.StringBuffer is a key class of the stan-
dard Java library that represents a mutable charac-
ter sequence. Its central method is append(char c),
which appends the character c to the end of the se-
quence.

We have used the original source code shipped by
SUN with the JDK 1.4.2 (shown in Figure 1). The
StringBuffer implementation is backed by a char ar-
ray, which is initially 16 elements long. Should the ar-
ray become full, a new, longer array is allocated and
the contents copied. This happens transparently for the
user.

���������
	��������� value [];
���������
	�������	 count;

���������������
�������������� ���! StringBuffer append (������� c) {
����	 newcount = count + 1;
��" (newcount > value.length)

expandCapacity(newcount);

value[count ++] = c;
���#	����#��	
�$��� ;

}

���������
	��%�����&! expandCapacity(����	 minimumCapacity) {
����	 newCapacity = (value.length + 1) * 2;
��" (newCapacity < 0) {

newCapacity = Integer .MAX_VALUE;
} �����
����" (minimumCapacity > newCapacity) {

newCapacity = minimumCapacity;

}

������� newValue [] = ���#'�������� [newCapacity];
System.arraycopy(value , 0, newValue , 0, count);

value = newValue ;
shared = "������
� ;

}

Figure 1. StringBuffer source code (excerpt)

A functional specification of the append method can
be given as:

strb.<lockcount>= 0 ∧ ¬strb = null∧
strb.count = 0 → ∀n. n > 0 →

〈{p1:n}strb.append(c);{0}〉strb.count = n∧
∀k. 0 ≤ k < n→ strb.value[k] = c(p1(k + 1))

where strb is a shared reference of type StringBuffer.

Plainly speaking: if n threads are concurrently per-
forming an append on a shared (and initially empty)
StringBuffer object, then all threads will eventually
run to completion and the StringBuffer will contain ex-
actly the characters deposited by the threads. Further-
more, the characters will fill the backing array in the
“natural” order, i.e., the order induced by the thread
scheduling.

We now describe the verification process, which has
three major parts.

Unfolding First, we have “unfolded” the implemen-
tation. The expandCapacity() method has been in-
lined, and fresh local variables have been introduced
to eliminate side effects and make explicit the atomic-
ity granularity of the code. The result is shown in Fig-
ure 2, though exceptions and array creation are still in
their folded state for brevity.

The code also shows a call to System.arraycopy(),
which cannot be unfolded. This native method call can
be seen as one big parallel assignment, which is sound
under the atomicity proviso proven below. During sym-
bolic execution, the KeY system translates a call like

strb.<lock >();
newcount =strb.count+1;

j_1=strb.value.length;
b=newcount >j_1;
��" (b) {

j_2=strb.value.length;
j_3=j_2+1;

newCapacity=j_3*2;
b_1=newCapacity_ <0;
��" (b_1) {

newCapacity=Integer .MAX_VALUE;
} ������� {

b_2=newcount >newCapacity;
��" (b_2) {

newCapacity=newcount ;
}

}

b_3=newCapacity <0;
��" (b_3) 	
�����#'(���
' NegativeArraySizeException();

newObject= ���#'�������� [newCapacity];
src_1=strb.value;

len_2=strb.count;
System.arraycopy(src_1 ,0,newObject ,0,len_2);
strb.value=newObject;

}
val_1=strb.value;

j_4=strb.count;
strb.count=j_4+1;
val_1[j_4]=c;

strb.<unlock >();

Figure 2. Source code after unfolding

arraycopy(src,srcPos,dest,destPos,len) into a so
called quantified update

{for 0 ≤ l < len;

dest[srcDest+ l] := src[srcPos+ l]}

which is a concise way to express a number of updates
at once. We also use quantified updates to state the
induction hypothesis later on.

Establishing Atomicity Subsequently, we used the
invariant rule to establish atomicity of the method.
This greatly simplified further proof. We have to show
that the method can only be executed by one thread
at a time (on the same object). This property can
be stated as N ≤ 1, with N ≡

∑q

i=2 ci, so the con-
figuration never has more than one thread between
its second and the last but one position. Before the
proof can proceed, the above has to be strengthend to
INV (r, c) ≡ N ≤ 1 ∧ (N > 0 ↔ <lockcount>> 0).

This invariant clearly holds in the initial state, since
both N and <lockcount> are zero. Statements at po-
sitions 2 . . . q preserve the invariant, since they can-
not increase the value of N , as only the statement at
position 1 can. Finally, the locking statement at posi-
tion 1 also preserves the invariant. If the lock is avail-
able then N = 0 before the locking per the second con-
junct of the invariant. After the execution, both N and
<lockcount> are equal to 1. If the lock is not available
then the locking statement is disabled altogether.

Thus, the method is atomic, and we can assume the
simplification lemma pi(k) = pj(k) for 1 ≤ i, j ≤ q in
the proof. Once a thread has entered the method it will
run to completion without interference.

Establishing Functional Correctness So far, we
know that the method is correctly synchronized, but
is it also functionally correct? Using the Java-faithful
bounded integer semantics of KeY, we have, of course,
discovered that the specification shown above is not
quite right, as it holds true only for n ≤ 232 − 1. Try-
ing to insert more characters into a StringBuffer re-
sults in an ArrayIndexOutOfBoundsException. This
bound may seem of little practical importance, but it
is an instance of a general problem. Concurrent access
to bounded data structures is likely to result in sub-
tle bugs, even in presence of proper synchronization.

Since there is no way to fix the method, we amended
the conjecture with a pre-condition limiting the initial
value of n. After that it was easy to establish by induc-
tion. The induction hypothesis I(k) we used is:

k ≤ n0 → {count:=n0 − k}
{for 0 ≤ l ≤ n0 − k; strb.value[l] := c(p1(l + 1))}

〈{p1:k}strb.append(c);{n0−k}〉strb.count = n0∧
∀k. 0 ≤ k < n0 → strb.value[k] = c(p1(k + 1))

It summarizes the state of the system after n0 − k

threads have run to completion. n0 is the Skolem sym-
bol introduced after eliminating the quantifier in the
conjecture.

The induction base case k = 0 is trivial, since it cor-
responds to a system with no enabled threads. The step
case I(k0) → I(k0 + 1) requires performing an “itera-
tion” of the system with k0 + 1 threads waiting, i.e., a
symbolic execution of the append by the (n0 − k0)th
scheduled thread. The execution has a choice between
three relevant program paths: (1) b is false (2) b is true
and b 2 is false or (3) b is true and b 2 is true. All of
these can be discharged without complications. At last,
instantiating k in the hypothesis with n0 yields the con-
jecture.

In total the proof comprises 14622 proof steps in 238
branches. User interaction was required in two steps:
specifying an induction hypothesis and instantiating
the resulting quantifier. Proof search took about one
minute on an average desktop computer.

References

[1] E. Ábrahám,F.S.deBoer,W.-P.deRoever, andM.Stef-
fen. An assertion-based proof system for multithreaded
Java. Theor. Comp. Sci., 331(2–3):251–290, 2005.

[2] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese,
R. Hähnle, W. Menzel, W. Mostowski, A. Roth,

S. Schlager, and P. H. Schmitt. The KeY tool. Soft-
ware and System Modeling, 4:32–54, 2005.

[3] B.Beckert,R.Hähnle, andP.H.Schmitt, editors. Verifi-
cation of Object-Oriented Software: The KeY Approach.
LNCS 4334. Springer-Verlag, 2007.

[4] G.Delzanno, J.-F.Raskin, andL.V.Begin. Towards the
automatedverification ofmultithreaded Javaprograms.
In J.-P. Katoen and P. Stevens, editors, Proceedings,
8th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS),
volume 2280 of LNCS, pages 173–187. Springer, 2002.

[5] A. Greenhouse and W. L. Scherlis. Assuring and evolv-
ing concurrent programs: annotations and policy. In
ICSE ’02: Proceedings of the 24th International Confer-
ence on Software Engineering, pages 453–463, 2002.

[6] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT
Press, 2000.

[7] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. International Jour-
nal on Software Tools for Technology Transfer (STTT),
2(4):366–381, 2000.

[8] B. Jacobs, J. Smans, F. Piessens, and W. Schulte. A
statically verifiable programming model for concurrent
object-oriented programs. In Z. Liu and J. He, edi-
tors, 8th International Conference on Formal Engineer-
ing Methods, ICFEM, Macao, China, Proceedings, vol-
ume 4260 of LNCS, pages 420–439. Springer, 2006.

[9] V. Klebanov. A JMM-faithful non-interference calcu-
lus for Java. In Scientific Engineering of Distributed
Java Applications, 4th International Workshop, Pro-
ceedings, Luxembourg-Kirchberg, volume 3409 of LNCS,
pages 101–111. Springer, 2004.

[10] Z. Manna and A. Pnueli. Completing the temporal pic-
ture. In Selected papers of the 16th international collo-
quium on automata, languages, and programming, pages
97–130. Elsevier Science Publishers B. V., 1991.

[11] D. Peleg. Communication in concurrent dynamic logic.
J. Comput. Syst. Sci., 35(1):23–58, 1987.

[12] D.Peleg. Concurrentdynamic logic. J.ACM, 34(2):450–
479, 1987.

[13] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensi-
ble and highly-modular software model checking frame-
work. In ESEC/FSE-11, pages 267–276, 2003.

[14] Robby, M. B. Dwyer, J. Hatcliff, and R. Iosif. Space-
reduction strategies for model checking dynamic soft-
ware. In Proceedings SoftMC 2003, Workshop on Soft-
ware Model Checking, ENTCS 89, 2003.

[15] E. Rodŕıguez, M. B. Dwyer, C. Flanagan, J. Hatcliff,
G. T. Leavens, and Robby. Extending JML for mod-
ular specification and verification of multi-threaded
programs. In ECOOP, LNCS 3586, pages 551–576.
Springer, 2005.

[16] E. Yahav. Verifying safety properties of concurrent Java
programs using 3-valued logic. In POPL ’01: Proceed-
ings of the 28th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 27–40.
ACM Press, 2001.

